• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

硬质地HDPE沙障防风效益的风洞试验

张帅, 丁国栋, 高广磊, 孙桂丽, 赵媛媛, 于明含, 丛智杰, 包岩峰

张帅, 丁国栋, 高广磊, 孙桂丽, 赵媛媛, 于明含, 丛智杰, 包岩峰. 硬质地HDPE沙障防风效益的风洞试验[J]. 北京林业大学学报, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
引用本文: 张帅, 丁国栋, 高广磊, 孙桂丽, 赵媛媛, 于明含, 丛智杰, 包岩峰. 硬质地HDPE沙障防风效益的风洞试验[J]. 北京林业大学学报, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
Zhang Shuai, Ding Guodong, Gao Guanglei, Sun Guili, Zhao Yuanyuan, Yu Minghan, Cong Zhijie, Bao Yanfeng. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
Citation: Zhang Shuai, Ding Guodong, Gao Guanglei, Sun Guili, Zhao Yuanyuan, Yu Minghan, Cong Zhijie, Bao Yanfeng. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282

硬质地HDPE沙障防风效益的风洞试验

基金项目: 中央高校基本科研业务费项目(2019GJZL11),国家自然科学基金项目(31270749和31600581)
详细信息
    作者简介:

    张帅,博士生。主要研究方向:荒漠化防治研究。Email:xxwoshizsxx@163.com  地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    丁国栋,教授,博士生导师。主要研究方向:荒漠化防治。Email:dch1999@263.net  地址:同上

Wind tunnel test on windproof benefit of horniness HDPE sand barrier

  • 摘要:
    目的研究硬质地HDPE网沙障防风效能。
    方法按照1:10的比例制作不同高度(1、2和3 cm)、不同边长(10、15和20 cm)、不同孔隙度(0.5和0.6)的硬质地HDPE网沙障模型,通过布设测点模拟出不同配置模式下沙障网格纵截面流场图及风速稳定后沙障网格内水平流场图,并运用地统计学的方法进行空间自相关分析。
    结果空间自相关分析中18种不同配置模式的沙障有16种符合高斯模型,2种符合球状模型,且所有模型R2均高于0.97,空间相关度小于25%,变程大于测点间距,表明不同沙障网格都具有强烈的空间自相关性,且测点间距合理。气流在通过沙障时可顺畅的从沙障孔隙中穿过,不会造成气流的抬升加速作用,因此障后近地表及沙障上方的风速均低于相同高度处的对照风速。硬质地HDPE沙障防风效能在本研究设置的变量梯度范围内与高度呈正相关关系,与边长和孔隙度呈负相关关系,高度和孔隙度对防风效能的影响较大。
    结论硬质地HDPE材料性质稳定,不会产生塑性变形,抗老化能力强,且防风效果较好,应用前景较好。
    Abstract:
    ObjectiveThe objective of this study was to research the benefit of horniness HDPE sand barrier on windproof.
    MethodWe have made horniness HDPE sand barrier model of different heights (1, 2 and 3 cm), lengths (10, 15 and 20 cm), and porosity (0.5 and 0.6) according to the 1:10 ratio. We simulated the vertical flow field map and the horizontal flow field map of stable wind speed grid under different configuration modes by laying out the measuring points, and used the geostatistical method to carry out spatial autocorrelation analysis.
    ResultIn the spatial autocorrelation analysis, there were 16 kinds of sand barriers in 18 different configuration patterns conforming to the Gauss model, 2 conformed to the spherical model, and the R2 of all the models was higher than 0.97, the spatial correlation was less than 25%, and the change range was larger than the distance between the measuring points. It showed that the different sand barriers all had strong spatial autocorrelation, and the distance between measuring points was reasonable. The airflow can smoothly cross the pores when passing through the sand barrier, which will not cause the lifting and acceleration of the air flow. Therefore, the wind speed near the surface and above the barrier was lower than the control wind speed at the same height. The wind-proof performance of the horniness HDPE sand barrier was positively correlated with the height within the variable gradient range set in this study, and negatively correlated with the side length and porosity.
    ConclusionThe horniness HDPE material has stable properties, no plastic deformation, strong anti-aging ability, good windproof effect and good application prospects.
  • 图  1   不同类型高密度聚乙烯(HDPE)塑料网

    Figure  1.   Different types of high-density polyethylenehdpe (HDPE) plastic net

    图  2   边长为10 cm的沙障中线纵截面流场图

    H. 沙障高度。下同。H, height of sand barrier. The same below.

    Figure  2.   Flow field diagram of the middle line longitudinal section with a side length of 10 cm

    图  3   边长为15 cm的沙障中线纵截面流场图

    Figure  3.   Flow field diagram of the middle line longitudinal section with a side length of 15 cm

    图  4   边长为20 cm的沙障中线纵截面流场图

    Figure  4.   Flow field diagram of the middle line longitudinal section with a side length of 20 cm

    图  5   不同边长沙障风速流场图

    Figure  5.   Wind flow field diagram of sand barrier with different side lengths

    图  6   不同沙障风速频数累积曲线

    10-1表示边长为10 cm,高度为1 cm的沙障;10-2表示边长为10 cm,高度为2 cm的沙障,以此类推。10-1 represents the sand barrier with 10 cm side length and 1 cm height, 10-2 represents the sand barrier with 10 cm side length and 2 cm height, and so on.

    Figure  6.   Frequency accumulation curves of wind speed for different sand barriers

    表  1   不同布设模式沙障空间自相关分析

    Table  1   Spatial autocorrelation analysis of sand barrier in different layout modes

    孔隙度
    Porosity
    边长
    Side length/cm
    高度
    Height/cm
    模型
    Model
    块金值
    Nugget (C0)
    基台值
    Sill (C + C0)
    SCD/%变程
    Range (A)
    R2RSS
    0.5101高斯 Gaussian0.000 010.015 80.0614.90.9980.38 × 10− 7
    2高斯 Gaussian0.002 400.069 53.4527.20.9922.07 × 10− 7
    3高斯 Gaussian0.000 010.028 70.0317.00.9861.96 × 10− 7
    151球状 Spheroidal0.000 010.027 30.0413.50.9792.63 × 10− 7
    2高斯 Gaussian0.000 450.054 80.8216.90.9823.65 × 10− 7
    3高斯 Gaussian0.000 160.031 40.5120.20.9910.30 × 10− 7
    201高斯 Gaussian0.000 020.024 70.0821.50.9722.83 × 10− 7
    2高斯 Gaussian0.000 270.016 51.6415.60.9893.15 × 10− 7
    3高斯 Gaussian0.000 130.035 20.3719.20.9682.37 × 10− 7
    0.6101高斯 Gaussian0.000 190.026 40.7217.80.9841.47 × 10− 7
    2高斯 Gaussian0.000 320.017 91.7920.10.9782.35 × 10− 7
    3高斯 Gaussian0.000 180.032 50.5516.70.9820.26 × 10− 7
    151高斯 Gaussian0.000 240.031 80.7518.30.9931.78 × 10− 7
    2球状 Spheroidal0.000 530.026 52.0017.70.9853.24 × 10− 7
    3高斯 Gaussian0.000 370.014 72.5218.20.9751.64 × 10− 7
    201高斯 Gaussian0.000 420.013 23.1819.30.9820.67 × 10− 7
    2高斯 Gaussian0.000 210.035 70.5915.70.9942.12 × 10− 7
    3高斯 Gaussian0.000 010.015 30.0716.30.9742.45 × 10− 7
    注:SCD. 空间相关度。Note: SCD, spatial correlation degree.
    下载: 导出CSV

    表  2   不同沙障防风效能

    Table  2   Windbreak efficiency of different sand barriers

    孔隙度
    Porosity
    边长
    Side length/cm
    高度
    Height/cm
    防风效能
    Windbreak efficiency
    0.51010.46
    20.62
    30.64
    1510.58
    20.61
    30.60
    2010.50
    20.57
    30.61
    0.61010.43
    20.45
    30.49
    1510.44
    20.44
    30.48
    2010.46
    20.46
    30.50
    下载: 导出CSV
  • [1] 王文彪, 党晓宏, 张吉树, 等. 库布齐沙漠北缘不同作物秸秆平铺式沙障的防风效能[J]. 中国沙漠, 2013, 33(1):65−71. doi: 10.7522/j.issn.1000-694X.2013.00009

    Wang W B, Dang X H, Zhang J S, et al. The wind-breaking efficiency of low vertical sand barriers with different materials in northern edge of the Hobq Desert[J]. Journal of Desert Research, 2013, 33(1): 65−71. doi: 10.7522/j.issn.1000-694X.2013.00009

    [2] 康向光, 李生宇, 马学喜, 等. 两条尼龙阻沙网不同组合间距的积沙量对比分析[J]. 干旱区研究, 2015, 32(2):347−353.

    Kang X G, Li S Y, Ma X X, et al. Sand masses blocked by double nylon mesh sand barriers with different intervals[J]. Arid Zone Research, 2015, 32(2): 347−353.

    [3] 王安宁, 蔺鑫, 穆枫, 等. 冀北木兰围场沙荒坡地不同坡位黄柳沙障内枯落物的持水性能[J]. 北京林业大学学报, 2018, 40(1):98−107.

    Wang A N, Lin X, Mu F, et al. Water holding capacity of litter at different slope positions of sand slope in Salix gordejevii sand barrier of Mulan Paddock of northern Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 98−107.

    [4] 刘虎俊, 王继和, 李毅, 等. 塑料网方格沙障对新月形沙丘迎风坡的风沙流影响[J]. 水土保持学报, 2011, 25(5):26−29.

    Liu H J, Wang J H, Li Y, et al. Effects of plastic checkerboard sand-barrier on wind-sand flux of leeward of crescentic dune[J]. Journal of Soil and Water Conservation, 2011, 25(5): 26−29.

    [5] 薛智德, 刘世海, 许兆义, 等. 青藏铁路措那湖沿岸防风固沙工程效益[J]. 北京林业大学学报, 2010, 32(6):61−65.

    Xue Z D, Liu S H, Xu Z Y, et al. Efficiency of wind erosion control measures along Cuona Labe on Qinghai-Tibet Railway, western China[J]. Journal of Beijing Forestry University, 2010, 32(6): 61−65.

    [6] 贾丽娜, 丁国栋, 吴斌, 等. 几种不同材料类型带状沙障防风阻沙效益对比研究[J]. 水土保持学报, 2010, 24(1):41−44.

    Jia L N, Ding G D, Wu B, et al. Effect of different material types of sand barrier on wind prevention and sand resistance[J]. Journal of Soil and Water Conservation, 2010, 24(1): 41−44.

    [7] 马瑞, 刘虎俊, 马彦军, 等. 沙源供给条件对机械沙障固沙作用的影响[J]. 水土保持学报, 2013, 27(5):105−108. doi: 10.3969/j.issn.1009-2242.2013.05.021

    Ma R, Liu H J, Ma Y J, et al. Influences of sand fountain on sand-fixation of mechanical sand barriers[J]. Journal of Soil and Water Conservation, 2013, 27(5): 105−108. doi: 10.3969/j.issn.1009-2242.2013.05.021

    [8]

    Yan C G, Wan Q, Xu Y, et al. Experimental study of barrier effect on moisture movement and mechanical behaviors of loess soil[J]. Engineering Geology, 2018, 240(5): 1−9.

    [9] 庞营军, 屈建军, 谢胜波, 等. 高立式格状沙障防风效益[J]. 水土保持通报, 2014, 34(5):11−14.

    Pang Y J, Qu J J, Xie S B, et al. Windproof efficiency of upright checkerboard sand-barriers[J]. Bulletin of Soil and Water Conservation, 2014, 34(5): 11−14.

    [10] 丁泊元, 丁国栋, 李炯书, 等. 沙袋沙障对沙地公路路域生态系统的影响[J]. 四川农业大学学报, 2013, 31(2):145−150. doi: 10.3969/j.issn.1000-2650.2013.02.007

    Ding B Y, Ding G D, Li J S, et al. Effect of sandbag barrier on the ecosystem in highway in sandyland[J]. Journal of Sichuan Agricultural University, 2013, 31(2): 145−150. doi: 10.3969/j.issn.1000-2650.2013.02.007

    [11] 屈建军, 井哲帆, 张克存, 等. HDPE蜂巢式固沙障研制与防沙效应实验研究[J]. 中国沙漠, 2008, 28(4):599−604.

    Qu J J, Jing Z F, Zhang K C, et al. Experimental study on sand-binding effect of HDPE comb-liked sand barriers[J]. Journal of Desert Research, 2008, 28(4): 599−604.

    [12] 董智, 李红丽, 汪季, 等. 土工格栅沙障防风积沙效应风洞模拟实验[J]. 中国水土保持科学, 2007, 5(1):35−39. doi: 10.3969/j.issn.1672-3007.2007.01.007

    Dong Z, Li H L, Wang J, et al. Wind tunnel test on effect of controlling wind and deposited sand of geogrid sand-barrier[J]. Journal of Soil and Water Conservation, 2007, 5(1): 35−39. doi: 10.3969/j.issn.1672-3007.2007.01.007

    [13] 孙涛, 刘虎俊, 朱国庆, 等. 3种机械沙障防风固沙功能的时效性[J]. 水土保持学报, 2012, 26(4):12−16.

    Sun T, Liu H J, Zhu G Q, et al. Timeliness of reducing wind and stabilizing sand functions of three mechanical sand barriers in arid region[J]. Journal of Soil and Water Conservation, 2012, 26(4): 12−16.

    [14] 蒙仲举, 任晓萌, 高永. 半隐蔽式沙柳沙障的防风阻沙效益[J]. 水土保持通报, 2014, 34(3):178−180.

    Meng Z J, Ren X M, Gao Y. Effect of semi-buried Salix psammophila checkerboard on wind-preventing and sand-resisting[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 178−180.

    [15] 王丽英, 李红丽, 董智, 等. 沙柳沙障对沙丘沙粒度组成与特征的影响[J]. 中国水土保持科学, 2013, 11(4):53−59. doi: 10.3969/j.issn.1672-3007.2013.04.009

    Wang L Y, Li H L, Dong Z, et al. Effects of Salix psammophila checkerboard sand barrier on dune sand grain size composition and characteristics[J]. Science of Soil and Water Conservation, 2013, 11(4): 53−59. doi: 10.3969/j.issn.1672-3007.2013.04.009

    [16] 孙浩, 刘晋浩, 黄青青, 等. 多边形草沙障防风效果研究[J]. 北京林业大学学报, 2017, 39(10):90−94.

    Sun H, Liu J H, Huang Q Q, et al. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90−94.

    [17] 张登山, 吴汪洋, 田丽慧, 等. 青海湖沙地麦草方格沙障的蚀积效应与规格选取[J]. 地理科学, 2014, 34(5):627−634.

    Zhang D S, Wu W Y, Tian L H, et al. Effects of erosion and deposition and dimensions selection of straw-checkerboard barriers in the desert of Qinghai Lake[J]. Scientia Geographica Sinica, 2014, 34(5): 627−634.

    [18] 党晓宏, 高永, 虞毅, 等. 新型生物可降解PLA沙障与传统草方格沙障防风效益[J]. 北京林业大学学报, 2015, 37(3):118−125.

    Dang X H, Gao Y, Yu Y, et al. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118−125.

    [19] 丁延龙, 高永, 汪季, 等. 生物基可降解聚乳酸(PLA)沙障对沙丘表层沉积物粒度特征的影响[J]. 中国沙漠, 2018, 38(2):262−269. doi: 10.7522/j.issn.1000-694X.2016.00156

    Ding Y L, Gao Y, Wang J, et al. Effects of biodegradable poly lactic acid sand barriers on surface sediment grain-size characteristics at sand dunes[J]. Journal of Desert Research, 2018, 38(2): 262−269. doi: 10.7522/j.issn.1000-694X.2016.00156

    [20] 黎小娟, 李宁, 周智彬, 等. 尼龙网方格沙障的风沙流颗粒分布特征[J]. 水土保持学报, 2016, 30(5):128−134.

    Li X J, Li N, Zhou Z B, et al. Characteristic of sand flux structure and sand particle size distribution based on nylon net checkerboard barrier[J]. Journal of Soil and Water Conservation, 2016, 30(5): 128−134.

    [21] 黎小娟, 周智彬, 李宁, 等. 尼龙网方格沙障风沙流携沙粒度的空间分异特征[J]. 中国沙漠, 2018, 38(1):76−84. doi: 10.7522/j.issn.1000-694X.2016.00110

    Li X J, Zhou Z B, Li N, et al. Spatial distribution of grain size in aeolian flow in nylon net checkerboard barrier[J]. Journal of Desert Research, 2018, 38(1): 76−84. doi: 10.7522/j.issn.1000-694X.2016.00110

    [22] 屈建军, 喻文波, 秦晓波. HDPE功能性固沙障防风效应试验[J]. 中国沙漠, 2014, 34(5):1185−1193.

    Qu J J, Yu W B, Qin X B. Wind-protecting efficiency of HDPE functional sand-fixing barriers[J]. Journal of Desert Research, 2014, 34(5): 1185−1193.

    [23] 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003.

    Wu Z. Sand geomorphology and sand control engineering[M]. Beijing: Science Press, 2003.

    [24] 刘贤万. 实验风沙物理与风沙工程学[M]. 北京: 科学出版社, 1995.

    Liu X W. Experimental sand physics and sand engineering[M]. Beijing: Science Press, 1995.

    [25] 韩致文, 郭彩贇, 钟帅, 等. 库布齐沙漠HDPE网和植物纤维网沙障防沙试验效应[J]. 中国沙漠, 2018, 38(4):1−9.

    Han Z W, Guo C Y, Zhong S, et al. The sand-prevention effects of HDPE net and plant fiber net sand barriers in the Hobq Desert[J]. Journal of Desert Research, 2018, 38(4): 1−9.

    [26] 王睿, 周立华, 陈勇, 等. 库布齐沙漠机械防沙措施的防护效益[J]. 干旱区研究, 2017, 34(2):330−336.

    Wang R, Zhou L H, Chen Y, et al. Wind-blown sand control effect of sand barriers used in the Hobq Desert[J]. Arid Zone Research, 2017, 34(2): 330−336.

  • 期刊类型引用(16)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
    2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
    3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
    4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
    5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
    6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
    7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
    8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
    9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
    10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
    11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
    12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
    13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
    14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
    15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
    16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术

    其他类型引用(13)

图(6)  /  表(2)
计量
  • 文章访问数:  1779
  • HTML全文浏览量:  656
  • PDF下载量:  50
  • 被引次数: 29
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-11-17
  • 网络出版日期:  2020-03-12
  • 发布日期:  2020-03-30

目录

    /

    返回文章
    返回