• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响

王涛, 郭洋, 苏建宇, 徐春燕

王涛, 郭洋, 苏建宇, 徐春燕. 贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响[J]. 北京林业大学学报, 2020, 42(4): 91-101. DOI: 10.12171/j.1000-1522.20180365
引用本文: 王涛, 郭洋, 苏建宇, 徐春燕. 贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响[J]. 北京林业大学学报, 2020, 42(4): 91-101. DOI: 10.12171/j.1000-1522.20180365
Wang Tao, Guo Yang, Su Jianyu, Xu Chunyan. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. DOI: 10.12171/j.1000-1522.20180365
Citation: Wang Tao, Guo Yang, Su Jianyu, Xu Chunyan. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. DOI: 10.12171/j.1000-1522.20180365

贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响

基金项目: 国家自然科学基金项目(31560158)
详细信息
    作者简介:

    王涛。主要研究方向:微生物资源与利用。Email:1416944905@qq.com 地址:750021 宁夏回族自治区银川市西夏区贺兰山西路539号宁夏大学生命科学学院

    责任作者:

    徐春燕,博士,副教授。主要研究方向:微生物资源与利用。Email:xcy@nxu.edu.cn 地址:同上

Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity

  • 摘要:
    目的研究濒危植物贺兰山丁香与生长地土壤养分、土壤酶活力和微生物群落的关系,为理解其影响机制提供科学依据。
    方法从贺兰山丁香灌丛下及其附近裸地分别采集3份土壤样品,在测定两组样本的理化性质、酶活性的基础上,基于高通量测序技术分析了两组样本的微生物群落结构。
    结果贺兰山丁香对土壤酸碱度的影响不大,能使水分、有机质、总氮、速效钾、速效氮的含量显著增加(P < 0.05),但导致速效磷含量显著降低(P < 0.05);使蔗糖酶、脲酶、漆酶的活性显著增加(P < 0.05);使土壤中细菌的多样性减少,但对细菌丰富度基本没有影响,使真菌的多样性和丰富度均增加。在微生物的属水平上,贺兰山丁香使细菌中的芽孢杆菌属和真菌中的螺旋聚孢霉属、复膜孢酵母属、木霉属、Paranamyces明显增加,使细菌的鞘氨醇单胞菌属、黄杆菌属和真菌的Lentinula、镰孢菌属、赤霉菌属、Lycogalopsis、土赤壳属、曲霉属、集壶菌属、支顶孢属等类群的微生物明显减少,这些微生物群落的改变与植物生长地土壤的营养成分和土壤酶活力改变息息相关。
    结论贺兰山丁香主要通过影响土壤中真菌的群落结构增加土壤酶活性,通过提高功能细菌的丰富度增加土壤的养分和水分含量,并促进土壤中碳、氮、磷、钾等元素的循环。
    Abstract:
    ObjectiveThis paper aims to study the relationship between the endangered plant Syringa pinnatifolia var. alanshanica and soil nutrients, soil enzyme and soil microorganisms, and provide evidence for understanding its impact mechanism.
    MethodFive-point sampling method was employed to collect three soil samples (treatment group) under the S. pinnatifolia var. alanshanica shrub and three control samples (control group) from the naked land near the plant. After the physicochemical properties and enzyme activities determination, the microbial community structure was further analyzed via high-throughput sequencing technique.
    ResultThe soil pH value remained unchanged, while the contents of water, organic matter, total nitrogen, available potassium and nitrogen was increased significantly (P < 0.05), and the available phosphorus content was decreased significantly (P < 0.05) by S. pinnatifolia var. alanshanica. At the same time, the activities of sucrase, urease, and laccase were increased significantly (P < 0.05). Under the S. pinnatifolia var. alanshanica shrub, the diversity of soil bacteria was decreased with the richness of bacteria being almost unchanged, but both the diversity and abundance of fungi were increased significantly. The numbers of Bacillus in bacteria and Saccharomycopsis, Clonostachys, Trichoderma, Paranamyces in fungi were increased by S. pinnatifolia var. alanshanica. However, the numbers of Sphingomonas and Flavobacterium in bacteria, Lentinula, Fusarium, Gibberella, Lycogalopsis, Ilyonectria, Aspergillus, Synchytrium, and Acremonium in fungi were decreased significantly. All the alterations of microorganisms were closely associated with the changes of nutrients and enzymes.
    ConclusionS. pinnatifolia var. alanshanica increased the activities of soil enzymes by altering the community structure of soil fungi, and enhanced the contents of soil nutrients and water, and promoted the cycling of carbon, nitrogen, phosphorus and potassium by increasing the richness of functional bacteria.
  • 近些年来随着云南省大面积种植核桃(Juglans regia),核桃产业得到了快速发展,为增加人们收入、繁荣地方经济发挥了重要作用[1]。但是,核桃炭疽病(Colletotrichum gloeosporioides)在云南省各地发生越来越严重,已成为制约当地核桃产业发展的重要限制因子,在严重发病年份病株率高达90%,造成落叶现象严重。随着绿色食品理念不断深入人心,促使人们探寻一种对人类和环境无害并具有良好防治效果的新防治策略[2]。作者通过对核桃植株根际土壤微生物的筛选,获得了两株对核桃炭疽病菌具有良好抑菌效果的菌株,即钩状木霉(Trichoderma hamatum)YB-4-15[3]和枯草芽孢杆菌(Bacillus subtilis)yb33[4]。为了更好地推广上述生防菌株,更好地防治核桃炭疽病菌,从切断核桃炭疽病菌病害循环的某一环入手,这两种生防菌株在核桃根际土壤中能否定殖以及定殖情况如何将是影响它们生防作用的重要因子,为此,本文献开展了这两株生防菌在核桃根际土壤中定殖试验研究。

    目前,对于植物病害生防菌的研究更多集中在菌株筛选[5]、鉴定及初期应用试验等方面[2],而关于生防菌定殖方法的研究主要采用天然抗生素抗性标记、外源基因标记、DNA和RNA探针技术以及免疫学方法等[6-7]。有些学者研究了生防菌在植物(核桃、辣椒、西瓜)根际中的土壤定殖情况[8-10]。其中,DNA探针法具有较高灵敏度,不但可以检测活的微生物细胞,还可以检测死的微生物细胞[6]。应用免疫学方法可以较好地开展对于微生物与植物间互作的研究,以及用于检测土壤微生物定殖能力[7]。有关标记基因的种类主要有选择基因和报告基因[6]。尽管如此,在微生物分子生态学研究中,应用最多的标记基因主要为抗生素标记、生化显色标记基因、生物发光基因等[11]。研究细菌在植株体内的定殖,最常用的是单一抗生素标记法[12-13]。显然,上述不同标记各有优缺点,主要表现在经济性(时间及费用)、灵敏性(灵敏与迟钝)、操作步骤复杂性(简单与复杂)等方面。本研究采用经济、易操作的抗生素标记方法,对上述两株生防菌开展了核桃根际土壤中定殖的研究工作,以期明确二者在土壤中的适应性,为田间推广应用提供理论依据。

    供试菌株:生防菌株钩状木霉YB-4-15和枯草芽孢杆菌yb33为西南林业大学植物病理学实验室分离和筛选获得。

    供试土壤:试验选取云南省大理州漾濞县光明村核桃树根际土壤和西南林业大学老校区校园(位于云南省昆明市盘龙区300号)内桂花(Osmamthus fragrans)、香樟(Cinnamomum camphora)、石楠(Photinia serratifolia)等植物的根际土壤作为对比研究对象。在各样地分别选取3个样点进行土壤样品采集,将在同一个样地多点采集的土壤混合、过筛。去除表层土,取深度为5 ~ 20 cm的根际土样,装袋做好标记,带回实验室自然晾干,于4 ℃冰箱保存备用。

    供试培养基:马铃薯葡萄糖琼脂培养基(PDA)和肉汤蛋白胨固体培养基(NA)、生防菌固体培养基(NYDA)及生防菌液体培养基(NYD)[14]

    将核桃根际土壤风干后经高温灭菌作为后续试验的无菌土。每份取200 g无菌土放入一次性育苗袋(直径9.5 cm × 高15 cm)中,然后向土壤中浇灌钩状木霉的孢子悬浮液20 mL(孢子数量:3.3 × 104个/μL),搅拌均匀,设置3次重复,置于室温条件下,此后每隔6 d进行定期取样。对于所取土样,采用土壤稀释法涂布平板(PDA培养基,稀释倍数为104),在光照培养箱中28 ℃恒温培养5 ~ 7 d后,记录不同培养基上的菌落数量。同样,选择未经灭菌的核桃根际土壤样品,每份取200 g样土放于一次性育苗袋中,其他步骤同上。

    首先,采用血球计数板法配制不同孢子含量的钩状木霉孢子悬浮液,取其100 μL均匀涂布到含有不同质量浓度(50、100、150、200、250、300 μg/mL)潮霉素B的PDA平板(9 cm)上,以不含潮霉素B的PDA平板作为对照,在28 ℃光照培养箱中培养4 d,确定钩状木霉对于抗生素耐受最高质量浓度。试验重复3次。

    将枯草芽孢杆菌yb33在NA培养基上划线活化,将单菌落转接至含有0.5 μg/mL质量浓度利福平的NYDA平板上30 ℃过夜培养,再用灭菌牙签挑单菌落接入含有0.5 μg/mL质量浓度利福平的5 mL的NYD液体培养基试管中,在温度30 ℃、转速150 r/min的黑暗条件下振荡培养过夜。其后,按照含0.5、1、2、4、8、16、32、64、128、256、300 μg/mL不同质量浓度利福平的NYDA培养基中采取逐级提高质量浓度的方法诱导培养,获得用于后续抗利福平的标记菌株yb33-Rif。同时,将yb33-Rif菌株分别在不含利福平的NYD培养基和NYDA平板上交替培养2代,再回接到含利福平300 μg/mL的NYD培养基中进行检测,以证实菌株抗性的遗传稳定性[12]

    将抗利福平标记菌株yb33-Rif接种在不含利福平的NYD培养基中,在温度30 ℃、转速150 r/min的黑暗条件下振荡培养48 h。采用血球计数板法测定细菌含量。向200 g无菌土中浇灌20 mL抗利福平标记菌株yb33-Rif搅拌均匀,设3次重复。置于室温条件下。此后,每周定期取样,采用土壤稀释法涂布在含利福平300 μg/mL的NYDA培养基上,在28 ℃的光照培养箱中恒温培养2 ~ 4 d后,记录不同培养基上的菌落数。同样,选择核桃根际土壤样土(未灭菌),每份取200 g样土放于一次性育苗袋中,其他步骤同上。

    取风干后并经高温灭菌的核桃、香樟、桂花、石楠的根际土壤,每份土取100 g于大塑料杯中,用20 mL孢子含量7.6 × 106个/μL的钩状木霉孢子悬浮液浇灌4种土壤并搅拌均匀。同样,选取上述4种植物根际土壤(未灭菌),每份土壤取200 g于大塑料杯中,用40 mL孢子含量为3 × 107个/μL的yb33-Rif菌悬液浇灌4种土壤并搅拌均匀。此后于第1、3、7天分别进行取样,测定定殖菌落数,统计方法同上。

    采用SPSS 25.0统计软件对获得的无菌土与样土之间的菌量数据进行独立性t检验,同时,以核桃根际土壤中菌量数据为对照,对比不同时间香樟、桂花、石楠根际土壤中菌量数据进行独立性t检验,明确上述不同处理之间的方差显著性。

    采用血球计数板法计数配制孢子含量为3.3 × 104个/μL的钩状木霉孢子悬浮液。将100 μL孢子悬浮液均匀涂布到PDA平板以及含不同质量浓度潮霉素B的PDA平板上,在28 ℃光照培养箱中培养4 d,结果显示,在无潮霉素B的平板上长出木霉菌落,在含有50、100、150、200、250、300 μg/mL等不同处理质量浓度的含潮霉素B的平板上均未见分生孢子萌发和菌落形成。

    将钩状木霉孢子悬浮液浇灌到经灭菌的核桃根际土壤中进行定殖能力的测定,在定殖初期出现了较快的增长,从初始菌量2.67 × 104 cfu/g(6 d)增加到3.00 × 104 cfu/g(12 d),在18 d时回落到2.00 × 104 cfu/g含量,之后其含量一直处于不断增长的状态(图1)。该试验结果表明,钩状木霉可以较好地在不含有其他微生物的核桃根际土壤中成功定殖,具有较好的环境适应能力,并不断繁殖增长。同样,就核桃根际土壤(未经灭菌)而言,由于该菌受到核桃根际土壤微生物的影响,其在不同时间取样分析的土壤中的定殖菌落数量均低于无菌土。该菌定殖数量最小的时间出现在6 d,测定的木霉菌数量为0.67 × 104 cfu/g,定殖数量最大时间点出现在24 d,其木霉菌数量为3.33 × 104 cfu/g(图1)。统计结果发现,在6、12、18、24、30 d上述不同处理间莱文(Levene)方差等同性检验显著性数值分别为0.279、0.692、0.692、0.205、0.561,与显著水平0.05相比,两组数据的方差无显著差异,可以认为两个独立样本的方差一致,在满足方差齐性的条件下,进一步分析发现上述不同处理时间均值显著性数值(假定等方差)分别为0.219、0.279、0.643、0.643、0.003,上述结果表明自钩状木霉孢子浇灌到无菌土及样土等不同土壤中,前24 d不同处理之间菌量并不存在显著性差异,而在30 d无菌土和样土之间菌量存在着显著性差异。试验结果表明,钩状木霉菌在无菌土壤中具有较好的环境适应能力,而且呈现出随时间的增加菌体繁殖不断增加的趋势。在未经灭菌的核桃根际土壤中,钩状木霉在接种初期(6 d)由于受到土壤中微生物的影响,其菌体繁殖数量有所下降,但在适应环境后呈现出菌体繁殖数量不断增加的趋势,表现出较好的定殖能力。

    图  1  钩状木霉YB-4-15在核桃根际土壤(样土)及无菌土中的定殖情况
    不同小写字母表示差异显著(P < 0.05)。Different lowercase letters mean significant differences (P < 0.05).
    Figure  1.  Colonization of Trichoderma hamatum YB-4-15 in rhizosphere soil (sample soil) and aseptic soil of walnut

    试验结果表明,枯草芽孢杆菌yb33悬液在含有4、16、128、256、300 μg/mL等不同质量浓度利福平的NYDA平板上,均能生长(图2)。

    图  2  枯草芽孢杆菌在含不同浓度利福平的NYDA平板生长情况
    A. 不含利福平的NYDA平板;B ~ F. 分别为含4、16、128、256、300 μg/mL利福平的NYDA平板。A, NYDA plate without rifampicin; B−F, NYDA plate containing 4, 16, 128, 256, 300 μg/mL of rifampicin.
    Figure  2.  Growth of Bacillus subtilis yb33 on NYDA medium containing various mass concentrations of rifampicin

    抗性菌株yb33-Rif在未经灭菌土、灭菌土中定殖试验研究结果表明,在无菌土中定殖菌体数量最多时为1.08 × 108 cfu/g(18 d),最少时为7.07 × 106 cfu/g(24 d)。而在未经灭菌的土壤中,菌株yb33-Rif定殖菌体数量最多时为7.53 × 106 cfu/g(6 d),最少时为1.03 × 106 cfu/g(24 d)(图3)。统计结果发现,在6、12、18、24、30 d上述不同处理间Levene方差等同性检验显著性数值分别为0.034、0.018、0.017、0.021、0.021,显然小于显著水平0.05,两组数据的方差具有较为显著差异,不同处理时间均值显著性数值(假定等方差)分别为0.341、0.362、0.273、0.283、0.218,上述结果表明自枯草芽孢杆菌浇灌到无菌土及样土等不同土壤中,不同处理之间菌量存在着显著性差异。结果表明,菌株yb33-Rif在无菌土中定殖菌体数量表现出先升高再降低并趋于稳定的趋势,而在未经灭菌的自然土壤中菌体定殖数量呈现出随时间推移而降低的趋势,在18 d后在土壤中的含菌量出现波动,与在无菌土壤中木霉菌数量相比,其在土壤中的定殖能力较弱。

    图  3  枯草芽孢杆菌利福平抗性菌株yb33-Rif在不同土壤中定殖情况
    A. 无菌土;B. 自然土;C. 菌量随时间变化情况。A, sterile soil; B, natural soil; C, changes of number of colony with time.
    Figure  3.  Colonization of rifampicin-resistant strain Bacillus subtilis yb33-Rif in different soils

    将钩状木霉和yb33-Rif菌悬液浇灌在核桃、桂花、香樟及石楠根际土中,菌体数量在1 d(初期)均未出现明显的变化情况;但在3 d(中期)后核桃根际土中定殖的菌体数量均高于其他植物(图4)。统计结果发现,就钩状木霉菌悬液浇灌而言,以核桃作为对照,在第1 天桂花、香樟以及石楠等不同处理间Levene方差等同性检验显著性数值分别为0.116、0.492、0.492,第3天分别为0.219、0.422、0.670,第7天分别为0.047、0.275、0.145,仅有桂花与核桃之间在第7 天存在显著差异,其他两组数据的方差不具有显著差异。此外,就枯草芽孢杆菌浇灌而言,以核桃作为对照,在第1 天桂花、香樟以及石楠等不同处理间Levene方差等同性检验显著性数值分别为0.626、0.150、0.061,第3 天分别为0.862、0.583、0.133,第7 天分别为0.904、0.220、0.155,显然上述值均大于显著水平0.05,两组数据的方差不具有显著差异。因此,尽管两个供试菌株在桂花、香樟以及石楠等植物根际土壤中的定殖菌体数量在一定程度上低于核桃根际土壤,但上述菌株依然表现出较好的定殖能力。

    图  4  生防菌混合施用后在不同植物根际土壤中菌体数量随时间变化情况
    A. 钩状木霉YB-4-15;B. 枯草芽孢杆菌yb33-Rif。A, Trichoderma hamatum YB-4-15;B, Bacillus subtilis yb33-Rif.
    Figure  4.  Changes in the amount of Trichoderma hamatum YB-4-15 and Bacillus subtilis yb33-Rif in different soils with time

    本研究通过对钩状木霉YB-4-15和枯草芽孢杆菌yb33在核桃根际土壤中的定殖能力测定,明确了这两个菌株在无菌土和样土中均具有较好的定殖能力。在长达一个月的定殖时间中,前者定殖最大量为5 × 104 cfu/g,最小为2 × 104 cfu/g;后者定殖最大量为1.08 × 108 cfu/g,最小为1.03 × 106 cfu/g。同时,选择香樟、石楠以及桂花等不同植物根际土壤开展上述菌株的定殖能力分析,结果表明上述菌株具有较好的定殖能力。

    研究中发现,钩状木霉YB-4-15在施用30 d后出现菌落数量下降的趋势,可能与钩状木霉施入土壤后需要适应新的环境有关。同时,根据无菌土的试验结果钩状木霉出现短暂的菌落数量下降后,经过6 d时间,会产生进一步的增长态势,表明木霉菌已适应土壤环境。

    土壤微生物是维持土壤生态及其质量的重要组成部分,其多样性水平能敏感地反映出土壤健康水平[15-17]。有较多研究发现,在人为控制条件下,应用生防菌往往可以取得较好的生防效果[18-19]。然而,在自然条件下,由于土壤中存在着大量各种微生物,特别是来自于土著微生物的竞争或其他环境因子的影响,外部添加生防菌的生长往往受到抑制,致使许多在室内试验中表现较好的生防菌,在田间试验却表现不理想等诸多问题[2]。生防菌作为外源微生物,将其大量引入土壤,最大的潜在影响则是生防菌对土壤小生境原有微生物的取代作用,从而使土壤原有稳定的生态平衡被打破,甚至产生系统多样性和功能等下降[20]。同时,钩状木霉YB-4-15和枯草芽孢杆菌yb33在核桃根际土壤中定殖后,尚缺乏对核桃炭疽病菌生长发育的抑制测定工作,尚不清楚该定殖情况是否满足未来生物防治炭疽病菌的需要,均有待进一步开展研究。本研究所选用的两株生防菌来自于核桃种植区域核桃根际土壤,因此,二者对当地核桃根际土壤具有较好的适应性,可通过驯化试验提高其生防效果。由于在室内生防菌的定殖环境与田间实际土壤、气候等环境条件均存在着一定的差异,上述菌株在田间的实际定殖能力有待于今后进一步明确。

  • 图  1   细菌和真菌群落OTUs的维恩图

    Figure  1.   Venn diagrams of OTUs of the soil bacterial and fungal communities

    图  2   细菌和真菌的稀释曲线

    Figure  2.   Dilution curves of bacteria and fungi

    图  3   在门和属水平上细菌占总量前10的比例图

    Figure  3.   Top ten ratios of bacteria in total on phylum and genus levels

    图  4   在门和属水平上真菌占总量前10的比例图

    图例菌名与柱形图从下至上一一对应。Fungus name in legend is one-to-one corresponding to column chart from bottom to top.

    Figure  4.   Top ten ratios of fungi in total on phylum and genus levels

    图  5   细菌属水平的Spearman分析

    *表示显著相关(P < 0.05),**表示极显著相关(P < 0.01)。下同。Note: * indicates significant correlation (P < 0.05), ** indicates extremely significant correlation (P < 0.01). The same below.

    Figure  5.   Spearman analysis of bacteria on genus level

    图  6   真菌属水平Spearman分析

    Figure  6.   Spearman analysis of fungi on genus level

    表  1   土壤样品的基本理化性质

    Table  1   Basic physicochemical characteristics of soil samples

    样品 SampleWC/%OM/%pHTP/(g·kg− 1)TK/(g·kg− 1)TN/(g·kg− 1)AP/(mg·kg− 1)AK/(mg·kg− 1)AN/(mg·kg− 1)
    DX112.54 ± 0.01b2.73 ± 0.24b7.33 ± 0.080.25 ± 0.056.10 ± 0.171.90 ± 0.01b98.98 ± 6.34a124.82 ± 7.13b53.86 ± 5.66b
    DX222.73 ± 0.04a7.10 ± 0.65a7.33 ± 0.030.30 ± 0.046.86 ± 0.573.90 ± 0.04a73.74 ± 6.66b284.31 ± 25.30a125.83 ± 4.79a
    注:平均值 ± 标准差(n = 3)。WC. 含水量;OM. 有机质含量;TP. 全磷含量;TK. 全钾含量;TN. 全氮含量;AP. 速效磷含量;AK. 速效钾含量;AN. 速效氮含量。不同小写字母表示不同样品之间差异显著(P < 0.05)。下同。Notes:mean ± SD (n = 3). WC, water content; OM, organic matter content; TP, total phosphorus content; TK, total potassium content; TN, total nitrogen content; AP, available phosphorus content; AK, available potassium content; AN, available nitrogen content. Different lowercase letters indicate significant difference between different samples at P < 0.05 level. The same below.
    下载: 导出CSV

    表  2   土壤样品的主要酶活性

    Table  2   Activities of key enzymes in the soil samples U/g

    样品 Sample蔗糖 Sucrase脲酶 Urease碱性磷酸酶 ALP漆酶 Laccase
    DX1154.80 ± 10.55b0.94 ± 0.01b0.77 ± 0.0913.26 ± 0.38b
    DX2255.62 ± 3.93a1.20 ± 0.02a0.90 ± 0.0722.98 ± 3.83a
    下载: 导出CSV

    表  3   土壤样品的16S rDNA和ITS序列信息

    Table  3   16S rDNA and ITS sequence information of soil samples

    样品
    Sample
    原始数据 Raw data有效数据 Effective data有效率 Effective rate/%平均长度 Average length/ntOTU数 OTUs
    细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi
    DX1.1 65 254 81 493 50 228 74 200 76.97 91.05 417 221 3 025 768
    DX1.2 67 354 93 803 51 491 90 866 76.45 96.87 417 222 3 247 479
    DX1.3 73 870 94 178 56 032 83 969 75.85 89.16 417 244 3 076 1 282
    DX2.1 72 652 98 005 55 986 87 098 77.06 88.87 418 229 3 077 994
    DX2.2 67 865 95 264 51 348 84 420 75.66 88.62 418 227 2 847 805
    DX2.3 79 810 99 494 60 247 91 996 75.49 92.46 417 229 2 908 949
    下载: 导出CSV

    表  4   样本的细菌和真菌的Alpha多样性指数

    Table  4   Alpha diversity indexes of bacteria and fungi in the samples

    项目
    Item
    样品
    Sample
    Shannon指数
    Shannon index
    Simpson指数
    Simpson index
    Chao1指数
    Chao1 index
    ACE指数
    ACE index
    真菌 BacteriaDX14.35 ± 2.450.72 ± 0.381 029.00 ± 511.551 029.71 ± 496.40
    DX25.98 ± 0.770.93 ± 0.051 080.97 ± 134.291 064.28 ± 127.41
    细菌 FungiDX19.26 ± 0.110.99 ± 0.003 724.30 ± 279.223 874.77 ± 227.86
    DX29.00 ± 0.310.99 ± 0.013 769.21 ± 442.493 861.66 ± 334.15
    下载: 导出CSV
  • [1] 金山.宁夏贺兰山国家自然保护区植物多样性及其保护研究[D]. 北京: 北京林业大学, 2009.

    Jin S. Research on the plant diversity and its conversation in Ningxia Helan Mountain National Nature Reserve[D]. Beijing: Beijing Forestry University, 2009.

    [2] 梁存柱, 朱宗元, 王炜, 等. 贺兰山植物群落类型多样性及其空间分异[J]. 植物生态学报, 2004, 28(3):361−368. doi: 10.3321/j.issn:1005-264X.2004.03.011

    Liang C Z, Zhu Z Y, Wang W, et al. The diversity and spatial distribution of plant communities in the Helan Mountains[J]. Acta Phytoecologica Sinica, 2004, 28(3): 361−368. doi: 10.3321/j.issn:1005-264X.2004.03.011

    [3]

    Yan Y, Wuliji O, Zhao X J, et al. Effect of essential oil of Syringa pinnatifolia Hems1. var. alashanensis on ischemia of myocardium, hypoxia and platelet aggregation[J]. Journal of Ethnopharmacology, 2010, 131: 248−255. doi: 10.1016/j.jep.2010.06.027

    [4]

    Lu P, Wang N N, Wu J M, et al. Chemical constituents from Mongolian herb Syringa pinnatifolia var. alashanensis[J]. Chinese Journal of Natural Medicines, 2015, 13(2): 142−144. doi: 10.1016/S1875-5364(15)60018-8

    [5]

    Cao Y, Wang J, Su G Z, et al. Anti-myocardial ischemia effect of Syringa pinnatifolia by inhibiting expression of cyclooxygenase-1 and -2 in myocardial tissues of mice[J]. Journal of Ethnopharmacology, 2016, 187: 259−268. doi: 10.1016/j.jep.2016.04.039

    [6] 吕海军, 都震, 李志刚, 等. 宁夏贺兰山濒危植物资源现状[J]. 宁夏农林科技, 2000(增刊):39−43.

    Lü H J, Du Z, Li Z G, et al. Present situation of endangered plant resources in State Natural Reserve of Helanshan Mountain of Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2000(Suppl.): 39−43.

    [7] 金山, 胡天华, 赵春玲, 等. 宁夏贺兰山国家自然保护区植物多样性及其保护研究[J]. 北京林业大学学报, 2010, 32(2):113−117.

    Jin S, Hu T H, Zhao C L, et al. Evaluation of conservation priority classes of plant species in Helan Mountain Nature Reserve in Ningxia, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(2): 113−117.

    [8] 宛涛, 蔡萍, 伊卫东, 等. 贺兰山5种国家级保护植物的花粉形态研究[J]. 宁夏大学学报(自然科学版), 2006, 27(4):354−356.

    Wan T, Cai P, Yi W D, et al. Research on the pollen morphology of 5 species of national emphasis protection plants in Helan Mountain[J]. Journal of Ningxia University (Natural Science Edition), 2006, 27(4): 354−356.

    [9] 李吉宁, 苏建宇, 李志刚, 等. 三种丁香叶片的比较解剖学观察[J]. 宁夏农林科技, 2000(增刊):36−38.

    Li J N, Su J Y, Li Z G, et al. Comparative anatomy observation of leaf blades of 3 kinds of cloves[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2000(Suppl.): 36−38.

    [10] 任辉丽, 邱景宝, 曹君迈, 等. 不同因素对贺兰山丁香愈伤组织诱导的影响[J]. 北方园艺, 2008(8):181−183.

    Ren H L, Qiu J B, Cao J M, et al. Influence of different factors on the callus induction of S. pinnatifolia var. alanshanica[J]. Northern Horticulture, 2008(8): 181−183.

    [11] 杨亚珺, 李吉宁, 巩檑, 等. 贺兰山丁香自然居群克隆生长格局及遗传多样性的 ISSR 分析[J]. 植物科学学报, 2013, 31(1):85−92.

    Yang Y J, Li J N, Gong L, et al. Clonal structure and genetic diversity of natural Syringa pinnatifolia var. alanshanica assessed by ISSR[J]. Plant Science Journal, 2013, 31(1): 85−92.

    [12] 金山, 胡天华, 李志刚, 等. 贺兰山羽叶丁香分布区的植物物种多样性特性研究[J]. 西部林业科学, 2008, 37(4):40−44. doi: 10.3969/j.issn.1672-8246.2008.04.007

    Jin S, Hu T H, Li Z G, et al. Species diversity of Syringa pinnatifolia community in Helan Mountains[J]. Journal of West China Forestry Science, 2008, 37(4): 40−44. doi: 10.3969/j.issn.1672-8246.2008.04.007

    [13] 常玉山, 高艺宁, 许丽, 等. 包头市 7 种灌木树种抗旱性的比较[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(6):28−32.

    Chang Y S, Gao Y N, Xu L, et al. Comparison of 7 kinds of shrub species for drought resistance in Baotou[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2014, 35(6): 28−32.

    [14] 庞秀生, 赵明升, 王晋. 蒙药山沉香的生药学研究[J]. 中国民族医药杂志, 2000, 6(增刊1):59.

    Pang X S, Zhao M S, Wang J. Biopharmaceutical research of Syringa pinnatifolia var. alanshanica[J]. Journal of Medicine & Pharmacy of Chinese Minorities, 2000, 6(Suppl.1): 59.

    [15]

    Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils[J/OL]. PloS One, 2011, 6(2): e17000 [2018−03−19]. https://www.scientific.net/AMR.955-959.459.

    [16] 时雷雷, 傅声雷. 土壤生物多样性研究:历史、现状与挑战[J]. 科学通报, 2014, 59(6):493−509.

    Shi L L, Fu S L. Review of soil biodiversity research: history, current status and future challenges[J]. Chinese Science Bulletin, 2014, 59(6): 493−509.

    [17] 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 2013, 21(4):411−420.

    He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosysterns[J]. Biodiversity Science, 2013, 21(4): 411−420.

    [18]

    Zhao J, Zhang R F, Xue C, et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China[J]. Microb Ecol, 2014, 67(2): 443−453. doi: 10.1007/s00248-013-0322-0

    [19] 刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 2013, 33(22):7211−7220.

    Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 2013, 33(22): 7211−7220.

    [20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil agicultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.

    [21] 郭旭欣. 容量法测定土壤有机质2种加热方法比较研究[J]. 现代农业科技, 2016(9):206−209. doi: 10.3969/j.issn.1007-5739.2016.09.124

    Guo X X. Comparative study on two heating methods for determination of soil organic matter by volumetric method[J]. Modern Agricultural Science and Technology, 2016(9): 206−209. doi: 10.3969/j.issn.1007-5739.2016.09.124

    [22] 李彤, 王梓廷, 刘露, 等. 保护性耕作对西北干旱区土壤微生物空间分布及土壤理化性质的影响[J]. 中国农业学报, 2017, 50(5):859−870.

    Li T, Wang Z T, Liu L, et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the northwest dryland[J]. Scientia Agricultura Sinica, 2017, 50(5): 859−870.

    [23]

    Yang J, Luo X G, Tang Y J, et al. Effects of uranium on different plants rhizosphere soil enzyme activity[J]. Environmental Science & Technology, 2016, 39(3): 33−37.

    [24] 苏宝玲, 王月阳, 白震, 等. ABTS底物检测漆酶活力条件和算法比较[J]. 土壤通报, 2016, 47(5):1162−1167.

    Su B L, Wang Y Y, Bai Z, et al. Comparisons of experiment conditions and calculation methods for laccase activity detection with ABTS[J]. Chinese Journal of Soil Science, 2016, 47(5): 1162−1167.

    [25]

    Berg J, Brandt K K, Al-Soud W A, et al. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure[J]. Applied and Environmental Microbiology, 2012, 78(20): 7438−7446. doi: 10.1128/AEM.01071-12

    [26]

    Schmidt V, Plenz B, Pfaff M, et al. Disseminated systemic mycosis in veiled chameleons (Chamaeleo calyptratus) caused by Chamaeleomyces granulomatis[J]. Veterinary Microbiology, 2012, 161: 145−152. doi: 10.1016/j.vetmic.2012.07.017

    [27]

    Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303

    [28]

    Wang Y, Sheng H, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264−8271. doi: 10.1128/AEM.01821-12

    [29]

    Christian Q, Elmar P, Pelin Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J/OL]. Nucleic Acids Research, 2013, 41: D590−D596 [2018−10−13]. https://academic.oup.com/nar/article-abstract/41/D1/D590/1069277.

    [30]

    Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792−1797. doi: 10.1093/nar/gkh340

    [31]

    Qi Y B, Chen T, Pu J, et al. Response of soil physical chemical and microbial biomass properties to land use changes in fixed desertified land[J]. Catena, 2018, 160: 339−344. doi: 10.1016/j.catena.2017.10.007

    [32] 陈鸿洋, 尚振艳, 傅华, 等. 荒漠区不同大小灌丛周围土壤微生物生物量及活性特征[J]. 草业学报, 2015, 24(2):70−76. doi: 10.11686/cyxb20150209

    Chen H Y, Shang Z Y, Fu H, et al. Soil microbial biomass and activity under desert shrub canopies[J]. Acta Prataculturae Sinica, 2015, 24(2): 70−76. doi: 10.11686/cyxb20150209

    [33] 何玉惠, 刘新平, 谢忠奎. 红砂灌丛对土壤和草本植物特征的影响[J]. 生态学杂志, 2011, 30(11):2432−2436.

    He Y H, Liu X P, Xie Z K. Effects of Reaumuria soongorica on its underlying soil properties and herb plant characteristics[J]. Chinese Journal of Ecology, 2011, 30(11): 2432−2436.

    [34]

    Yang Z P, Zhang Q, Wang Y L, et al. Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China[J]. Journal of Arid Environments, 2011, 75: 538−544. doi: 10.1016/j.jaridenv.2011.01.007

    [35]

    Wang X B, Van Nostrand J D, Deng Y, et al. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China ’s grasslands[J]. FEMS Microbiology Ecology, 2015, 91: 133−133.

    [36]

    Qi Y B, Yang F Q, Shukla M K, et al. Desert soil properties after thirty years of vegetation restoration in northern Shanxi Province of China[J]. Arid Land Research and Management, 2015, 29: 454−472. doi: 10.1080/15324982.2015.1030799

    [37]

    Zhuo R, Yuan P, Yang Y, et al. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase[J]. Biochemical Engineering Journal, 2017, 117: 62−72. doi: 10.1016/j.bej.2016.09.016

    [38] 刘玉槐, 魏晓梦, 魏亮, 等. 水稻根际和非根际土磷酸酶活性对碳、磷添加的响应[J]. 中国农业科学, 2018, 51(9):1653−1663. doi: 10.3864/j.issn.0578-1752.2018.09.004

    Liu Y H, Wei X M, Wei L, et al. Responses of extracellular enzymes to carbon and phosphorus additions in rice rhizosphere and bulk soil[J]. Scientia Agricultura Sinica, 2018, 51(9): 1653−1663. doi: 10.3864/j.issn.0578-1752.2018.09.004

    [39] 胡一. 保护性耕作对土壤酶活性动态变化的影响[J]. 土地开发工程研究, 2017, 2(3):51−56.

    Hu Y. Effects of conservation tillage on soil enzyme activity[J]. Land Development and Engineering Research, 2017, 2(3): 51−56.

    [40] 齐晶, 周赓, 卢向阳, 等. 漆酶及未培养微生物中漆酶基因的研究进展[J]. 化学与生物工程, 2014, 6(2):5−8.

    Qi J, Zhou G, Lu X Y, et al. Research progress on laccases and laccase genes from uncultured microorganisms[J]. Chemistry & Bioengineering, 2014, 6(2): 5−8.

    [41] 胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3):431−437. doi: 10.3321/j.issn:1006-687X.2007.03.030

    Hu J, He X H, Li D P, et al. Progress in research of Sphingomonas[J]. Chinese Journal of Applied and Environmental Biology, 2007, 13(3): 431−437. doi: 10.3321/j.issn:1006-687X.2007.03.030

    [42] 卢庆华, 邢孟兰, 蔡禄. 青霉菌产漆酶的研究及在木质素降解中的应用[J]. 湖北农业科学, 2014, 53(10):2379−2382. doi: 10.3969/j.issn.0439-8114.2014.10.039

    Lu Q H, Xing M L, Cai L. Studies on laccase from Penicillium and its application in lignin degradation[J]. Hubei Agricultural Sciences, 2014, 53(10): 2379−2382. doi: 10.3969/j.issn.0439-8114.2014.10.039

    [43] 孙占斌. 粉红螺旋聚孢霉67-1菌寄生相关基因的筛选与功能研究[D]. 北京: 中国农业科学院, 2015.

    Sun Z B. Screening and functional analysis of mycoparasitism-related genes in Clonostachys rosea 67-1[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.

  • 期刊类型引用(5)

    1. 侯变变,梁巧兰,魏列新,陈应娥,芮静. 深绿木霉T2菌株土壤定殖条件及其对苜蓿生长的影响. 中国草地学报. 2025(02): 115-123 . 百度学术
    2. 徐皓,彭雪,郭二丹,曾海涛. 芽孢杆菌对延胡索生长及质量标志物的影响. 时珍国医国药. 2024(04): 985-988 . 百度学术
    3. 邱月. 枯草芽孢杆菌在现代农业中的应用. 园艺与种苗. 2022(07): 81-85 . 百度学术
    4. 陈逢玲,孙卓,林红梅,杨利民. 关防风根腐病拮抗细菌筛选与鉴定. 微生物学通报. 2022(08): 3192-3204 . 百度学术
    5. 曹阳,孙平平,刘彬. 一株枯草芽孢杆菌发酵培养基和培养条件的优化. 绿色科技. 2022(24): 237-240+257 . 百度学术

    其他类型引用(7)

图(6)  /  表(4)
计量
  • 文章访问数:  2495
  • HTML全文浏览量:  1370
  • PDF下载量:  113
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-11-04
  • 修回日期:  2019-02-22
  • 网络出版日期:  2019-10-27
  • 发布日期:  2020-04-26

目录

/

返回文章
返回