高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晋西黄土区退耕年限对土壤孔隙度等物理性质的影响

刘俊廷 张建军 孙若修 李梁

刘俊廷, 张建军, 孙若修, 李梁. 晋西黄土区退耕年限对土壤孔隙度等物理性质的影响[J]. 北京林业大学学报, 2020, 42(1): 94-103. doi: 10.12171/j.1000-1522.20180376
引用本文: 刘俊廷, 张建军, 孙若修, 李梁. 晋西黄土区退耕年限对土壤孔隙度等物理性质的影响[J]. 北京林业大学学报, 2020, 42(1): 94-103. doi: 10.12171/j.1000-1522.20180376
Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. doi: 10.12171/j.1000-1522.20180376
Citation: Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. doi: 10.12171/j.1000-1522.20180376

晋西黄土区退耕年限对土壤孔隙度等物理性质的影响

doi: 10.12171/j.1000-1522.20180376
基金项目: 国家重点研发计划(2016YFC0501704)
详细信息
    作者简介:

    刘俊廷。主要研究方向:土壤生态。Email:1079313528@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    张建军,博士,博士生导师。主要研究方向:水土保持、植被恢复、生态效益评价、森林水文。Email:zhangjianjun@bjfu.edu.cn 地址:同上

  • 中图分类号: S718. 5; Q948. 1

Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China

  • 摘要: 目的通过分析不同退耕年限林地土壤物理性质的变化,探讨退耕还林工程对土壤物理性质的改良作用。方法以晋西黄土区不同退耕年限的荒草地、纯林地、混交林地为研究对象、以农地为对照,通过野外调查,研究了退耕年限对土壤密度、孔隙度、毛管孔隙度等土壤物理性质的影响。结果退耕地土壤密度随土层深度的加深显著增加,0 ~ 60 cm土层平均密度分别为:农地(1.38 g/cm3) > 荒草地(1.27 g/cm3) > 纯林地(1.20 g/cm3) > 混交林地(1.18 g/cm3),退耕还林后纯林地、混交林地与农地、草地的土壤密度差异显著(P < 0.05);土壤密度随退耕年限的增加逐渐减小,退耕23年后基本稳定在1.16 g/cm3,退耕还林对表层土壤密度的改良效果最好,且随着土层深度的增加,这种改良效果逐渐减弱。土壤总孔隙度随退耕年限的增加呈波动性增加,并逐渐趋于稳定。表层(0 ~ 20 cm)孔隙度最大(50.8% ~ 57.6%),且在退耕5 ~ 10年内孔隙度变化最大,退耕25年后孔隙度基本稳定在55.61%左右。0 ~ 60 cm土层的孔隙度为混交林地(53.67%) > 林地(52.87%) > 农地(47.82%) > 荒草地(45.97%)。退耕后形成的纯林地、混交林地与农地、草地的孔隙度差异显著(P < 0.05),纯林地与混交林地孔隙度差异不显著(P > 0.05)。土壤毛管孔隙度随退耕年限的增加呈显著增加趋势。混交林地、纯林地毛管孔隙度分别为51.21%和50.37%,与农地的毛管孔隙度(45.62%)显著差异。结论退耕还林工程能明显改善土壤物理性质,且混交林对土壤改良效果好于纯林。

     

  • 图  1  样地位置图

    Figure  1.  Location of the research sites

    图  2  不同土层深度土壤密度随退耕年限变化情况

    Figure  2.  Variation of soil bulk density with the increasing conversion time among different soil layers

    图  3  不同地类在不同土层深度土壤密度的变化情况

    不同小写字母表示的同一地类在不同土层间的差异情况(P < 0.05);不同的大写字母表示的是同一土层间在不同地类间的差异性(P < 0.05),下同。Different lowercase letters indicate significant differences of each index in the same vegetation among different soil layers (P < 0.05); different uppercase letters indicate significant differences of each index in different vegetations among the same soil layer (P < 0.05). The same as below.

    Figure  3.  Variations of soil bulk density with the increasing soil depth on different vegetation types

    图  4  不同土层深度土壤总孔隙度随退耕年限变化情况

    Figure  4.  Variations of total soil porosity with increasing conversion time among different soil layer depths

    图  5  不同地类在不同土层深度土壤总孔隙度的变化情况

    Figure  5.  Variations of total soil porosity with the increasing soil depth on different vegetation types

    图  6  不同土层深度土壤毛管孔隙度随退耕年限变化情况

    Figure  6.  Variations of soil capillary porosity with the increasing conversion time among different soil layer depths

    图  7  不同地类在不同土层深度毛管孔隙度的变化情况

    Figure  7.  Variations of soil capillary porosity with the increasing soil depth on different vegetation types

    表  1  样地基本信息表

    Table  1.   Basic information of the research sites

    植被类型
    Vegetation type
    海拔
    Altitude/m
    坡度
    Slope/(°)
    坡向
    Aspect
    胸径
    DBH/cm
    树高
    Tree height/m
    密度/(株·hm− 2
    Density/
    (tree·ha− 1)
    林龄/a
    Stand age/year
    郁闭度
    Canopy density/%
    草地 Grassland 1 077 13 阳坡 Sunny slope
    农地 Farmland 933 6 阴坡 Shady slope
    农地 Farmland 974 5 半阴坡 Semi-shady slope
    农地 Farmland 930 14 半阴坡 Semi-shady slope
    侧柏 Platycladus orientalis 1 085 18 阳坡 Sunny slope 9.14 5.11 1 423 6 85
    刺槐 Robinia pseudoacacia 1 005 23 阳坡 Sunny slope 9.24 4.66 1 094 5 75
    刺槐 Robinia pseudoacacia 1 032 22 阴坡 Sunny slope 14.32 8.31 1 049 9 80
    刺槐 Robinia pseudoacacia 1 083 27 半阴坡 Semi-shady slope 13.76 7.64 1 125 10 70
    刺槐 Robinia pseudoacacia 1 120 32 半阴坡 Semi-shady slope 16.24 6.89 1 426 12 65
    刺槐 Robinia pseudoacacia 1 078 22 阳坡 Sunny slope 18.78 9.12 1 560 16 85
    刺槐 Robinia pseudoacacia 1 179 22 半阴坡 Semi-shady slope 20.17 10.86 1 746 17 75
    刺槐 Robinia pseudoacacia 1 056 22 半阴坡 Semi-shady slope 25.60 8.75 1 555 19 60
    刺槐 Robinia pseudoacacia 1 008 20 半阴坡 Semi-shady slope 19.81 7.90 1 330 21 75
    刺槐 Robinia pseudoacacia 1 210 30 阳坡 Sunny slope 38.62 11.51 1 333 26 70
    刺槐 Robinia pseudoacacia 1 160 27 阳坡 Sunny slope 36.52 12.20 1 323 28 80
    油松 Pinus tabuliformis 988 20 阴坡 Shady slope 8.62 4.71 1 382 4 70
    油松 Pinus tabuliformis 1 204 24 阳坡 Sunny slope 12.45 6.87 1 432 7 70
    油松 Pinus tabuliformis 1 160 23 阴坡 Shady slope 10.67 6.52 1 222 8 85
    油松 Pinus tabuliformis 1 134 24 阳坡 Sunny slope 17.29 7.45 1 356 11 75
    油松 Pinus tabuliformis 1 120 24 半阴坡 Semi-shady slope 13.29 9.47 1 733 15 80
    油松 × 刺槐
    Pinus tabuliformis ×
    Robinia pseudoacacia
    1 098 25 阴坡 Shady slope 16.56 8.82 1 666 13 75
    油松 × 刺槐
    Pinus tabuliformis ×
    Robinia pseudoacacia
    1 120 26 阳坡 Sunny slope 15.82 7.32 1 453 14 85
    油松 × 刺槐
    Pinus tabuliformis ×
    Robinia pseudoacacia
    1 124 15 半阳坡 Semi-sunny slope 16.80 9.80 900 20 70
    油松 × 刺槐
    Pinus tabuliformis ×
    Robinia pseudoacacia
    1 113 15 阴坡 Shady slope 24.34 9.10 1 052 24 85
    刺槐 × 侧柏
    Robinia pseudoacacia ×
    Platycladus orientalis
    1 134 28 阴坡 Shady slope 26.46 12.65 1 666 18 70
    刺槐 × 侧柏
    Robinia pseudoacacia ×
    Platycladus orientalis
    1 140 29 半阴坡 Semi-shady slope 22.66 11.86 1 562 23 85
    下载: 导出CSV
  • [1] 王夏晖, 王益权. 黄土高原几种主要土壤的物理性质研究[J]. 水土保持学报, 2000, 14(4):99−103. doi: 10.3321/j.issn:1009-2242.2000.04.023

    Wang X H, Wang Y Q. Study on physical properties of several main soils in Loess Plateau[J]. Journal of Soil and Water Conservation, 2000, 14(4): 99−103. doi: 10.3321/j.issn:1009-2242.2000.04.023
    [2] 王莉, 张强, 牛西午, 等. 黄土高原丘陵区不同土地利用方式对土壤理化性质的影响[J]. 中国生态农业学报, 2007, 15(4):53−56.

    Wang L, Zhang Q, Niu X W, et al. Effects of different land-uses on soil physical and chemical properties in the Loess Plateau of Shanxi Province[J]. Chinese Journal of Eco-Agriculture, 2007, 15(4): 53−56.
    [3] 李庆云, 余新晓, 信忠保, 等. 黄土高原典型流域不同土地利用类型土壤物理性质分析[J]. 水土保持研究, 2010, 17(6):106−110.

    Li Q Y, Yu X X, Xin Z B, et al. Analysis on soil physical properties of different land uses in a typical watershed of the Loess Plateau[J]. Research of Soil and Water Conservation, 2010, 17(6): 106−110.
    [4] 李志, 刘文兆, 王秋贤, 等. 黄土塬区不同地形部位和土地利用方式对土壤物理性质的影响[J]. 应用生态学报, 2008, 19(6):1303−1308.

    Li Z, Liu W Z, Wang Q X, et al. Effects of land use type and slope position on soil physical properties in loess table land area[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1303−1308.
    [5] 李民义, 张建军, 王春香, 等. 晋西黄土区不同土地利用方式对土壤物理性质的影响[J]. 水土保持学报, 2013, 27(3):125−130.

    Li M Y, Zhang J J, Wang C X, et al. Effects of land use types on soil physical properties in Loess Plateau of western Shanxi[J]. Journal of Soil and Water Conservation, 2013, 27(3): 125−130.
    [6] 刘艳丽, 李成亮, 高明秀, 等. 不同土地利用方式对黄河三角洲土壤物理特性的影响[J]. 生态学报, 2015, 35(15):5183−5190.

    Liu Y L, Li C L, Gao M X, et al. Effect of different land-use patterns on physical characteristics of the soil in the Yellow River delta region[J]. Acta Ecologica Sinica, 2015, 35(15): 5183−5190.
    [7] 李香兰, 田积莹. 黄土高原不同林型对土壤物理性质影响的研究[J]. 林业科学, 1992, 28(2):98−106.

    Li X L, Tian J Y. Effects of different forest types on physical properties of soil in the Loess Plateau[J]. Scientia Silvae Sinicae, 1992, 28(2): 98−106.
    [8] 王贵霞, 李传荣, 许景伟, 等. 沙质海岸5种植被类型土壤物理性状及其水源涵养功能[J]. 水土保持学报, 2005, 19(2):142−146. doi: 10.3321/j.issn:1009-2242.2005.02.037

    Wang G X, Li C R, Xu J W, et al. Soil properties and water conservation function of 5 types of vegetation on sandy coast[J]. Journal of Soil and Water Conservation, 2005, 19(2): 142−146. doi: 10.3321/j.issn:1009-2242.2005.02.037
    [9] 张社奇, 王国栋, 时新玲, 等. 黄土高原油松人工林地土壤水分物理性质研究[J]. 干旱地区农业研究, 2005, 23(1):60−64. doi: 10.3321/j.issn:1000-7601.2005.01.011

    Zhang S Q, Wang G D, Shi X L, et al. Soil water physical properties of Pinus tabulaeformis plantation in Loess Plateau[J]. Agricultural Research in the Arid Areas, 2005, 23(1): 60−64. doi: 10.3321/j.issn:1000-7601.2005.01.011
    [10] 彭文英, 张科利, 陈瑶, 等. 黄土坡耕地退耕还林后土壤性质变化研究[J]. 自然资源学报, 2005, 20(2):272−278. doi: 10.3321/j.issn:1000-3037.2005.02.016

    Peng W Y, Zhang K L, Cheng Y, et al. Changes of soil properties after returning farmland to forest in loess slope farmland[J]. Journal of Natural Resources, 2005, 20(2): 272−278. doi: 10.3321/j.issn:1000-3037.2005.02.016
    [11] 张杨. 黄土高原人工林草被恢复过程中的土壤理化性质及生态效应研究[D]. 杨凌: 西北农林科技大学, 2010.

    Zhang Y. Soil physical and chemical properties and ecological effects in the restoration process of artificial forest and grass on the Loess Plateau[D]. Yangling: Northwest A&F University, 2010.
    [12] 杨亚辉, 吕渡, 张晓萍, 等. 不同人工造林树种及其配置方式对土壤理化性质影响分析[J]. 水土保持研究, 2017, 24(6):238−242.

    Yang Y H, Lü D, Zhang X P, et al. Impacts of vegetation types on soil physicochemical properties[J]. Research of Soil and Water Conservation, 2017, 24(6): 238−242.
    [13] 杨光, 丁国栋, 常国梁, 等. 黄土高原不同退耕还林地森林植被改良土壤特性研究[J]. 水土保持研究, 2006, 13(3):204−207. doi: 10.3969/j.issn.1005-3409.2006.03.068

    Yang G, Ding G D, Chang G L, et al. Study on improving soil properties of forest vegetation in different land where returning farmland to forests in Loess Plateau[J]. Research of Soil and Water Conservation, 2006, 13(3): 204−207. doi: 10.3969/j.issn.1005-3409.2006.03.068
    [14] 景贯阳. 陇东黄土高原人工刺槐林枯落物层和土壤层生态水文功能研究[D]. 兰州: 甘肃农业大学, 2017.

    Jing G Y. The hydrological research of the soil and litter of different type artificial Robinia pseudoacacia forests in the Loess Plateau of western Gansu[D]. Lanzhou: Gansu Agricultural University, 2017.
    [15] 张瑞, 张建军, 赖宗瑞. 晋西黄土高原水土保持林适宜密度研究[J]. 水土保持通报, 2009, 29(4):67−71.

    Zhang R, Zhang J J, Lai Z R. Best density of soil and water conservation forest on Loess Plateau of western Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2009, 29(4): 67−71.
    [16] 中科院南京土壤所. 土壤理化分析[M].上海: 上海科学技术出版社, 1978.

    Institute of Soil Science, Chinese Academy of Sciences. Soil physicochemical analysis[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1978.
    [17] 李会科, 张广军, 赵政阳, 等. 渭北黄土高原旱地果园生草对土壤物理性质的影响[J]. 中国农业科学, 2008, 41(7):2070−2076. doi: 10.3864/j.issn.0578-1752.2008.07.026

    Li H K, Zhang G J, Zhao Z Y, et al. Effects of different herbage on soil quality characteristics of non-irrigated apple orchard in Weibei Loess Plateau[J]. Scientia Agricultura Sinica, 2008, 41(7): 2070−2076. doi: 10.3864/j.issn.0578-1752.2008.07.026
    [18] Li Y Y, Shao M A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China[J]. Journal of Arid Environments, 2006, 64(1): 77−96. doi: 10.1016/j.jaridenv.2005.04.005
    [19] 王凯博, 时伟宇, 上官周平. 黄土丘陵区天然和人工植被类型对土壤理化性质的影响[J]. 农业工程学报, 2012, 28(15):80−86.

    Wang K B, Shi W Y, Shangguan Z P. Effects of natural and artificial vegetation types on soil properties in loess hilly region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 80−86.
    [20] 衣晓丹. 不同发育阶段杉木人工林土壤理化性质及凋落物养分储存量研究[D]. 北京: 北京林业大学, 2013.

    Yi X D. Soil physical and chemical properties and litter nutrients return in different development stages of Chinese fir[D]. Beijing: Beijing Forestry University, 2013.
    [21] 党鹏, 王乃江, 王娟婷, 等. 黄土高原子午岭不同发育阶段油松人工林土壤理化性质的变化[J]. 西北农林科技大学学报(自然科学版), 2014, 42(6):115−121.

    Dang P, Wang N J, Wang J T, et al. Changes of soil physical-chemical properties of Pinus tabuliformis plantations at different developmental stages in Ziwuling region of Loess plateau[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(6): 115−121.
    [22] 师阳阳. 黄土丘陵区不同退耕年限及模式下植被生长特征研究[D].杨凌: 西北农林科技大学, 2013.

    Shi Y Y. Vegetation growth characteristics under different tillage years and patterns in loess hilly region[D]. Yangling: Northwest A&F University, 2013.
    [23] 马祥华, 焦菊英, 温仲明, 等. 黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究[J]. 水土保持研究, 2005, 12(1):17−21. doi: 10.3969/j.issn.1005-3409.2005.01.006

    Ma X H, Jiao J Y, Wen Z M, et al. The changes of soil physical properties in abandoned lands during vegetation restoration in hilly and gully regions on the Loess Plateau[J]. Research of Soil and Water Conservation, 2005, 12(1): 17−21. doi: 10.3969/j.issn.1005-3409.2005.01.006
    [24] 李文忠, 张伟华, 张昊, 等. 青海大通不同退耕还林时间梯度对土壤物理性状的影响[J]. 干旱区资源与环境, 2005, 19(3):137−140. doi: 10.3969/j.issn.1003-7578.2005.03.026

    Li W Z, Zhang W H, Zhang H, et al. effects of different time gradient of cropping land conversion to forest on soil physical properties in Datong County of Qing Hai[J]. Agricultural Research in the Arid Areas, 2005, 19(3): 137−140. doi: 10.3969/j.issn.1003-7578.2005.03.026
    [25] 王勤, 张宗应, 徐小牛. 安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J]. 水土保持学报, 2003, 17(3):59−62. doi: 10.3321/j.issn:1009-2242.2003.03.036

    Wang Q, Zhang Z Y, Xu X N. Soil properties and water conservation function of different forest types in Dabieshan district, Anhui[J]. Journal of Soil and Water Conservation, 2003, 17(3): 59−62. doi: 10.3321/j.issn:1009-2242.2003.03.036
    [26] 康冰, 刘世荣, 蔡道雄, 等. 南亚热带不同植被恢复模式下土壤理化性质[J].应用生态学报, 2010, 21(10): 2479−2486.

    Kang B, Liu S R, Cai D K, et al. Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2479−2486.
    [27] 黄庆丰, 高健. 不同森林类型土壤肥力状况及水源涵养功能的研究[J]. 安徽农业大学学报, 2002, 29(1):82−86. doi: 10.3969/j.issn.1672-352X.2002.01.020

    Huang Q F, Gao J. Soil fertility status and water conservation function of different forest types[J]. Journal of Anhui Agricultural University, 2002, 29(1): 82−86. doi: 10.3969/j.issn.1672-352X.2002.01.020
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1177
  • HTML全文浏览量:  583
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2018-12-25
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回