• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WEI Xue-hua, WANG Jia, FENG Zhong-ke.. Estimating diameter at breast height for thirteen common tree species in Beijing.[J]. Journal of Beijing Forestry University, 2013, 35(5): 56-63.
Citation: WEI Xue-hua, WANG Jia, FENG Zhong-ke.. Estimating diameter at breast height for thirteen common tree species in Beijing.[J]. Journal of Beijing Forestry University, 2013, 35(5): 56-63.

Estimating diameter at breast height for thirteen common tree species in Beijing.

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Published Date: September 29, 2013
  • As high spatial resolution remote sensing images and LiDAR(light detection and ranging)technology applied in forestry to extract tree crown and height automatically, new models are needed to predict forest stand information. Based on the investigation of 178 sample plots distributed in Beijing, the most common used crown diameter(C)-diameter at breast height(D) models and tree height(H)-D models were chosen to predict D from C and H for thirteen common tree species in Beijing. The results showed that not all tree species'C and H had close relationship with D. Tree species of Ailanthus altissima, Cedrus deodara, Koelreuteria paniculata and Populus canadensis had high correlation of D-C and D-H equation, with determination coefficient (R2) value higher than 0.7 and 0.5, and above 0.8 by combination C and H to estimate D. But the C of aspen, China savin, Oriental white oak, Chinese pine and the H of walnut, willow, Chinese scholar tree, torch tree, Chinese pine were poor correlated with D, both with a R2 value lower than 0郾3. Regional site conditions and stand variables (site index, stand age and density) were suggested to join with C and H to improve the D predicting accuracy in the next step work. This method can be used in estimating D and other stand information with C and H automatically extracted by modern remote sensing technology, which can realize quick and economical forest resource investigation and update.
  • Related Articles

    [1]Cheng Wen, Wu Xiaoyu, Yeerjiang Baiketuerhan, Wang Juan, Zhao Xiuhai, Zhang Chunyu. Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression[J]. Journal of Beijing Forestry University, 2024, 46(2): 28-39. DOI: 10.12171/j.1000-1522.20220428
    [2]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [3]Chen Zhongchao, Liu Qingwang, Li Chungan, Li Mei, Zhou Xiangbei, Yu Zhu, Su Kai. Comparison in linear and nonlinear estimation models of carbon storage of plantations based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2021, 43(12): 9-16. DOI: 10.12171/j.1000-1522.20200417
    [4]LOU Ming-hua, ZHANG Hui-ru, LEI Xiang-dong, LU Jun. An individual height-diameter model constructed using spatial autoregressive models within natural spruce-fir and broadleaf mixed stands.[J]. Journal of Beijing Forestry University, 2016, 38(8): 1-9. DOI: 10.13332/j.1000-1522.20150491
    [5]DONG Chen, WU Bao-guo, ZHANG Han. Parametric prediction models of DBH and height for Cunninghamia lanceolata plantation based on crown width[J]. Journal of Beijing Forestry University, 2016, 38(3): 55-63. DOI: 10.13332/j.1000-1522.20150129
    [6]LI Dan, PANG Yong, YUE Cai-rong, ZHAO Dan, XU Guang-cai. Extraction of individual tree DBH and height based on terrestrial laser scanner data.[J]. Journal of Beijing Forestry University, 2012, 34(4): 79-86.
    [7]FAN Yan-wen, WANG Xiang-ping, ZENG Ling-bing, WU Xian. Allometric relationship between diameter at breast height and height of Quercus variabilis plantations in Beijing.[J]. Journal of Beijing Forestry University, 2011, 33(6): 146-150.
    [8]PANG Qi-wei, JIA Li-ming, ZHENG Shi-guang. Estimation models for aboveground biomass of Caragana microphylla by multi-spectral CROPSCAN.[J]. Journal of Beijing Forestry University, 2010, 32(4): 81-85.
    [9]YAN Wei, ZONG Shi-xiang, LUO You-qing, CAO Chuan-jian, , LI Zhan-wen, GUO Qi-lin. Application of stepwise regression model in predicting the movement of Artemisia ordosica boring insects.[J]. Journal of Beijing Forestry University, 2009, 31(3): 140-144.
    [10]JU Cun-yong, CAI Ti-jiu.. Estimation of aboveground biomass using GRNN model in Ordos grassland, Inner Mongolia.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 296-299.
  • Cited by

    Periodical cited type(26)

    1. 董玲萍,胡晓静,杨文乐. 不同生境梭梭冠幅预测模型研究. 森林工程. 2024(04): 1-10 .
    2. 刘瑶,钟全林,徐朝斌,程栋梁,郑跃芳,邹宇星,张雪,郑新杰,周云若. 不同大小刨花楠细根功能性状与根际微环境关系. 植物生态学报. 2024(06): 744-759 .
    3. 朱兆廷,孙玉军,梁瑞婷,马佳欣,李佳怡. 基于树冠和竞争因子的杉木胸径估测. 北京林业大学学报. 2023(09): 42-51 . 本站查看
    4. 薛甦阳,朱建君,胡承兴,徐霄枭,张家阳. 住宅小区景观植物种植养护阶段碳排放测算及减碳策略研究——以南京市江宁区某小区为例. 建设科技. 2022(10): 66-69 .
    5. 龚粤宁,杨昌腾,周光益,李兆佳,李超荣,杨龙,孙中宇. 基于无人机遥感的南岭山地树冠与树干性状关联研究. 热带地理. 2022(08): 1386-1395 .
    6. 姚慧芳,卢杰,王超,张萌. 基于混合效应法的急尖长苞冷杉林单木冠幅预测模型. 高原农业. 2021(06): 572-580 .
    7. 王媛,王秀兰,冯仲科,孙素芬,张浪,刘培斌. 北京松山自然保护区主要树种冠幅预测模型研究. 中国农业科技导报. 2020(04): 94-101 .
    8. 朱思名,王振锡,裴媛,吕金城,葛瑶. 基于无人机影像的天山云杉林冠幅提取及蓄积量反演. 干旱区资源与环境. 2020(10): 160-165 .
    9. 兰洁,张毓涛,李吉玫,李翔,芦建江. 新疆天山不同区域云杉树高、胸径、年龄相关关系研究. 西部林业科学. 2019(02): 135-140 .
    10. 刘志君,管洋洋,徐颖澜,徐悦,李士美. 青岛城区水杉和银杏立木结构特征分析. 广西林业科学. 2019(01): 127-132 .
    11. 冯仲科,杜鹏志,闫宏伟,曾伟生,刘金成,冯海英. 创建新一代森林资源调查监测技术体系的实践与探索. 林业资源管理. 2018(03): 5-14 .
    12. 陈毅青,薛杨,王小燕,宿少锋,林之盼,王霞. 海南东北部木麻黄人工林树高曲线研建. 热带农业科学. 2018(05): 88-92 .
    13. 黄峰,徐爱俊,唐丽华. 改进栓皮栎树高预测混合效应模型研究. 林业资源管理. 2018(05): 54-62+89 .
    14. 张俊涛,陈莹. 广州市中心城区古樟树生长状况调查及评价指标探讨. 安徽农业科学. 2017(35): 172-174+202 .
    15. 江志向,陈紫璇,练一宁,王媛. 基于航模飞行器摄影数据的森林信息提取方法. 北京测绘. 2017(03): 153-157 .
    16. 张树森,董利虎. 张广才岭三大硬阔树高曲线的研究. 森林工程. 2017(04): 15-20+26 .
    17. 张树森,贾炜玮,王玉霞,高慧淋. 大兴安岭地区天然兴安落叶松疏开木冠幅预测模型. 森林工程. 2017(03): 33-38 .
    18. 孙梦营,冯仲科,李蕴雅. 九棵树法提取林分调查因子原理与应用. 中南林业科技大学学报. 2017(04): 70-74 .
    19. 史洁青,冯仲科,刘金成. 基于无人机遥感影像的高精度森林资源调查系统设计与试验. 农业工程学报. 2017(11): 82-90 .
    20. 董晨,吴保国,张瀚. 基于冠幅的杉木人工林胸径和树高参数化预估模型. 北京林业大学学报. 2016(03): 55-63 . 本站查看
    21. 张西童,李永强,毛杰,李有鹏,黄腾达. 车载LiDAR点云相连行道树精细分割. 测绘科学. 2016(08): 111-115 .
    22. 冯国红,朱玉杰,王景峰. 小兴安岭天然林不同树种的树高曲线模型. 东北林业大学学报. 2016(12): 6-9 .
    23. 董晨,吴保国,韩焱云,刘建成. 基于修正函数的杉木人工林单木冠幅预测模型. 东北林业大学学报. 2015(05): 49-53 .
    24. 朱玉杰,冯国红,董春芳. 大兴安岭落叶松不同采伐强度的最优树高曲线模型. 东北林业大学学报. 2015(08): 54-58 .
    25. 赖玖鑫,潘青华,梁机. 北京市主要行道树白蜡生长因子的模型研究. 中国农学通报. 2015(10): 21-26 .
    26. 冯仲科,郭欣雨,丁秀珍. 我国森林经理技术若干问题及其完善途径. 林业资源管理. 2014(04): 23-28 .

    Other cited types(25)

Catalog

    Article views (2009) PDF downloads (181) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return