高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁尾矿废弃地不同复垦年限土壤质量评价

王安宁 刘歌畅 徐学华 李晓刚 李玉灵

王安宁, 刘歌畅, 徐学华, 李晓刚, 李玉灵. 铁尾矿废弃地不同复垦年限土壤质量评价[J]. 北京林业大学学报, 2020, 42(1): 104-113. doi: 10.12171/j.1000-1522.20180240
引用本文: 王安宁, 刘歌畅, 徐学华, 李晓刚, 李玉灵. 铁尾矿废弃地不同复垦年限土壤质量评价[J]. 北京林业大学学报, 2020, 42(1): 104-113. doi: 10.12171/j.1000-1522.20180240
Wang Anning, Liu Gechang, Xu Xuehua, Li Xiaogang, Li Yuling. Evaluation of soil quality in iron tailing ore wastelands of various reclamation periods[J]. Journal of Beijing Forestry University, 2020, 42(1): 104-113. doi: 10.12171/j.1000-1522.20180240
Citation: Wang Anning, Liu Gechang, Xu Xuehua, Li Xiaogang, Li Yuling. Evaluation of soil quality in iron tailing ore wastelands of various reclamation periods[J]. Journal of Beijing Forestry University, 2020, 42(1): 104-113. doi: 10.12171/j.1000-1522.20180240

铁尾矿废弃地不同复垦年限土壤质量评价

doi: 10.12171/j.1000-1522.20180240
基金项目: “十二五”农村领域国家科技计划(2012AA101403-3),河北省科技计划(16234204D-10)
详细信息
    作者简介:

    王安宁。主要研究方向:水土保持与植被恢复。Email:wanganning040027@163.com 地址:071000 河北省保定市河北农业大学林学院

    责任作者:

    李玉灵,教授,博士生导师。主要研究方向:退化土地植被恢复理论与技术。Email:liyuling0425@126.com  地址:同上

  • 中图分类号: S157.10

Evaluation of soil quality in iron tailing ore wastelands of various reclamation periods

  • 摘要: 目的研究不同复垦年限对铁尾矿废弃地土壤质量的影响,为揭示铁尾矿废弃地复垦土壤演替规律、生态治理提供依据。方法本文以唐山迁安马兰庄镇不同复垦年限(1、3、5、7和15年)铁尾矿废弃地为研究对象,以裸尾矿为对照,综合考虑0 ~ 20 cm、20 ~ 40 cm、40 ~ 60 cm土层土壤理化性质和生物学性状,通过灰色关联度模型和相关关系分析法构建土壤质量评价最小数据集,并以隶属度函数计算指标隶属度,以主成分分析法确定指标权重,最后运用加权求和模型对铁尾矿区复垦土壤质量进行评价。结果土壤质量评价适用的最小数据集(MDS)包括5项指标:真菌、磷酸酶、脲酶、非毛管孔隙度和全氮,磷酸酶和脲酶因子荷载量和灰色关联度均较大,是评价该区复垦土壤质量的关键性指标。基于最小数据集的土壤质量指数(MDS-SQI)与基于全体数据集的土壤质量指数(TDS-SQI)有极显著相关关系(R2 = 0.911),加权求和模型计算结果显示不同复垦年限土壤质量指数(SQI)大小顺序为复垦15年 > 7年 > 5年 > 3年 > 1年 > 裸尾矿。复垦1 ~ 15年间土壤质量综合值呈回归式抛物线增加,复垦1 ~ 7年内土壤质量提高缓慢,恢复7年后土壤质量迅速恢复,至第15年达到最大值。不同复垦年限土壤质量垂直剖面变异趋势基本表现为随土深的增加逐渐下降。结论土地复垦可改善铁尾矿废弃地土壤质量。该结论为揭示铁尾矿废弃地复垦土壤演替规律、生态治理提供依据。

     

  • 图  1  不同复垦年限铁尾矿废弃地土壤最小数据集指标变化

    不同大写字母表示差异极显著(P < 0.01),不同小写字母表示差异显著(P < 0.05)。Extremely significant differences are indicated by varied uppercase letters (P < 0.01) and significant differences are indicated by different lowercase letters (P < 0.05).

    Figure  1.  Variations of soil minimum dataset indicators for iron tailing ore abandoned area in different reclamation years

    图  2  最小数据集土壤质量指数(MDS-SQI)与全体数据集土壤质量指数(TDS-SQI)相关性

    MDS-SQI.最小数据集土壤质量指数;TDS-SQI.全体数据集土壤质量指数。下同。MDS-SQI, minimum data set soil quality index; TDS-SQI, total data set soil quality index. Same as below.

    Figure  2.  Correlation between the minimum data set soil quality index (MDS-SQI) and the total data set soil quality index (TDS-SQI)

    图  3  不同数据集铁尾矿废弃地复垦土壤质量指数

    Figure  3.  Reclaimed soil quality index of iron tailing ore in different data sets

    图  4  不同复垦年限土壤质量综合指数剖面变化规律

    Figure  4.  Trend of profile of soil quality index for different years of reclamation

    图  5  不同复垦年限土壤质量指数聚类分析

    Figure  5.  Cluster analysis of soil quality index for different reclamation years

    表  1  样地特征

    Table  1.   Character of the sample plots

    复垦年限/a
    Periods of rehabilitation/year
    坡度
    Slope/(°)
    坡向
    Aspect
    植被平均高度
    Average height of vegetation/m
    植被平均覆盖度
    Average vegetation coverage/%
    1 35 东 East 1.6 60
    3 35 东 East 2.0 65
    5 40 东 East 3.6 70
    7 35 东 East 5.01 80
    15 40 东 East 5.5 90
    裸尾矿 Bare tailings (CK) 35 东East
    下载: 导出CSV

    表  2  各指标重要值

    Table  2.   Important value of each indicator

    指标
    Index
    土壤密度
    Bulk
    density
    (X1)
    田间持水量
    Field
    capacity
    (X2)
    毛管持水量
    Capillary
    water capacity
    (X3)
    饱和持水量
    Saturated
    water capacity
    (X4)
    总孔隙度
    Total porosity
    (X5)
    毛管孔隙度
    Capillary porosity
    (X6)
    非毛管孔隙度
    Non-capillary porosity
    (X7)
    有机质
    Organic
    matter
    (X8)
    全氮
    Total nitrogen
    (X9)
    全磷
    Total phosphorus
    (X10)
    全钾
    Total potassium
    (X11)
    重要值
    Important value
    0.658 0.649 0.678 0.674 0.650 0.736 0.703 0.755 0.700 0.746 0.720
    指标
    Index
    碱解氮
    Alkaline
    nitrogen
    (X12)
    速效磷
    Available
    phosphorus (X13)
    速效钾
    Available
    potassium
    (X14)
    细菌
    Bacteria
    (X15)
    真菌
    Fungus
    (X16)
    放线菌
    Actinomycetes
    (X17)
    蔗糖酶
    Sucrase
    (X18)
    过氧化氢酶
    Catalase
    (X19)
    脲酶
    Urease
    (X20)
    磷酸酶
    Phosphatase
    (X21)
    pH
    (X22)
    重要值
    Important value
    0.743 0.687 0.691 0.771 0.776 0.711 0.757 0.752 0.736 0.763 0.711
    下载: 导出CSV

    表  3  初选最小数据集指标相关系数矩阵

    Table  3.   Index correlation coefficient matrix for primary selected min. datasets

    项目 ItemX6X7X8X9X10X11X12X13X14X15X16X17X20X21X22
    X6 1
    X7 − 0.240 1
    X8 − 0.783** 0.193 1
    X9 − 0.345 0.442 0.295 1
    X10 − 0.342 − 0.506* 0.484* − 0.498* 1
    X11 − 0.330 − 0.362 0.499* − 0.518* 0.876** 1
    X12 − 0.429 − 0.269 0.606** − 0.270 0.799** 0.662** 1
    X13 − 0.625** 0.033 0.823** − 0.128 0.742** 0.794** 0.687** 1
    X14 − 0.685** − 0.012 0.858** − 0.113 0.760** 0.786** 0.761** 0.986** 1
    X15 − 0.563* − 0.397 0.675** − 0.230 0.877** 0.804** 0.616** 0.846** 0.853** 1
    X16 − 0.001 0.267 0.281 − 0.099 0.342 0.470* 0.120 0.553* 0.421 0.337 1
    X17 0.106 0.493* 0.138 0.112 − 0.016 0.095 0.007 0.337 0.211 − 0.019 0.824** 1
    X20 0.034 − 0.306 0.191 − 0.336 0.694** 0.512* 0.619** 0.513* 0.468* 0.503* 0.564* 0.524* 1
    X21 − 0.184 0.563* 0.454 0.121 0.130 0.256 0.33 0.592** 0.518* 0.133 0.711** 0.885** 0.486* 1
    X22 0.312 0.492* − 0.481* 0.318 − 0.888** − 0.790** − 0.566* − 0.758** − 0.728** − 0.930** − 0.506* − 0.168 − 0.725** − 0.191 1
    注:**表示极显著相关关系(P < 0.01),*表示显著相关关系(P < 0.05)。Notes: ** indicates extremely significant correlation (P < 0.01) and * indicates significant correlation (P < 0.05).
    下载: 导出CSV

    表  4  各指标负荷量及权重

    Table  4.   Load and weight of each indicator

    指标 IndexPC 1PC 2
    负荷量 Load capacity权重 Weight负荷量 Load capacity权重 Weight
    X7 0.980 0.300 0.121 0.072
    X9 0.078 0.024 0.788 0.474
    X16 0.232 0.071 − 0.690 0.415
    X20 0.983 0.301 − 0.042 0.025
    X21 0.993 0.304 0.022 0.013
    各主成分特征根 Principal component characteristic root 2.974 1.114
    各主成分贡献率 Principal component contribution rate/% 59.476 22.279
    累积主成分贡献率 Cumulative principal component contribution rate/% 59.476 81.755
    下载: 导出CSV
  • [1] Fu W H, Wang Y, Yu Q Q. Effect of different improvement measures on the reclamation effect of iron tailings[J]. Northern Horticulture, 2012, 20(8): 158−163.
    [2] Yang X, Gao L. A study on re-vegetation in mining wasteland of Dexing Copper Mine, China[J]. Acta Ecologica Sinica, 2001, 21(11): 1932−1940.
    [3] 武强, 刘宏磊, 陈奇, 等. 矿山环境修复治理模式理论与实践[J]. 煤炭学报, 2017, 42(5):1085−1092.

    Wu Q, Liu H L, Chen Q, et al. Theoretical study of mine geo-environmental restoration model and its application[J]. Journal of China Coal Society, 2017, 42(5): 1085−1092.
    [4] 刘宏磊, 陈奇, 赵德康. 矿山环境修复治理模式探讨[J]. 煤炭工程, 2016, 48(增刊 2):91−95.

    Liu H L, Chen Q, Zhao D K. Analysis on restoration mode of mine geo-environment[J]. Coal Engineering, 2016, 48(Suppl. 2): 91−95.
    [5] 祝宇成, 王金满, 白中科, 等. 采煤塌陷对土壤理化性质影响的研究进展[J]. 土壤, 2016, 48(1):22−28.

    Zhu Y C, Wang J M, Bai Z K, et al. Recent research progresses of influences of coal mining[J]. Soils, 2016, 48(1): 22−28.
    [6] 王岩, 李玉灵, 石娟华, 等. 不同植被恢复模式对铁尾矿物种多样性及土壤理化性质的影响[J]. 水土保持学报, 2012, 26(3):112−117,183.

    Wang Y, Li Y L, Shi J H, et al. Effect of different vegetation restoration measures on the species diversity and soil properties of iron tailings[J]. Journal of Soil and Water Conservation, 2012, 26(3): 112−117,183.
    [7] 阎爱华, 李雯, 李玉灵. 不同自然定居植被对铁尾矿微生物数量、酶活性和生物多样性的影响[J]. 河北农业大学学报, 2014, 37(4):20−24.

    Yan A H, Li W, Li Y L. Effect of microbe number, enzyme activity and diversity of iron tailings in processes of natural inhabitation[J]. Journal of Hebei Agricultural University, 2014, 37(4): 20−24.
    [8] 贺龙, 李艳琴, 李彬春, 等. 矿区不同植被复垦模式对土壤细菌群落结构的影响[J]. 环境科学, 2017, 38(2):752−759.

    He L, Li Y Q, Li B C, et al. Effects of different vegetation types and reclamation years on soil bacterial community structure in reclaimed mine areas[J]. Environmental Science, 2017, 38(2): 752−759.
    [9] Finkenbein P, Kretschmer K, Kuka K, et al. Soil enzyme activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump[J]. Soil Biology & Biochemistry, 2013, 56: 87−89. doi: 10.1016/j.soilbio.2012.02.012
    [10] 何书金, 苏光全. 矿区废弃土地复垦潜力评价方法与应用实例[J]. 地理研究, 2000, 19(2):165−171. doi: 10.3321/j.issn:1000-0585.2000.02.008

    He S J, Su G Q. Evaluation method and its application to the potentiality of wasteland reclamationof China’s abandoned mining areas[J]. Geographical Research, 2000, 19(2): 165−171. doi: 10.3321/j.issn:1000-0585.2000.02.008
    [11] 李鹏飞, 张兴昌, 朱首军, 等. 植被恢复对黑岱沟矿区排土场土壤性质的影响[J]. 水土保持通报, 2015, 35(5):64−70.

    Li P F, Zhang X C, Zhu S J, et al. Effects of vegetation restoration on soil properties in Heidaigou Mine Dump[J]. Bulletin of Soil and Water Conservation, 2015, 35(5): 64−70.
    [12] 李新举, 胡振琪, 李晶, 等. 采煤塌陷地复垦土壤质量研究进展[J]. 农业工程学报, 2007, 23(6):276−280. doi: 10.3321/j.issn:1002-6819.2007.06.056

    Li X J, Hu Z Q, Li J, et al. Research progress of reclaimed soil quality in mining subsidence area[J]. Transactions of the Chinese Society Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 276−280. doi: 10.3321/j.issn:1002-6819.2007.06.056
    [13] 王金满, 杨睿璇, 白中科. 草原区露天煤矿排土场复垦土壤质量演替规律与模型[J]. 农业工程学报, 2012, 28(14):229−235. doi: 10.3969/j.issn.1002-6819.2012.14.035

    Wang J M, Yang R X, Bai Z K. Succession law and model of reclaimed soil quality of opencast coal mine dump in grassland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 229−235. doi: 10.3969/j.issn.1002-6819.2012.14.035
    [14] 杨劲松, 姚荣江. 苏北海涂围垦区土壤质量综合评价研究[J]. 中国生态农业学报, 2009, 17(3):410−415.

    Yang J S, Yao R J. Evaluation of soil quality in reclaimed coastal regions in North Jiangsu Province[J]. Chinese Journal of Eco-Agriculture, 2009, 17(3): 410−415.
    [15] Yang F, Zeng G M, Du C Y, et al. Spatial analyzing system for urban land-use management based on GIS and multi criteria assessment modeling[J]. Progress in Natural Science, 2008, 18: 1279−1284. doi: 10.1016/j.pnsc.2008.05.007
    [16] 张向茹, 马露莎, 陈亚南, 等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报, 2013, 50(4):818−825.

    Zhang X R, Ma L S, Chen Y N, et al. Ecological stoichiometry characteracteristics of Robinia pseudoacacia forest soil in different latitudes of Loess Plateau[J]. Acta Pedologica Sinica, 2013, 50(4): 818−825.
    [17] 邢肖毅 黄懿梅 安韶山, 等. 黄土丘陵区不同植被土壤氮素转化微生物生理群特征及差异[J]. 生态学报, 2013, 33(18):87−89.

    Xing X Y, Huang Y M, An S S, et al. Characteristics of physiological groups of soil nitrogen-transforming microbes in different vegetation types in the Loess Gully region, China[J]. Acta Ecologica Sinica, 2013, 33(18): 87−89.
    [18] 邢肖毅, 黄懿梅, 安韶山, 等. 黄土丘陵区不同植被土壤氮素转化微生物生理群特征及差异[J]. 生态学报, 2013, 33(18):5608−5614.

    Xing X Y, Huang Y M, An S S, et al. Characteristics of physiological groups of soil nitrogen-transforming microbes in different vegetation types in the loess gully region, China[J]. Acta Ecologica Sinica, 2013, 33(18): 5608−5614.
    [19] 贺祥, 林振山, 刘会玉, 等. 基于灰色关联模型对江苏省PM_(2.5)浓度影响因素的分析[J]. 地理学报, 2016, 71(7):1119−1129.

    He X, Lin Z S, Liu H Y, et al. Analysis of the driving factors of PM 2.5 in Jiangsu Province based on grey correlation model[J]. Acta Geographica Sinica, 2016, 71(7): 1119−1129.
    [20] 胡丰青, 郝萌萌, 王济, 等. 土壤质量模糊综合评价权重确定方法探讨[J]. 环境科学与技术, 2013, 36(6L):355−360.

    Hu F Q, Hao M M, Wang J, et al. Discussing on determination to weights in fuzzy comprehensive evaluation of soil quality[J]. Environmental Science & Technology, 2013, 36(6L): 355−360.
    [21] 张凯旋, 商侃侃, 达良俊. 上海环城林带不同植物群落土壤质量综合评价[J]. 南京林业大学学报(自然科学版), 2015, 39(3):71−77.

    Zhang K X, Shang K K, Da L J. Soil quality comprehensive assessment of different plant communities in Shanghai green bel[J]. Journal of Nanjing Forestry University (Natural Sciences), 2015, 39(3): 71−77.
    [22] 王秀萍, 张国新, 鲁雪林, 等. 河北沿海区耕地土壤质量综合评价[J]. 中国农学通报, 2013, 29(30):136−142. doi: 10.3969/j.issn.1000-6850.2013.30.025

    Wang X P, Zhang G X, Lu X L, et al. Comprehensive evaluation of soil quality in coastal region of Hebei Province[J]. Chinese Agricultural Science Bulletin, 2013, 29(30): 136−142. doi: 10.3969/j.issn.1000-6850.2013.30.025
    [23] 贡璐, 张海峰, 吕光辉, 等. 塔里木河上游典型绿洲不同连作年限棉田土壤质量评价[J]. 生态学报, 2011, 31(14):4136−4143.

    Gong L, Zhang H F, Lü G H, et al. Soil quality assessment of continuous cropping cotton fields for different years in a typical oasis in the upper reaches of the Tarim River[J]. Acta Ecologica Sinica, 2011, 31(14): 4136−4143.
    [24] 邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326−1333.

    Deng S H, Zeng L T, Guan Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedologica Sinica, 2016, 53(5): 1326−1333.
    [25] 孙海运, 李新举, 胡振琪, 等. 马家塔露天矿区复垦土壤质量变化[J]. 农业工程学报, 2008, 24(12):205−209. doi: 10.3321/j.issn:1002-6819.2008.12.043

    Sun H Y, Li X J, Hu Z Q, et al. Variance of reclamation soil quality in Majiata opencast mine region[J]. Transactions of the CSAE, 2008, 24(12): 205−209. doi: 10.3321/j.issn:1002-6819.2008.12.043
    [26] 贡璐, 张雪妮, 冉启洋. 基于最小数据集的塔里木河上游绿洲土壤质量评价[J]. 土壤学报, 2015, 52(3):682−689.

    Gong L, Zhang X N, Ran Q Y. Quality assessment of oasis soil in the upper reaches of Tarim River based on minimum data set[J]. Acta Pedologica Sinica, 2015, 52(3): 682−689.
    [27] Giacometti C, Cavani L, Baldoni G, et al. Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment[J]. Applied Soil Ecology, 2014, 75: 80−85. doi: 10.1016/j.apsoil.2013.10.009
    [28] Jordan G. Sustainable mineral resources management: from regional mineral resources exploration to spatial contamination risk assessment of mining[J]. Environmental Geology, 2009, 58(1): 153−169. doi: 10.1007/s00254-008-1502-y
    [29] Andruschkewitsch R, Koch H J, Ludwig B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites[J]. Geoderma, 2014, 217: 57−64.
    [30] Adejuwon J O, Ekanade O. A comparison of soil properties under different landuse types in a part of the Nigerian Cocoa Belt[J]. Catena, 1988, 15(3): 319−331.
    [31] Berg G, Grube M, Schloter M, et al. Unraveling the plant microbiome: looking back and future perspectives[J]. Frontiers in Microbiology, 2014, 5: 1−6.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1816
  • HTML全文浏览量:  483
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-25
  • 修回日期:  2018-12-04
  • 网络出版日期:  2020-01-06
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回