高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特断陷盆地典型林地土壤酶活性及理化性质研究

孙永磊 卢泽洋 周金星 庞丹波 刘玉国 关颖慧

孙永磊, 卢泽洋, 周金星, 庞丹波, 刘玉国, 关颖慧. 喀斯特断陷盆地典型林地土壤酶活性及理化性质研究[J]. 北京林业大学学报, 2020, 42(2): 40-48. doi: 10.12171/j.1000-1522.20180328
引用本文: 孙永磊, 卢泽洋, 周金星, 庞丹波, 刘玉国, 关颖慧. 喀斯特断陷盆地典型林地土壤酶活性及理化性质研究[J]. 北京林业大学学报, 2020, 42(2): 40-48. doi: 10.12171/j.1000-1522.20180328
Sun Yonglei, Lu Zeyang, Zhou Jinxing, Pang Danbo, Liu Yuguo, Guan Yinghui. Soil enzyme activities and physicochemical properties of typical woodlands in karst faulted basins[J]. Journal of Beijing Forestry University, 2020, 42(2): 40-48. doi: 10.12171/j.1000-1522.20180328
Citation: Sun Yonglei, Lu Zeyang, Zhou Jinxing, Pang Danbo, Liu Yuguo, Guan Yinghui. Soil enzyme activities and physicochemical properties of typical woodlands in karst faulted basins[J]. Journal of Beijing Forestry University, 2020, 42(2): 40-48. doi: 10.12171/j.1000-1522.20180328

喀斯特断陷盆地典型林地土壤酶活性及理化性质研究

doi: 10.12171/j.1000-1522.20180328
基金项目: 国家重点研发计划(2016YFC0502504、2016YFC0502500),国家自然科学基金项目(31500583),中央级公益性科研院所基本科研业务费专项基金(CAFYBB2014ZD006、CAFYBB2016QB020)
详细信息
    作者简介:

    孙永磊。主要研究方向:石漠化区植被恢复研究。Email:yonglei_SUN@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    关颖慧,博士,讲师。主要研究方向:气候变化与植被恢复研究。Email:gyhdem@bjfu.edu.cn 地址:同上

  • 中图分类号: S714.7

Soil enzyme activities and physicochemical properties of typical woodlands in karst faulted basins

  • 摘要: 目的土壤酶参与土壤中各种生物化学过程,与土壤理化性质密切相关。本文以喀斯特断陷盆地3种典型林地为研究对象,探究林地土壤酶活性与理化性质之间的关系,为该地区植被生态恢复工作提供参考依据。方法本研究以喀斯特断陷盆地云南松林、桉树林和天然次生林为研究对象,采用冗余分析方法,探讨不同林地土壤酶活性及其与理化性质之间的关系。结果(1)3种林地土壤pH介于5.47 ~ 6.03之间,10 ~ 20 cm和20 ~ 30 cm土层土壤密度,云南松林显著高于桉树林和次生林(P < 0.05),0 ~ 10 cm和10 ~ 20 cm土层全氮含量,桉树林显著高于云南松林和次生林(P < 0.05),0 ~ 10 cm土层速效磷含量,次生林显著高于云南松林和桉树林(P < 0.05),有机碳和铵态氮含量整体呈现次生林 > 云南松林 > 桉树林的规律。(2)3种林地0 ~ 10 cm土层酸性磷酸酶和脲酶活性为次生林 > 桉树林 > 云南松林,而10 ~ 20 cm土层呈现相反的规律。淀粉酶、纤维素酶和蔗糖酶活性在0 ~ 10 cm和10 ~ 20 cm土层均为次生林最高,云南松林次之,桉树林最低。此外,林地各土层间土壤酶活性具有显著性差异(P < 0.05),土壤酶活性呈现出随土层深度增加而逐渐降低的趋势。(3)冗余分析表明,有机碳、铵态氮、速效磷和pH均与蔗糖酶活性呈显著正相关关系,而全氮与蔗糖酶活性呈显著负相关关系。土壤密度与脲酶和酸性磷酸酶活性呈负相关关系。(4)蒙特卡洛检验表明土壤理化性质对土壤酶活性影响的重要性大小排序为:有机碳(41.4%) > 铵态氮(32.9%) > 速效磷(24.3%) > 土壤密度(12.6%) > 全氮(7.9%) > pH(5.5%)。结论综上分析表明,有机碳、铵态氮等是影响研究区内土壤酶活性变化的主要指标,在断陷盆地林地土壤肥力和酶活性恢复方面,次生林最佳,而云南松林的优势高于桉树林。

     

  • 图  1  3种林地不同土层深度土壤酶活性变化

    PY. 云南松林 Pinus yunnanensis forest;EM. 桉树林 Eucalyptus maideni forest;SF. 次生林 Secondary forest

    Figure  1.  Changes of soil enzyme activities in different soil depths of three forest lands

    图  2  土壤酶活性与理化性质的冗余度分析

    Suc. 蔗糖酶;Cel. 纤维素酶;Ure. 脲酶;Acp. 酸性磷酸酶;Amy. 淀粉酶;BD. 土壤密度;SOC. 有机碳;AN. 铵态氮;TN. 全氮;AP. 速效磷。下同。Suc, sucrase;Cel, cellulase;Ure, urease;Acp, acid phosphatase;Amy, amylase;BD, soil bulk density;SOC, soil organic carbon;AN, ammonium nitrogen;TN, total nitrogen;AP, available phosphorus. The same below.

    Figure  2.  Redundancy analysis of soil enzyme activities and physicochemical properties

    图  3  单一土壤理化性质对酶活性影响的t-value检验

    Figure  3.  The t-value for single factor influencing characteristics of soil enzyme activities

    表  1  林地基本概况

    Table  1.   Basic profile of forest lands

    林地
    Forest land
    地理坐标
    Geographical coordinates
    坡度
    Slope
    degree/(°)
    坡向
    Slope
    aspect
    海拔
    Altitude/m
    植被盖度
    Vegetation
    coverage/%
    植株密度/(株·hm− 2
    Plant density/
    (tree·ha− 1)
    冠幅
    Crown diameter/
    (m × m)
    云南松林
    Pinus yunnanensis forest
    102°46′41″E,23°40′30″N 15 西偏南
    West by south
    1 560 80 3 838 3.32 × 3.26
    桉树林
    Eucalyptus maideni forest
    102°57′11″E,23°42′34″N 11 北偏东
    North by east
    1 511 65 2 619 2.25 × 2.33
    次生林
    Secondary forest
    102°55′03″E,23°44′06″N 10 西偏北
    West by north
    1 416 75 6 756 1.84 × 1.79
    下载: 导出CSV

    表  2  3种林地不同土层深度理化性质

    Table  2.   Physicochemical properties of different soil depths in three forest lands

    林地
    Forest land
    土层深度
    Soil depth/cm
    土壤密度
    Soil bulk density/
    (g·cm− 3)
    pH有机碳
    Organic carbon/
    (g·kg− 1)
    铵态氮
    Ammonium
    nitrogen/
    (mg·kg− 1)
    全氮
    Total nitrogen/
    (g·kg− 1)
    速效磷
    Available phosphorus/
    (mg·kg− 1)
    云南松林
    Pinus yunnanensis forest
    0 ~ 10 1.07 ± 0.05Aa 5.99 ± 0.09Aa 32.50 ± 5.41Aa 5.74 ± 1.72Aa 5.02 ± 0.07Aa 1.01 ± 0.17Aa
    10 ~ 20 1.25 ± 0.02Ab 5.98 ± 0.07Aa 25.05 ± 1.84Aab 3.32 ± 0.05Aa 4.91 ± 0.16Aa 1.00 ± 0.30Aa
    20 ~ 30 1.28 ± 0.05Ab 5.99 ± 0.05Aa 15.22 ± 1.32Ab 2.66 ± 0.34Aa 3.93 ± 0.08Aa 0.67 ± 0.25Aa
    桉树林
    Eucalyptus maideni forest
    0 ~ 10 1.02 ± 0.02Aa 5.47 ± 0.16Ba 42.07 ± 4.34Ba 4.44 ± 1.25Aa 17.15 ± 0.21Ba 1.13 ± 0.05Aa
    10 ~ 20 1.14 ± 0.06Bb 5.83 ± 0.08Aa 21.86 ± 2.05Ab 3.57 ± 0.35Aa 10.93 ± 0.30Bb 0.97 ± 0.10Aa
    20 ~ 30 1.18 ± 0.04Bb 5.64 ± 0.26Ba 10.94 ± 1.91Ab 2.62 ± 0.26Aa 4.58 ± 0.05Ac 1.63 ± 0.90Ba
    次生林
    Secondary
    forest
    0 ~ 10 1.09 ± 0.09Aa 5.95 ± 0.09Aa 46.33 ± 7.55Ba 24.35 ± 3.96Ba 6.44 ± 0.12Aa 2.33 ± 0.18Ba
    10 ~ 20 1.13 ± 0.07Ba 5.88 ± 0.13Aa 35.04 ± 3.63Ba 14.69 ± 1.88Bb 4.25 ± 0.09Aa 1.88 ± 0.50Aa
    20 ~ 30 1.18 ± 0.09Ba 6.03 ± 0.04Aa 17.05 ± 3.16Ab 10.85 ± 1.83Bb 5.30 ± 0.04Aa 1.76 ± 0.31Ba
    注:数据为均值 ± 标准差,n = 3。同列同一树种不同小写字母表示均值间差异显著(P < 0.05),同列同一土层不同大写字母表示均值间差异显著(P < 0.05),下同。Notes: the data in the table are mean ± standard deviation, n = 3.
    Difference between the mean values of the same tree species in different lowercase letters indicates a significant difference (P < 0.05), and the difference between the mean values in the same soil layer in the same column indicates a significant difference (P < 0.05). The same below.
    下载: 导出CSV

    表  3  土壤酶活性与理化性质RDA排序的特征值及累计解释量

    Table  3.   Eigenvalues and cumulative variances of RDA ordination of soil enzyme activities and physicochemical properties

    排序轴 Sorting axis第Ⅰ轴AxisⅠ第Ⅱ轴AxisⅡ第Ⅲ轴
    Axis Ⅲ
    第Ⅳ轴Axis Ⅳ
    土壤酶活性特征解释量 Soil enzyme activity eigenvalues 0.657 0.153 0.032 0.008
    土壤酶活性特征与理化性质相关 Soil enzyme activity and physicochemical properties correlations 0.961 0.855 0.711 0.841
    土壤酶活性特征累计解释量 Cumulative variances of soil enzyme activity/% 65.7 81.0 84.2 85.0
    土壤酶活性特征−理化性质关系累计解释量 Cumulative variances of correlations/% 77.3 95.2 99.0 99.9
    典范特征值 Sum of all canonical eigenvalues 0.851
    总特征值 Sum of all eigenvalues 1.000
    下载: 导出CSV
  • [1] 张鹏, 赵洋, 黄磊, 等. 植被重建对露天煤矿排土场土壤酶活性的影响[J]. 生态学报, 2016, 36(9):2715−2723.

    Zhang P, Zhao Y, Huang L, et al. Effect of revegetation on soil extracellular enzyme activity in the dumping site of an open-pit coal mine in Heidaigou[J]. Acta Ecologica Sinica, 2016, 36(9): 2715−2723.
    [2] Banerjee S, Bora S, ThralL P H, et al. Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones[J]. Applied Soil Ecology, 2016, 105: 1−8. doi: 10.1016/j.apsoil.2016.04.002
    [3] Song Y Y, Song C C, Yang G S, et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China[J]. Environmental Management, 2012, 50(3): 418−426. doi: 10.1007/s00267-012-9890-x
    [4] 杨宁, 杨满元, 雷玉兰, 等. 衡阳紫色土丘陵坡地土壤酶活性对植被恢复的响应[J]. 生态环境学报, 2014, 23(4):575−580. doi: 10.3969/j.issn.1674-5906.2014.04.005

    Yang N, Yang M Y, Lei Y L, et al. Response of soil enzyme activities to re-vegetation on sloping-land with purple soils in Hengyang of Hunan Province, China[J]. Ecology and Environmental Sciences, 2014, 23(4): 575−580. doi: 10.3969/j.issn.1674-5906.2014.04.005
    [5] 张笑培, 杨改河, 任广鑫, 等. 黄土高原南部植被恢复对土壤理化性状与土壤酶活性的影响[J]. 干旱地区农业研究, 2010, 28(6):64−68.

    Zhang X P, Yang G H, Ren G X, et al. Effects of vegetation restoration on soil physical-chemical properties and activities of soil enzyme in the gully region of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 64−68.
    [6] 张海鑫, 曾全超, 安韶山, 等. 子午岭典型植被凋落叶−土壤养分与酶活性特征[J]. 生态学报, 2018, 38(7):2262−2270.

    Zhang H X, Zeng Q C, An S S, et al. Soil enzyme activities, soil and leaf litter nutrients of typical vegetation in Ziwuling Mountain[J]. Acta Ecologica Sinica, 2018, 38(7): 2262−2270.
    [7] 孔爱辉, 耿玉清, 余新晓. 北京低山区栓皮栎林和油松林土壤酶活性研究[J]. 土壤, 2013, 45(2):264−270. doi: 10.3969/j.issn.0253-9829.2013.02.012

    Kong A H, Geng Y Q, Yu X X. Soil enzyme activities under Quercus variabis and Pinus tabulaeformis forests in lower mountain area, Beijing[J]. Soils, 2013, 45(2): 264−270. doi: 10.3969/j.issn.0253-9829.2013.02.012
    [8] 裴丙, 朱龙飞, 梁红艳, 等. 太行山低山丘陵区不同人工林型对土壤性质及酶活性的影响[J]. 干旱区资源与环境, 2017, 31(10):190−195.

    Pei B, Zhu L F, Liang H Y, et al. Effect of different plantation types on soil properties and enzyme activity in the hilly region of Taihang Mountains[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 190−195.
    [9] 文东新, 杨宁, 杨满元. 衡阳紫色土丘陵坡地不同植被恢复模式对土壤微生物量及酶活性的影响[J]. 草地学报, 2016, 24(6):1241−1247. doi: 10.11733/j.issn.1007-0435.2016.06.013

    Wen D X, Yang N, Yang M Y. Effect of different re-vegetation pattern on soil microbial biomass and enzyme activities in purple soils of sloping-land in Hengyang, Hunan Province[J]. Acta Agrestia Sinica, 2016, 24(6): 1241−1247. doi: 10.11733/j.issn.1007-0435.2016.06.013
    [10] 解雪峰, 濮励杰, 王琪琪, 等. 滨海滩涂围垦区不同围垦年限土壤酶活性变化及其与理化性质关系[J]. 环境科学, 2018, 39(3):1404−1412.

    Xie X F, Pu L J, Wang Q Q, et al. Response of soil enzyme activities and their relationships with physicochemical properties to different aged coastal reclamation area, eastern China[J]. Environmental Science, 2018, 39(3): 1404−1412.
    [11] Ouyang W, Song K Y, Wang X L, et al. Non-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamics[J]. Ecological Indicators, 2014, 45: 579−589. doi: 10.1016/j.ecolind.2014.05.025
    [12] 刘丛强. 生物地球化学过程与地表物质循环: 西南喀斯特土壤−植被系统生源要素循环[M]. 北京: 科学出版社, 2009.

    Liu C Q. Biogeochemical processes and surface material cycles: cyclogenesis of karst soil and vegetation systems in southwest China[M]. Beijing: Science Press, 2009.
    [13] 刘璐, 陈浩, 李德军, 等. 喀斯特山区植被恢复过程中土壤水解酶和氧化酶活性的响应[J]. 环境科学学报, 2017, 37(9):3528−3534.

    Liu L, Chen H, Li D J, et al. Changes of soil hydrolytic and oxidized enzyme activities under the process of vegetation restoration in a karst area, southwest China[J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3528−3534.
    [14] 刘淑娟, 张伟, 王克林, 等. 桂西北喀斯特峰丛洼地不同植被演替阶段的土壤脲酶活性[J]. 生态学报, 2011, 31(19):5789−5796.

    Liu S J, Zhang W, Wang K L, et al. Soil urease activity during different vegetation successions in karst peak-cluster depression area of northwest Guangxi, China[J]. Acta Ecologica Sinica, 2011, 31(19): 5789−5796.
    [15] 戎宇, 刘成刚, 薛建辉. 喀斯特山地不同人工林土壤特性差异与综合评价[J]. 南京林业大学学报(自然科学版), 2011, 35(2):108−112. doi: 10.3969/j.issn.1000-2006.2011.02.023

    Rong Y, Liu C G, Xue J H. Different and integrated evaluation on soil fertility properties of different plantations in karst area[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2011, 35(2): 108−112. doi: 10.3969/j.issn.1000-2006.2011.02.023
    [16] 叶莹莹, 刘淑娟, 张伟, 等. 喀斯特峰丛洼地植被演替对土壤微生物生物量碳、氮及酶活性的影响[J]. 生态学报, 2015, 35(21):6974−6982.

    Ye Y Y, Liu S J, Zhang W, et al. Dynamics of soil microbial biomass and soil enzyme activity along a vegetation restoration gradient in a karst peak-cluster depression area[J]. Acta Ecologica Sinica, 2015, 35(21): 6974−6982.
    [17] 罗攀, 陈浩, 肖孔操, 等. 地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响[J]. 环境科学, 2017, 38(6):2577−2585.

    Luo P, Chen H, Xiao K C, et al. Effects of topography, tree species and soil properties on soil enzyme activity in karst regions[J]. Environmental Science, 2017, 38(6): 2577−2585.
    [18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Analysis of soil agrochemical[M]. Beijing: China Agriculture Press, 2000.
    [19] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1983.

    Guan S Y. Soil enzyme and its research method[M]. Beijing: China Agriculture Press, 1983.
    [20] 庞燕, 项颂, 储昭升, 等. 洱海流域农业用地与入湖河流水质的关系研究[J]. 环境科学, 2015, 36(11):4005−4012.

    Pang Y, Xiang S, Chu Z S, et al. Relationship between agricultural land and water quality of inflow river in Erhai Lake Basin[J]. Environmental Science, 2015, 36(11): 4005−4012.
    [21] 刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21):1−7.

    Liu S J, Xia X, Chen G M, et al. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 2011, 27(21): 1−7.
    [22] 秦嘉海, 张勇, 赵芸晨, 等. 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律[J]. 冰川动土, 2014, 36(2):335−346.

    Qin J H, Zhang Y, Zhao Y C, et al. Soil physicochemical properties and variations of nutrients and enzyme activity in the degrading grasslands in the upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 335−346.
    [23] 靳振江, 曾鸿鹄, 李强, 等. 起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较[J]. 环境科学, 2016, 37(1):335−341.

    Jin Z J, Zeng H H, Li Q, et al. Comparisons of microbial numbers, biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland[J]. Environmental Science, 2016, 37(1): 335−341.
    [24] 耿玉清, 戴伟, 余新晓, 等. 森林经营对土壤酶活性影响的研究进展[J]. 北京林业大学学报, 2008, 30(2):132−138.

    Geng Y Q, Dai W, Yu X X, et al. Research advances for the effects of forest management on soil enzyme activity[J]. Journal of Beijing Forestry University, 2008, 30(2): 132−138.
    [25] 朱美玲, 贡璐, 张龙龙. 塔里木河上游典型绿洲土壤酶活性与环境因子相关分析[J]. 环境科学, 2015, 36(7):2678−2685.

    Zhu M L, Gong L, Zhang L L. Soil enzyme activities and their relationships to environmental factors in a typical oasis in the upper reaches of the Tarim River[J]. Environmental Science, 2015, 36(7): 2678−2685.
    [26] 权国玲, 谢开云, 仝宗永, 等. 复合微生物肥料对羊草草原土壤理化性质及酶活性的影响[J]. 草业学报, 2016, 25(2):27−36. doi: 10.11686/cyxb2015422

    Quan G L, Xie K Y, Tong Z Y, et al. The effect of compound bio-fertilizers on soil physical and chemical properties and soil enzyme activity in Leymus chinensis steppe[J]. Acta Prataculturae Sinica, 2016, 25(2): 27−36. doi: 10.11686/cyxb2015422
    [27] 曹小玉, 李际平, 张彩彩, 等. 不同龄组杉木林土壤有机碳和理化性质的变化特征及其通径分析[J]. 水土保持学报, 2014, 28(4):200−205.

    Cao X Y, Li J P, Zhang C C, et al. Variation of contents of organic carbon and physic-chemical properties of soil and path analysis for their relations in different age-group Chinese fir plantations[J]. Journal of Soil and Water Conservation, 2014, 28(4): 200−205.
    [28] Burke D J, Weintraub M N, Hewins C R, et al. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest[J]. Soil Bioloy & Biochemistry, 2011, 43(4): 795−803.
    [29] 杨皓, 范明毅, 李婕羚, 等. 喀斯特山区无籽刺梨种植基地土壤酶活性与肥力因子的关系[J]. 山地学报, 2016, 34(1):28−37.

    Yang H, Fan M Y, Li J L, et al. relationship between soil enzyme activities and fertility factors from Rosa sterilis S. D. shi planting bases located in karst mountain region[J]. Mountain Research, 2016, 34(1): 28−37.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  593
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2018-12-21
  • 网络出版日期:  2019-12-02
  • 刊出日期:  2020-03-03

目录

    /

    返回文章
    返回