高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生长延缓剂对板栗叶片解剖结构及非结构性碳水化合物的影响

张亦弛 郭素娟 孙传昊

张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗叶片解剖结构及非结构性碳水化合物的影响[J]. 北京林业大学学报, 2020, 42(1): 46-53. doi: 10.12171/j.1000-1522.20180437
引用本文: 张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗叶片解剖结构及非结构性碳水化合物的影响[J]. 北京林业大学学报, 2020, 42(1): 46-53. doi: 10.12171/j.1000-1522.20180437
Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. doi: 10.12171/j.1000-1522.20180437
Citation: Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. doi: 10.12171/j.1000-1522.20180437

生长延缓剂对板栗叶片解剖结构及非结构性碳水化合物的影响

doi: 10.12171/j.1000-1522.20180437
基金项目: 国家重点研发计划“板栗生态经济型品种筛选及配套栽培技术”(2019YFD1001604)
详细信息
    作者简介:

    张亦弛。主要研究方向:林木种苗培育理论与技术研究。Email:17610618590@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    郭素娟,教授,博士生导师。主要研究方向:林木种苗培育理论与技术、经济林(果树)培育与利用研究。Email:gwangzs@263.net 地址:同上

  • 中图分类号: S664.2

Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves

  • 摘要: 目的探究叶面喷施植物生长延缓剂对6年生板栗树叶片解剖结构及非结构性碳水化合物与叶片解剖结构的变化对非结构性碳水化合物含量的影响,为植物生长延缓剂在板栗生长调控中的应用提供理论依据。方法以板栗‘燕山早丰’为试验材料,研究分别喷施不同质量浓度的多效唑、矮壮素、烯效唑对板栗叶片非结构性碳水化合物的作用及对叶片形态解剖结构的影响。结果(1)多效唑、矮壮素和烯效唑能提高板栗叶片角质层厚度,上角质层最厚可达5.46 μm,为90 mg/L烯效唑处理,下角质层最厚可达1.76 μm,为60 mg/L烯效唑处理;(2)除60 mg/L烯效唑处理外,其余处理均能增加叶片、栅栏组织厚度,叶片、栅栏组织厚度增加效果最显著的为100 mg/L多效唑处理;(3)3种延缓剂均能增加叶片栅海比值,栅海比最高可达1.52,为90 mg/L烯效唑处理;(4)除60 mg/L烯效唑处理外,其余处理均能有效增加板栗叶片非结构性碳水化合物含量,在处理后120 d增加的最为显著。结论在板栗花芽分化期对叶面分别喷施多效唑、矮壮素和烯效唑能影响板栗叶片解剖结构,从而提高板栗对光能的捕获,增强其光合作用,其中100 mg/L多效唑的效果最好。多效唑、矮壮素和烯效唑能有效促进板栗叶片内非结构性碳水化合物的生成,本研究中60~90 mg/L烯效唑的效果最佳,延缓剂使得叶片解剖结构改变,从而增强了叶片光合作用,导致叶片同化物增多,进而提高叶片非结构性碳水化合物含量。

     

  • 图  1  矮壮素及其质量浓度对板栗叶片非结构性碳水化合物的影响

    不同字母表示处理间差异显著(P < 0.05)。下同。Different letters indicate significant differences between treatments (P < 0.05). The same below.

    Figure  1.  Effects of chlormequat and its mass concentration on non-structural carbohydrates in leaves of chestnut trees

    图  2  多效唑及其质量浓度对板栗叶片非结构性碳水化合物的影响

    Figure  2.  Effects of paclobutrazol and its mass concentration on non-structural carbohydrates in leaves of chestnut trees

    图  3  烯效唑及其质量浓度对板栗叶片非结构性碳水化合物的影响

    Figure  3.  Effects of uniconazole and its mass concentration on non-structural carbohydrates in leaves of chestnut trees

    表  1  延缓剂及其质量浓度对板栗叶片角质层和表皮细胞的影响

    Table  1.   Effects of plant growth retardants on cuticle and epidermal cell of chestnut leaves

    延缓剂
    Retardant
    质量浓度
    Mass concentration/
    (mg·L− 1)
    角质层厚度
    Thickness of cuticle/µm
    表皮细胞厚度
    Thickness of epidermal cell/µm
    上表皮
    Upper epidermis
    下表皮
    Lower epidermis
    上表皮
    Upper epidermis
    下表皮
    Lower epidermis
    PP3331003.28 ± 0.13cd1.69 ± 0.18ab30.34 ± 1.88a8.42 ± 0.86a
    2003.27 ± 0.42cd1.20 ± 0.20dc23.74 ± 1.25def7.39 ± 0.54bc
    3003.96 ± 0.21b1.38 ± 0.09bc23.08 ± 1.56f7.66 ± 0.26ab
    CCC1003.68 ± 0.51bc1.34 ± 0.14c23.56 ± 2.06ef7.11 ± 0.90bcd
    2003.88 ± 0.16b1.37 ± 0.24bc28.90 ± 2.48ab7.44 ± 0.62bc
    3003.26 ± 0.36cd1.29 ± 0.39c25.89 ± 1.68cd6.42 ± 0.44de
    S3307303.82 ± 0.31b1.27 ± 0.11c25.76 ± 1.88cde7.33 ± 0.85bc
    603.73 ± 0.42b1.76 ± 0.25a26.56 ± 1.29c6.59 ± 0.38cde
    905.46 ± 0.26a1.40 ± 0.36bc26.97 ± 1.75bc6.72 ± 0.63cde
    CK02.94 ± 0.15d0.96 ± 0.10d22.02 ± 1.97f6.08 ± 0.27e
    注:数据为平均值 ± 标准差;同列不同字母表示处理间差异显著(P < 0.05)。下同。Notes: data are mean ± standard deviation; different letters in the same column indicate significant differences between treatments (P < 0.05). The same below.
    下载: 导出CSV

    表  2  延缓剂及其质量浓度对板栗叶片厚度、栅栏组织、海绵组织的影响

    Table  2.   Effects of plant growth retardants on palisade and spongy tissue of chestnut leaves

    延缓剂
    Retardant
    质量浓度
    Mass concentration/(mg·L− 1)
    叶片厚度
    Thickness of leaf/µm
    栅栏组织厚度
    Thickness of palisade tissue/µm
    海绵组织厚度
    Thickness of spongy tissue/µm
    栅海比
    The ratio of palisade to spongy tissue
    PP333100201.03 ± 6.22a88.71 ± 1.92a67.72 ± 1.55a1.31 ± 0.02cd
    200176.96 ± 4.15cd79.36 ± 2.94c63.13 ± 1.88b1.26 ± 0.03de
    300198.58 ± 5.48a89.89 ± 1.65a69.14 ± 1.05a1.30 ± 0.09cd
    CCC100175.35 ± 3.43d84.16 ± 1.22b54.93 ± 2.92c1.54 ± 0.08a
    200179.04 ± 8.46cd83.38 ± 2.71b54.63 ± 3.33c1.53 ± 0.12a
    300161.43 ± 3.02e73.96 ± 2.74d50.69 ± 3.31d1.46 ± 0.11ab
    S330730187.51 ± 4.63b85.53 ± 2.47b62.56 ± 4.14b1.37 ± 0.11bc
    60145.11 ± 3.32f57.55 ± 3.54f48.37 ± 0.94d1.19 ± 0.06e
    90182.48 ± 2.86bc83.53 ± 2.31b55.00 ± 2.98c1.52 ± 0.08a
    CK0160.48 ± 2.63e69.31 ± 1.46e58.19 ± 2.24c1.19 ± 0.07e
    下载: 导出CSV
  • [1] 张锋, 潘康标, 田子华. 植物生长调节剂研究进展及应用对策[J]. 现代农业科技, 2012(1):193−195. doi: 10.3969/j.issn.1007-5739.2012.01.127

    Zhang F, Pan K B, Tian Z H. Research progress and application strategies of plant growth regulators[J]. Modern Agricultural Science and Technology, 2012(1): 193−195. doi: 10.3969/j.issn.1007-5739.2012.01.127
    [2] 张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗枝条的促壮效应和叶片发育及生理的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(9):79−89.

    Zhang Y C, Guo S J, Sun C H. Effects of growth retardants on the branches growth,leaves development and physiology of chestnut[J]. Journal of Northwest A&F University (Natural Science Edition) , 2019, 47(9): 79−89.
    [3] 宋海凤, 李绍才, 孙海龙, 等. 根施不同浓度多效唑对紫穗槐生长特性和相关生理指标的影响[J]. 植物生理学报, 2015, 51(9):1495−1501.

    Song H F, Li S C, Sun H L, et al. Effects of soil-applied paclobutrazol on growth and physiological characteristics of Amorpha fruticosa[J]. Plant Physiology Journal, 2015, 51(9): 1495−1501.
    [4] 许锋, 张威威, 孙楠楠, 等. 矮壮素对银杏叶片光合代谢与萜内酯生物合成的影响[J]. 园艺学报, 2011, 38(12):2253−2260.

    Xu F, Zhang W W, Sun N N, et al. Effects of chlorocholine chloride on photosynthesis metabolism and terpene trilactones biosynthesis in the leaf of Ginkgo biloba[J]. Acta Horticulturae Sinica, 2011, 38(12): 2253−2260.
    [5] 闫艳红, 万燕, 杨文钰, 等. 叶面喷施烯效唑对套作大豆花后碳氮代谢及产量的影响[J]. 大豆科学, 2015, 34(1):75−81.

    Yan Y H, Wan Y, Yang W Y, et al. Effect of spraying uniconazole on carbon and nitrogen metabolism and yield of relay strip intercropping soybean[J]. Soybean Science, 2015, 34(1): 75−81.
    [6] 杨丽芝, 潘春霞, 邵珊璐, 等. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响[J]. 生态学报, 2018, 38(6):2082−2091.

    Yang L Z, Pan C X, Shao S L, et al. Effects of PP333 and drought stress on the activity photosynthetic characteristics and non-structural carbohydrates of Phyllostachys edulis seedlings[J]. Acta Ecologica Sinica, 2018, 38(6): 2082−2091.
    [7] 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2008: 58.

    Pan R Z. Plant physiology[M]. Beijing: Higher Education Press, 2008: 58.
    [8] 郑国琦, 张磊, 郑国保, 等. 不同灌水量对干旱区枸杞叶片结构、光合生理参数和产量的影响[J]. 应用生态学报, 2010, 21(11):2806−2813.

    Zheng G Q, Zhang L, Zheng G B, et al. Effects of irrigation amount on leaf structure, photosynthetic physiology, and fruit yield of Lycium barbarum in arid area[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2806−2813.
    [9] 张婧雯, 郭太君, 刘瑞文, 等. 树冠不同部位叶片结构与固碳释氧和增湿降温相关性[J]. 北方园艺, 2018(1):98−103.

    Zhang J W, Guo T J, Liu R W, et al. Correlation between leaf structure and carbon fixation, oxygen release and humidification in different parts of canopy[J]. Northern Horticulture, 2018(1): 98−103.
    [10] 冯乃杰, 郑殿峰, 赵玖香, 等. 植物生长物质对大豆叶片形态解剖结构及光合特性的影响[J]. 作物学报, 2009, 35(9):1691−1697.

    Feng N J, Zheng D F, Zhao J X, et al. Effect of plant growth substances on morphological and anatomical structure of leaf and photosynthetic characteristics in soybean[J]. Acta Agronomica Sinica, 2009, 35(9): 1691−1697.
    [11] Yang W L, Zhou W Q, Sun J F, et al. Effects of PP333 and exogenous ABA on leaf tissue structure of Armeniaca vulgaris ‘Luntaibaixing’[J]. Agricultural Science & Technology, 2017, 18(12): 2241−2245.
    [12] 董倩, 王洁, 庞曼, 等. 生长调节剂对黄连木光合生理指标和荧光参数的影响[J]. 西北植物学报, 2012(3):484−490. doi: 10.3969/j.issn.1000-4025.2012.03.008

    Dong Q, Wang J, Pang M, et al. Effects of growth regulators on photosynthetic and physiological indices and chlorophyll fluorescence parameters of Pistacia chinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012(3): 484−490. doi: 10.3969/j.issn.1000-4025.2012.03.008
    [13] 张宇和, 柳鎏, 粱维坚, 等. 中国果树志(板栗榛子卷)[M]. 北京: 中国林业出版社, 2005: 11−14.

    Zhang Y H, Liu L, Liang W J, et al. China fruit tree (chestnut scorpion roll)[M]. Beijing: China Forestry Publishing House, 2005: 11−14.
    [14] 张玉星. 果树栽培学各论(北方本)[M]. 北京: 中国农业出版社, 2003: 260−289.

    Zhang Y X. Theory of fruit cultivation (northern)[M]. Beijing: China Agricultural Press, 2003: 260−289.
    [15] Zou F, Guo S J, Xiong H, et al. A morphological and histological characterization of male flower in chestnut (Castanea) cultivar ‘Yanshanzaofeng’[J]. Advance Journal of Food Science and Technology, 2013, 5(9): 1192−1197. doi: 10.19026/ajfst.5.3081
    [16] Guo S J, Zou F. Observation on the pistillate differentiation of chestnut (Castanea) cultivar ‘Yanshanzaofeng’[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(1): 689−690.
    [17] 张振清. 植物生理学试验手册[M]. 上海: 上海科学技术出版社, 1985: 134−138.

    Zhang Z Q. Plant physiology test manual[M]. Shanghai: Shanghai Science and Technology Press, 1985: 134−138.
    [18] 吕晋慧, 王玄, 冯雁梦, 等. 遮荫对金莲花光合特性和叶片解剖特征的影响[J]. 生态学报, 2012, 32(19):6033−6043.

    Lü J H, Wang X, Feng Y M, et al. Effects of shading on the photosynthetic characteristics and anatomical structure of Trollius chinensis Bunge[J]. Acta Ecologica Sinica, 2012, 32(19): 6033−6043.
    [19] 李建明, 潘铜华, 王玲慧, 等. 水肥耦合对番茄光合、产量及水分利用效率的影响[J]. 农业工程学报, 2014, 30(10):82−90. doi: 10.3969/j.issn.1002-6819.2014.10.010

    Li J M, Pan T H, Wang L H, et al. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 82−90. doi: 10.3969/j.issn.1002-6819.2014.10.010
    [20] 张宇, 宋敏丽, 李利平. 亚高温下不同空气湿度对番茄光合作用和物质积累的影响[J]. 生态学杂志, 2012, 31(2):342−347.

    Zhang Y, Song M L, Li L P. Effects of air humidity on tomato plant photosynthesis and dry matter accumulation at sub-high temperature[J]. Chinese Journal of Ecology, 2012, 31(2): 342−347.
    [21] 张丽红, 宋阳, 张之为, 等. 长期增施CO2条件下黄瓜叶片淀粉积累对光合作用的影响[J]. 园艺学报, 2015, 42(7):1321−1328.

    Zhang L H, Song Y, Zhang Z W, et al. Effects of the starch accumulation on photosynthesis of cucumber leaves under long term elevated CO2 condition[J]. Acta Horticulturae Sinica, 2015, 42(7): 1321−1328.
    [22] 王丽特, 徐照丽, 杨利云, 等. 4种化学调控剂对烟草幼苗耐冷性及其光合特性的效应研究[J]. 西北植物学报, 2015, 35(4):801−808. doi: 10.7606/j.issn.1000-4025.2015.04.0801

    Wang L T, Xu Z L, Yang L Y, et al. Effects of four chemical regulators on chilling tolerance and photosynthetic characteristics of tobacco seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(4): 801−808. doi: 10.7606/j.issn.1000-4025.2015.04.0801
    [23] 姜延付, 张述斌, 张锐, 等. 两种植物生长延缓剂对核桃叶片光合特性的影响[J]. 塔里木大学学报, 2017, 29(1):100−104. doi: 10.3969/j.issn.1009-0568.2017.01.015

    Jiang Y F, Zhang S B, Zhang R, et al. Two kinds of plant growth retardants effects on walnut leaf photosynthetic characteristics[J]. Journal of Tarim University, 2017, 29(1): 100−104. doi: 10.3969/j.issn.1009-0568.2017.01.015
    [24] Han S W, Fermanian T W, Juvik J A, et al. Growth retardant effects on visual quality and nonstructural carbohydrates of creeping bentgrass[J]. Hort Science, 1998, 33(7): 1197−1199. doi: 10.21273/HORTSCI.33.7.1197
    [25] 张桂茹, 杜维广, 满为群, 等. 不同光合特性大豆叶的比较解剖研究[J]. 植物学通报, 2002(2):208−214.

    Zhang G R, Du W G, Man W Q, et al. comparative anatomical study on soybean leaves with different photosynthetic characteristics[J]. Chinese Bulletin of Botany, 2002(2): 208−214.
    [26] Miyazawa S I, Terashima I. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate[J]. Plant Cell and Environment, 2001, 24: 279−291. doi: 10.1046/j.1365-3040.2001.00682.x
    [27] 祁传磊, 靳春莲, 李开隆, 等. 不同倍性大青杨的光合特性及叶片解剖结构比较[J]. 植物生理学通讯, 2010, 46(9):917−922.

    Qi C L, Jin C L, Li K L, et al. Comparison of photosynthetic characteristics and leaf anatomical structure of different ploidyPopulus euphratica Kom[J]. Plant Physiology Journal, 2010, 46(9): 917−922.
    [28] 张永玉. 植物生长抑制素对木芙蓉矮化机理研究[J]. 安徽农业科学, 2013, 41(29):11714−11715. doi: 10.3969/j.issn.0517-6611.2013.29.045

    Zhang Y Y. Study on the mechanism of retardants of hibiscus[J]. Anhui Agricultural Sciences, 2013, 41(29): 11714−11715. doi: 10.3969/j.issn.0517-6611.2013.29.045
    [29] 董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5):974−981. doi: 10.3969/j.issn.1000-2286.2010.05.018

    Dong R L, Yu F Y, Ouyang X. Effects of shading treatments on leaf morphology and anatomical structure of Styrax tonkinensis seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(5): 974−981. doi: 10.3969/j.issn.1000-2286.2010.05.018
    [30] 段文军, 沈雅飞, 曹志华, 等. 叶面肥对油茶容器苗叶片解剖结构和光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(1):92−97.

    Duan W J, Shen Y F, Cao Z H, et al. Effects of foliar fertilizer on leaf anatomy structure and photosynthetic characteristics of Camellia oleifera seedlings[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(1): 92−97.
    [31] 胡营, 楚海家, 李建强. 4个花苜蓿居群叶片解剖结构特征及其可塑性对不同水分处理的响应[J]. 植物科学学报, 2011, 29(2):218−225.

    Hu Y, Cu H J, Li J Q. Response of leaf anatomy characteristics and its plasticity to different soil-water conditions of Medicago ruthenica in four populations[J]. Plant Science Journal, 2011, 29(2): 218−225.
    [32] Mai L I, Xiao W F, Shi P, et al. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations[J]. Plant, Cell & Environment, 2008, 31(10): 1377−1387.
    [33] 吕茹冰, 杜莹, 鲍永新, 等. 氮沉降对毛竹非结构性碳组成与分配的影响[J]. 生态学杂志, 2017, 36(3):584−591.

    Lü R B, Du Y, Bao Y X, et al. Effects of simulated nitrogen deposition on the composition and allocation of non-structural carbohydrates of Phyllostachys edulis[J]. Chinese Journal of Ecology, 2017, 36(3): 584−591.
    [34] Shi P L, Rner C K, Hoch G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas[J]. Functional Ecology, 2008, 22: 213−220. doi: 10.1111/j.1365-2435.2007.01370.x
    [35] 刘静雅, 李绍才, 孙海龙, 等. 多效唑对紫穗槐生长及生理特性的影响[J]. 植物科学学报, 2016, 34(2):271−279. doi: 10.11913/PSJ.2095-0837.2016.20271

    Liu J Y, LI S C, Sun H N, et al. Growth and physiological changes in Amorpha fruticosa Linn. seedlings following paclobutrazol treatment[J]. Plant Science Journal, 2016, 34(2): 271−279. doi: 10.11913/PSJ.2095-0837.2016.20271
    [36] 王丽媛, 郭素娟. 2种植物生长调节剂对板栗叶片生理特性的影响[J]. 西南农业学报, 2016, 29(2):266−269.

    Wang L Y, Guo S J. Effect of plant growth regulators on physiological characteristics of chestnut leaves[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(2): 266−269.
    [37] 崔旭盛, 郑雷, 杜友, 等. 植物生长调节物质对梭梭和肉苁蓉生长的调节作用[J]. 中国农业大学学报, 2013, 18(5):83−89.

    Cui X S, Zheng L, Du Y, et al. Effect of plant growth regulators on the growth of Haloxylon ammodendron and Cistanche deserticola[J]. Journal of China Agricultural University, 2013, 18(5): 83−89.
    [38] 谢寅峰, 王莹, 张志敏, 等. 烯效唑对青钱柳试管苗生长及生理特性的影响[J]. 植物资源与环境学报, 2010, 19(4):50−55. doi: 10.3969/j.issn.1674-7895.2010.04.008

    Xie Y F, Wang Y, Zhang Z M, et al. Effects of uniconazole on the growth and physiological characteristics of testis seedlings[J]. Journal of Plant Resources and Environment, 2010, 19(4): 50−55. doi: 10.3969/j.issn.1674-7895.2010.04.008
    [39] 姜英, 彭彦, 李志辉, 等. 植物生长延缓剂对金钱树抗寒性指标的影响[J]. 草业科学, 2010, 27(9):51−56.

    Jiang Y, Peng Y, Li Z J, et al. Effects of plant growth regulators on cold tolerance of Zamioculcas zamiifolia[J]. Pratacultural Science, 2010, 27(9): 51−56.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  333
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-01
  • 修回日期:  2019-06-11
  • 网络出版日期:  2019-12-16
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回