高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响

王涛 郭洋 苏建宇 徐春燕

王涛, 郭洋, 苏建宇, 徐春燕. 贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响[J]. 北京林业大学学报, 2020, 42(4): 91-101. doi: 10.12171/j.1000-1522.20180365
引用本文: 王涛, 郭洋, 苏建宇, 徐春燕. 贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响[J]. 北京林业大学学报, 2020, 42(4): 91-101. doi: 10.12171/j.1000-1522.20180365
Wang Tao, Guo Yang, Su Jianyu, Xu Chunyan. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. doi: 10.12171/j.1000-1522.20180365
Citation: Wang Tao, Guo Yang, Su Jianyu, Xu Chunyan. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. doi: 10.12171/j.1000-1522.20180365

贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响

doi: 10.12171/j.1000-1522.20180365
基金项目: 国家自然科学基金项目(31560158)
详细信息
    作者简介:

    王涛。主要研究方向:微生物资源与利用。Email:1416944905@qq.com 地址:750021 宁夏回族自治区银川市西夏区贺兰山西路539号宁夏大学生命科学学院

    责任作者:

    徐春燕,博士,副教授。主要研究方向:微生物资源与利用。Email:xcy@nxu.edu.cn 地址:同上

Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity

  • 摘要: 目的研究濒危植物贺兰山丁香与生长地土壤养分、土壤酶活力和微生物群落的关系,为理解其影响机制提供科学依据。方法从贺兰山丁香灌丛下及其附近裸地分别采集3份土壤样品,在测定两组样本的理化性质、酶活性的基础上,基于高通量测序技术分析了两组样本的微生物群落结构。结果贺兰山丁香对土壤酸碱度的影响不大,能使水分、有机质、总氮、速效钾、速效氮的含量显著增加(P < 0.05),但导致速效磷含量显著降低(P < 0.05);使蔗糖酶、脲酶、漆酶的活性显著增加(P < 0.05);使土壤中细菌的多样性减少,但对细菌丰富度基本没有影响,使真菌的多样性和丰富度均增加。在微生物的属水平上,贺兰山丁香使细菌中的芽孢杆菌属和真菌中的螺旋聚孢霉属、复膜孢酵母属、木霉属、Paranamyces明显增加,使细菌的鞘氨醇单胞菌属、黄杆菌属和真菌的Lentinula、镰孢菌属、赤霉菌属、Lycogalopsis、土赤壳属、曲霉属、集壶菌属、支顶孢属等类群的微生物明显减少,这些微生物群落的改变与植物生长地土壤的营养成分和土壤酶活力改变息息相关。结论贺兰山丁香主要通过影响土壤中真菌的群落结构增加土壤酶活性,通过提高功能细菌的丰富度增加土壤的养分和水分含量,并促进土壤中碳、氮、磷、钾等元素的循环。

     

  • 图  1  细菌和真菌群落OTUs的维恩图

    Figure  1.  Venn diagrams of OTUs of the soil bacterial and fungal communities

    图  2  细菌和真菌的稀释曲线

    Figure  2.  Dilution curves of bacteria and fungi

    图  3  在门和属水平上细菌占总量前10的比例图

    Figure  3.  Top ten ratios of bacteria in total on phylum and genus levels

    图  4  在门和属水平上真菌占总量前10的比例图

    图例菌名与柱形图从下至上一一对应。Fungus name in legend is one-to-one corresponding to column chart from bottom to top.

    Figure  4.  Top ten ratios of fungi in total on phylum and genus levels

    图  5  细菌属水平的Spearman分析

    *表示显著相关(P < 0.05),**表示极显著相关(P < 0.01)。下同。Note: * indicates significant correlation (P < 0.05), ** indicates extremely significant correlation (P < 0.01). The same below.

    Figure  5.  Spearman analysis of bacteria on genus level

    图  6  真菌属水平Spearman分析

    Figure  6.  Spearman analysis of fungi on genus level

    表  1  土壤样品的基本理化性质

    Table  1.   Basic physicochemical characteristics of soil samples

    样品 SampleWC/%OM/%pHTP/(g·kg− 1)TK/(g·kg− 1)TN/(g·kg− 1)AP/(mg·kg− 1)AK/(mg·kg− 1)AN/(mg·kg− 1)
    DX112.54 ± 0.01b2.73 ± 0.24b7.33 ± 0.080.25 ± 0.056.10 ± 0.171.90 ± 0.01b98.98 ± 6.34a124.82 ± 7.13b53.86 ± 5.66b
    DX222.73 ± 0.04a7.10 ± 0.65a7.33 ± 0.030.30 ± 0.046.86 ± 0.573.90 ± 0.04a73.74 ± 6.66b284.31 ± 25.30a125.83 ± 4.79a
    注:平均值 ± 标准差(n = 3)。WC. 含水量;OM. 有机质含量;TP. 全磷含量;TK. 全钾含量;TN. 全氮含量;AP. 速效磷含量;AK. 速效钾含量;AN. 速效氮含量。不同小写字母表示不同样品之间差异显著(P < 0.05)。下同。Notes:mean ± SD (n = 3). WC, water content; OM, organic matter content; TP, total phosphorus content; TK, total potassium content; TN, total nitrogen content; AP, available phosphorus content; AK, available potassium content; AN, available nitrogen content. Different lowercase letters indicate significant difference between different samples at P < 0.05 level. The same below.
    下载: 导出CSV

    表  2  土壤样品的主要酶活性

    Table  2.   Activities of key enzymes in the soil samples U/g

    样品 Sample蔗糖 Sucrase脲酶 Urease碱性磷酸酶 ALP漆酶 Laccase
    DX1154.80 ± 10.55b0.94 ± 0.01b0.77 ± 0.0913.26 ± 0.38b
    DX2255.62 ± 3.93a1.20 ± 0.02a0.90 ± 0.0722.98 ± 3.83a
    下载: 导出CSV

    表  3  土壤样品的16S rDNA和ITS序列信息

    Table  3.   16S rDNA and ITS sequence information of soil samples

    样品
    Sample
    原始数据 Raw data有效数据 Effective data有效率 Effective rate/%平均长度 Average length/ntOTU数 OTUs
    细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi 细菌 Bacteria 真菌 Fungi
    DX1.1 65 254 81 493 50 228 74 200 76.97 91.05 417 221 3 025 768
    DX1.2 67 354 93 803 51 491 90 866 76.45 96.87 417 222 3 247 479
    DX1.3 73 870 94 178 56 032 83 969 75.85 89.16 417 244 3 076 1 282
    DX2.1 72 652 98 005 55 986 87 098 77.06 88.87 418 229 3 077 994
    DX2.2 67 865 95 264 51 348 84 420 75.66 88.62 418 227 2 847 805
    DX2.3 79 810 99 494 60 247 91 996 75.49 92.46 417 229 2 908 949
    下载: 导出CSV

    表  4  样本的细菌和真菌的Alpha多样性指数

    Table  4.   Alpha diversity indexes of bacteria and fungi in the samples

    项目
    Item
    样品
    Sample
    Shannon指数
    Shannon index
    Simpson指数
    Simpson index
    Chao1指数
    Chao1 index
    ACE指数
    ACE index
    真菌 BacteriaDX14.35 ± 2.450.72 ± 0.381 029.00 ± 511.551 029.71 ± 496.40
    DX25.98 ± 0.770.93 ± 0.051 080.97 ± 134.291 064.28 ± 127.41
    细菌 FungiDX19.26 ± 0.110.99 ± 0.003 724.30 ± 279.223 874.77 ± 227.86
    DX29.00 ± 0.310.99 ± 0.013 769.21 ± 442.493 861.66 ± 334.15
    下载: 导出CSV
  • [1] 金山.宁夏贺兰山国家自然保护区植物多样性及其保护研究[D]. 北京: 北京林业大学, 2009.

    Jin S. Research on the plant diversity and its conversation in Ningxia Helan Mountain National Nature Reserve[D]. Beijing: Beijing Forestry University, 2009.
    [2] 梁存柱, 朱宗元, 王炜, 等. 贺兰山植物群落类型多样性及其空间分异[J]. 植物生态学报, 2004, 28(3):361−368. doi: 10.3321/j.issn:1005-264X.2004.03.011

    Liang C Z, Zhu Z Y, Wang W, et al. The diversity and spatial distribution of plant communities in the Helan Mountains[J]. Acta Phytoecologica Sinica, 2004, 28(3): 361−368. doi: 10.3321/j.issn:1005-264X.2004.03.011
    [3] Yan Y, Wuliji O, Zhao X J, et al. Effect of essential oil of Syringa pinnatifolia Hems1. var. alashanensis on ischemia of myocardium, hypoxia and platelet aggregation[J]. Journal of Ethnopharmacology, 2010, 131: 248−255. doi: 10.1016/j.jep.2010.06.027
    [4] Lu P, Wang N N, Wu J M, et al. Chemical constituents from Mongolian herb Syringa pinnatifolia var. alashanensis[J]. Chinese Journal of Natural Medicines, 2015, 13(2): 142−144. doi: 10.1016/S1875-5364(15)60018-8
    [5] Cao Y, Wang J, Su G Z, et al. Anti-myocardial ischemia effect of Syringa pinnatifolia by inhibiting expression of cyclooxygenase-1 and -2 in myocardial tissues of mice[J]. Journal of Ethnopharmacology, 2016, 187: 259−268. doi: 10.1016/j.jep.2016.04.039
    [6] 吕海军, 都震, 李志刚, 等. 宁夏贺兰山濒危植物资源现状[J]. 宁夏农林科技, 2000(增刊):39−43.

    Lü H J, Du Z, Li Z G, et al. Present situation of endangered plant resources in State Natural Reserve of Helanshan Mountain of Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2000(Suppl.): 39−43.
    [7] 金山, 胡天华, 赵春玲, 等. 宁夏贺兰山国家自然保护区植物多样性及其保护研究[J]. 北京林业大学学报, 2010, 32(2):113−117.

    Jin S, Hu T H, Zhao C L, et al. Evaluation of conservation priority classes of plant species in Helan Mountain Nature Reserve in Ningxia, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(2): 113−117.
    [8] 宛涛, 蔡萍, 伊卫东, 等. 贺兰山5种国家级保护植物的花粉形态研究[J]. 宁夏大学学报(自然科学版), 2006, 27(4):354−356.

    Wan T, Cai P, Yi W D, et al. Research on the pollen morphology of 5 species of national emphasis protection plants in Helan Mountain[J]. Journal of Ningxia University (Natural Science Edition), 2006, 27(4): 354−356.
    [9] 李吉宁, 苏建宇, 李志刚, 等. 三种丁香叶片的比较解剖学观察[J]. 宁夏农林科技, 2000(增刊):36−38.

    Li J N, Su J Y, Li Z G, et al. Comparative anatomy observation of leaf blades of 3 kinds of cloves[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2000(Suppl.): 36−38.
    [10] 任辉丽, 邱景宝, 曹君迈, 等. 不同因素对贺兰山丁香愈伤组织诱导的影响[J]. 北方园艺, 2008(8):181−183.

    Ren H L, Qiu J B, Cao J M, et al. Influence of different factors on the callus induction of S. pinnatifolia var. alanshanica[J]. Northern Horticulture, 2008(8): 181−183.
    [11] 杨亚珺, 李吉宁, 巩檑, 等. 贺兰山丁香自然居群克隆生长格局及遗传多样性的 ISSR 分析[J]. 植物科学学报, 2013, 31(1):85−92.

    Yang Y J, Li J N, Gong L, et al. Clonal structure and genetic diversity of natural Syringa pinnatifolia var. alanshanica assessed by ISSR[J]. Plant Science Journal, 2013, 31(1): 85−92.
    [12] 金山, 胡天华, 李志刚, 等. 贺兰山羽叶丁香分布区的植物物种多样性特性研究[J]. 西部林业科学, 2008, 37(4):40−44. doi: 10.3969/j.issn.1672-8246.2008.04.007

    Jin S, Hu T H, Li Z G, et al. Species diversity of Syringa pinnatifolia community in Helan Mountains[J]. Journal of West China Forestry Science, 2008, 37(4): 40−44. doi: 10.3969/j.issn.1672-8246.2008.04.007
    [13] 常玉山, 高艺宁, 许丽, 等. 包头市 7 种灌木树种抗旱性的比较[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(6):28−32.

    Chang Y S, Gao Y N, Xu L, et al. Comparison of 7 kinds of shrub species for drought resistance in Baotou[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2014, 35(6): 28−32.
    [14] 庞秀生, 赵明升, 王晋. 蒙药山沉香的生药学研究[J]. 中国民族医药杂志, 2000, 6(增刊1):59.

    Pang X S, Zhao M S, Wang J. Biopharmaceutical research of Syringa pinnatifolia var. alanshanica[J]. Journal of Medicine & Pharmacy of Chinese Minorities, 2000, 6(Suppl.1): 59.
    [15] Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils[J/OL]. PloS One, 2011, 6(2): e17000 [2018−03−19]. https://www.scientific.net/AMR.955-959.459.
    [16] 时雷雷, 傅声雷. 土壤生物多样性研究:历史、现状与挑战[J]. 科学通报, 2014, 59(6):493−509.

    Shi L L, Fu S L. Review of soil biodiversity research: history, current status and future challenges[J]. Chinese Science Bulletin, 2014, 59(6): 493−509.
    [17] 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 2013, 21(4):411−420.

    He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosysterns[J]. Biodiversity Science, 2013, 21(4): 411−420.
    [18] Zhao J, Zhang R F, Xue C, et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China[J]. Microb Ecol, 2014, 67(2): 443−453. doi: 10.1007/s00248-013-0322-0
    [19] 刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 2013, 33(22):7211−7220.

    Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 2013, 33(22): 7211−7220.
    [20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil agicultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
    [21] 郭旭欣. 容量法测定土壤有机质2种加热方法比较研究[J]. 现代农业科技, 2016(9):206−209. doi: 10.3969/j.issn.1007-5739.2016.09.124

    Guo X X. Comparative study on two heating methods for determination of soil organic matter by volumetric method[J]. Modern Agricultural Science and Technology, 2016(9): 206−209. doi: 10.3969/j.issn.1007-5739.2016.09.124
    [22] 李彤, 王梓廷, 刘露, 等. 保护性耕作对西北干旱区土壤微生物空间分布及土壤理化性质的影响[J]. 中国农业学报, 2017, 50(5):859−870.

    Li T, Wang Z T, Liu L, et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the northwest dryland[J]. Scientia Agricultura Sinica, 2017, 50(5): 859−870.
    [23] Yang J, Luo X G, Tang Y J, et al. Effects of uranium on different plants rhizosphere soil enzyme activity[J]. Environmental Science & Technology, 2016, 39(3): 33−37.
    [24] 苏宝玲, 王月阳, 白震, 等. ABTS底物检测漆酶活力条件和算法比较[J]. 土壤通报, 2016, 47(5):1162−1167.

    Su B L, Wang Y Y, Bai Z, et al. Comparisons of experiment conditions and calculation methods for laccase activity detection with ABTS[J]. Chinese Journal of Soil Science, 2016, 47(5): 1162−1167.
    [25] Berg J, Brandt K K, Al-Soud W A, et al. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure[J]. Applied and Environmental Microbiology, 2012, 78(20): 7438−7446. doi: 10.1128/AEM.01071-12
    [26] Schmidt V, Plenz B, Pfaff M, et al. Disseminated systemic mycosis in veiled chameleons (Chamaeleo calyptratus) caused by Chamaeleomyces granulomatis[J]. Veterinary Microbiology, 2012, 161: 145−152. doi: 10.1016/j.vetmic.2012.07.017
    [27] Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
    [28] Wang Y, Sheng H, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264−8271. doi: 10.1128/AEM.01821-12
    [29] Christian Q, Elmar P, Pelin Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J/OL]. Nucleic Acids Research, 2013, 41: D590−D596 [2018−10−13]. https://academic.oup.com/nar/article-abstract/41/D1/D590/1069277.
    [30] Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792−1797. doi: 10.1093/nar/gkh340
    [31] Qi Y B, Chen T, Pu J, et al. Response of soil physical chemical and microbial biomass properties to land use changes in fixed desertified land[J]. Catena, 2018, 160: 339−344. doi: 10.1016/j.catena.2017.10.007
    [32] 陈鸿洋, 尚振艳, 傅华, 等. 荒漠区不同大小灌丛周围土壤微生物生物量及活性特征[J]. 草业学报, 2015, 24(2):70−76. doi: 10.11686/cyxb20150209

    Chen H Y, Shang Z Y, Fu H, et al. Soil microbial biomass and activity under desert shrub canopies[J]. Acta Prataculturae Sinica, 2015, 24(2): 70−76. doi: 10.11686/cyxb20150209
    [33] 何玉惠, 刘新平, 谢忠奎. 红砂灌丛对土壤和草本植物特征的影响[J]. 生态学杂志, 2011, 30(11):2432−2436.

    He Y H, Liu X P, Xie Z K. Effects of Reaumuria soongorica on its underlying soil properties and herb plant characteristics[J]. Chinese Journal of Ecology, 2011, 30(11): 2432−2436.
    [34] Yang Z P, Zhang Q, Wang Y L, et al. Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China[J]. Journal of Arid Environments, 2011, 75: 538−544. doi: 10.1016/j.jaridenv.2011.01.007
    [35] Wang X B, Van Nostrand J D, Deng Y, et al. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China ’s grasslands[J]. FEMS Microbiology Ecology, 2015, 91: 133−133.
    [36] Qi Y B, Yang F Q, Shukla M K, et al. Desert soil properties after thirty years of vegetation restoration in northern Shanxi Province of China[J]. Arid Land Research and Management, 2015, 29: 454−472. doi: 10.1080/15324982.2015.1030799
    [37] Zhuo R, Yuan P, Yang Y, et al. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase[J]. Biochemical Engineering Journal, 2017, 117: 62−72. doi: 10.1016/j.bej.2016.09.016
    [38] 刘玉槐, 魏晓梦, 魏亮, 等. 水稻根际和非根际土磷酸酶活性对碳、磷添加的响应[J]. 中国农业科学, 2018, 51(9):1653−1663. doi: 10.3864/j.issn.0578-1752.2018.09.004

    Liu Y H, Wei X M, Wei L, et al. Responses of extracellular enzymes to carbon and phosphorus additions in rice rhizosphere and bulk soil[J]. Scientia Agricultura Sinica, 2018, 51(9): 1653−1663. doi: 10.3864/j.issn.0578-1752.2018.09.004
    [39] 胡一. 保护性耕作对土壤酶活性动态变化的影响[J]. 土地开发工程研究, 2017, 2(3):51−56.

    Hu Y. Effects of conservation tillage on soil enzyme activity[J]. Land Development and Engineering Research, 2017, 2(3): 51−56.
    [40] 齐晶, 周赓, 卢向阳, 等. 漆酶及未培养微生物中漆酶基因的研究进展[J]. 化学与生物工程, 2014, 6(2):5−8.

    Qi J, Zhou G, Lu X Y, et al. Research progress on laccases and laccase genes from uncultured microorganisms[J]. Chemistry & Bioengineering, 2014, 6(2): 5−8.
    [41] 胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3):431−437. doi: 10.3321/j.issn:1006-687X.2007.03.030

    Hu J, He X H, Li D P, et al. Progress in research of Sphingomonas[J]. Chinese Journal of Applied and Environmental Biology, 2007, 13(3): 431−437. doi: 10.3321/j.issn:1006-687X.2007.03.030
    [42] 卢庆华, 邢孟兰, 蔡禄. 青霉菌产漆酶的研究及在木质素降解中的应用[J]. 湖北农业科学, 2014, 53(10):2379−2382. doi: 10.3969/j.issn.0439-8114.2014.10.039

    Lu Q H, Xing M L, Cai L. Studies on laccase from Penicillium and its application in lignin degradation[J]. Hubei Agricultural Sciences, 2014, 53(10): 2379−2382. doi: 10.3969/j.issn.0439-8114.2014.10.039
    [43] 孙占斌. 粉红螺旋聚孢霉67-1菌寄生相关基因的筛选与功能研究[D]. 北京: 中国农业科学院, 2015.

    Sun Z B. Screening and functional analysis of mycoparasitism-related genes in Clonostachys rosea 67-1[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1569
  • HTML全文浏览量:  1096
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-02-23
  • 网络出版日期:  2019-10-28
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回