高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下垫面覆盖类型变化对城市热岛的影响

李膨利 MuhammadAmir Siddique 樊柏青 黄华国 刘东云

李膨利, MuhammadAmir Siddique, 樊柏青, 黄华国, 刘东云. 下垫面覆盖类型变化对城市热岛的影响——以北京市朝阳区为例[J]. 北京林业大学学报, 2020, 42(3): 99-109. doi: 10.12171/j.1000-1522.20190045
引用本文: 李膨利, MuhammadAmir Siddique, 樊柏青, 黄华国, 刘东云. 下垫面覆盖类型变化对城市热岛的影响——以北京市朝阳区为例[J]. 北京林业大学学报, 2020, 42(3): 99-109. doi: 10.12171/j.1000-1522.20190045
Li Pengli, Muhammad Amir Siddique, Fan Boqing, Huang Huaguo, Liu Dongyun. Effects of land surface type changes on urban heat island: a case study of Chaoyang District, Beijing[J]. Journal of Beijing Forestry University, 2020, 42(3): 99-109. doi: 10.12171/j.1000-1522.20190045
Citation: Li Pengli, Muhammad Amir Siddique, Fan Boqing, Huang Huaguo, Liu Dongyun. Effects of land surface type changes on urban heat island: a case study of Chaoyang District, Beijing[J]. Journal of Beijing Forestry University, 2020, 42(3): 99-109. doi: 10.12171/j.1000-1522.20190045

下垫面覆盖类型变化对城市热岛的影响

——以北京市朝阳区为例

doi: 10.12171/j.1000-1522.20190045
基金项目: 国家自然科学基金项目
详细信息
    作者简介:

    李膨利。主要研究方向:风景园林规划与设计。Email:lizi200906@163.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    刘东云,博士,副教授。主要研究方向:生态规划、城市景观规划设计、可持续环境设计。Email:laurstudio@sina.com  地址:同上

  • 中图分类号: S723;X87

Effects of land surface type changes on urban heat island: a case study of Chaoyang District, Beijing

  • 摘要: 目的快速发展的城市化进程改变了下垫面的性质和结构,从而影响了城市的热量平衡,导致城市热岛效应蔓延。研究城市下垫面变化及其对城市热岛的影响,对缓解城市热环境、减少社会经济损失有重要意义。方法本文利用2002—2017年北京市朝阳区Landsat系列遥感影像计算研究区域归一化植被指数(NDVI)变化,并基于大气校正法利用Landsat热红外波段进行地表温度(LST)反演,进一步对所获地表温度进行归一化处理;同时利用2002—2017年北京市朝阳区谷歌全色卫星影像,基于DeepLabv3 + 网络利用深度学习对朝阳区下垫面分类并分析其动态变化。结果(1)朝阳区15年间平均地表温度呈上升趋势,城市热岛逐年加剧;至2017年,区内不再存在单一热岛中心,而转为复杂的镶嵌式结构、多中心分布。(2)15年间不透水面面积共减少71.02 km2,降幅20.98%;水域面积共减少2.53 km2,降幅24.12%;植被面积共增加73.54 km2,增幅56.57%。(3)对地表温度与下垫面类型动态变化相关性进行分析表明,地表温度与不透水面面积呈正相关,与植被面积呈负相关关系。(4)从总量来看,2012—2017年朝阳区与城市热岛效应成负相关关系的植被与水域面积总量增加明显,但城市热岛效应不降反增。结论植被和水域对城市热岛效应的缓解作用在用地强度、建筑密度和人类活动不断增长的前提下逐渐变得有限。在现有城市发展模式下,朝阳区地表温度将继续上升,城市热岛进一步加剧。

     

  • 图  1  2002—2017年北京市朝阳区NDVI变化

    Figure  1.  Normalized difference vegetation index(NDVI) changes in Chaoyang District (2002−2017) of Beijing

    图  2  2002—2017年朝阳区地表温度

    Figure  2.  Land surface temperature of Chaoyang District in Beijing (2002−2017)

    图  3  2002—2017年朝阳区地表温度等级分布

    Figure  3.  Distribution of land surface temperature grade in Chaoyang District of Beijing (2002−2017)

    图  4  2002—2017朝阳区低温区和高温区面积占比变化

    Figure  4.  Changes in area ratio of low temperature zone and high temperature zone in Chaoyang Districtof Beijing (2002−2017)

    图  5  2002—2017年朝阳区下垫面覆盖类型格局

    Figure  5.  Patterns of underlying surface types in Chaoyang District of Beijing (2002−2017)

    图  6  2002—2017年朝阳区地表温度与下垫面覆盖变化关系

    Figure  6.  Relationship between land surface temperature and underlying surface cover changes in Chaoyang District of Beijing (2002−2017)

    图  7  典型地块2002—2017卫星图像、下垫面覆盖类型和地表温度变化

    a. 日坛公园Ritan Park;b. 松榆南路南侧、首都图书馆东侧区域Southern area of Songyu South Road and eastern area of Capital Library;c. 姚家园路北侧海际国际居住区Haiji International Residential Area on the northern side of Yaojiayuan Road;d. 国家体育场西侧、北辰西路东侧区域Western side area of National Stadium and eastern side of Beichen West Road

    Figure  7.  Changes in satellite images, underlying surface cover types and land surface temperature in typical lands (2002−2017)

    表  1  2002—2017年朝阳区归一化植被指数统计

    Table  1.   Statistics in NDVI of Chaoyang District (2002−2017) in Beijing

    年份
    Year
    NDVI最大值
    Max. NDVI
    NDVI平均值
    Average NDVI
    2002 0.09 − 0.26
    2007 0.50 − 0.15
    2012 0.38 − 0.16
    2017 0.62 0.20
    下载: 导出CSV

    表  2  2002—2017朝阳区地表温度各等级分布比例

    Table  2.   Distribution ratio of land surface temperature grades in Chaoyang District (2002−2017) of Beijing %

    年份
    Year
    低温
    Low temperature
    (< 0.2)
    较低温
    Lower temperature
    (0.2 ~ 0.35)
    次中温
    Inferior medium temperature
    (0.35 ~ 0.45)
    中温
    Medium
    temperature
    (0.45 ~ 0.55)
    次高温
    Inferior high temperature
    (0.55 ~ 0.625)
    高温
    High temperature
    (0.625 ~ 0.75)
    特高温
    Extreme high temperature
    (> 0.75)
    2002 3.72 17.40 29.93 34.15 12.89 1.82 0.10
    2007 1.90 14.80 28.39 34.11 15.94 4.60 0.27
    2012 2.30 18.16 33.54 33.39 9.06 3.39 0.17
    2017 0.01 1.84 21.32 42.16 21.33 12.43 0.91
    下载: 导出CSV

    表  3  2002—2017朝阳区下垫面覆盖类型变化

    Table  3.   Changes in underlying surface types in Chaoyang District of Beijing (2002−2017)

    年份
    Year
    植被面积
    Vegetation area/km2
    占比
    Proportion/%
    水域面积
    Water area/km2
    占比
    Proportion/%
    不透水面面积
    Impervious surface area/km2
    占比
    Proportion/%
    2002 130.00 27.14 10.49 2.19 338.51 70.67
    2007 120.32 25.12 4.56 0.95 354.12 73.93
    2012 190.32 39.74 7.15 1.49 281.53 58.77
    2017 203.54 42.50 7.96 1.66 267.49 55.84
    下载: 导出CSV

    表  4  2002—2017年朝阳区不同下垫面覆盖类型地表温度及各年平均温度

    Table  4.   Land surface temperature and annual average temperature of different underlying surface types in Chaoyang District of Beijing (2002−2017)

    下垫面覆盖类型
    Underlying surface type
    年份 Year
    2002200720122017
    不透水面 Impervious surface32.5541.5033.1433.04
    植被 Vegetation31.1339.4730.2932.67
    水域 Water area31.1037.1828.3430.74
    年平均温度
    Annual average temperature
    31.9040.9531.5132.71
    下载: 导出CSV
  • [1] 彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态环境, 2005, 14(4):574−579.

    Peng S L, Zhou K, Ye Y H, et al. Research progress in urban heat island[J]. Ecology and Environment, 2005, 14(4): 574−579.
    [2] Oke T R. The distinction between canopy and boundary-layer urban heat islands[J]. Atmosphere, 1976, 14(4): 268−277. doi: 10.1080/00046973.1976.9648422
    [3] Oke T R. Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations[J]. Journal of Climatology, 1981, 1(3): 237−254. doi: 10.1002/joc.3370010304
    [4] Oke T R. Street design and urban canopy layer climate[J]. Energy and Buildings, 1988, 11(1/3): 103−113.
    [5] Oke T R. The heat island of the urban boundary layer: characteristics, causes and effects[M]//Cermak J E, Davenport A G, Plate E J, et al. Wind climate in cities. Dordrecht: Springer, 1995: 81−107.
    [6] Oke T R. Towards better scientific communication in urban climate[J]. Theoretical and Applied Climatology, 2006, 84(1/3): 179−190.
    [7] Roth M, Oke T R, Emery W J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology[J]. International Journal of Remote Sensing, 1989, 10(11): 1699−1720. doi: 10.1080/01431168908904002
    [8] Grimmond C S B, Roth M, Oke T R, et al. Climate and more sustainable cities: climate information for improved planning and management of cities (producers/capabilities perspective)[J]. Procedia Environmental Sciences, 2010, 1: 247−274. doi: 10.1016/j.proenv.2010.09.016
    [9] Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003, 86(3): 370−384. doi: 10.1016/S0034-4257(03)00079-8
    [10] Dousset B. Surface temperature statistics over Los Angeles: the influence of land use[C]//IGARSS’91 remote sensing: global monitoring for earth management. Espoo: IEEE, 1991.
    [11] Gallo K P, Mcnab A L, Karl T R, et al. The use of a vegetation index for assessment of the urban heat island effect[J]. International Journal of Remote Sensing, 1993, 14(11): 2223−2230. doi: 10.1080/01431169308954031
    [12] Nichol J E. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study[J]. Journal of Applied Meteorology, 1996, 35(1): 135−146. doi: 10.1175/1520-0450(1996)035<0135:HRSTPR>2.0.CO;2
    [13] Ben-Dor E, Saaroni H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island[J]. International Journal of Remote Sensing, 1997, 18(14): 3039−3053. doi: 10.1080/014311697217198
    [14] Hafner J, Kidder S Q. Urban heat island modeling in conjunction with satellite-derived surface/soil parameters[J]. Journal of Applied Meteorology, 1999, 38(4): 448−465. doi: 10.1175/1520-0450(1999)038<0448:UHIMIC>2.0.CO;2
    [15] Yuan F, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007, 106(3): 375−386. doi: 10.1016/j.rse.2006.09.003
    [16] 杨可明, 周玉洁, 齐建伟, 等. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014, 26(2):134−139. doi: 10.6046/gtzyyg.2014.02.22

    Yang K M, Zhou Y J, Qi J W, et al. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. Remote Sensing for Land & Resources, 2014, 26(2): 134−139. doi: 10.6046/gtzyyg.2014.02.22
    [17] Xiao R B, Ouyang Z Y, Zheng H, et al. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China[J]. Journal of Environmental Sciences, 2007, 19(2): 250−256. doi: 10.1016/S1001-0742(07)60041-2
    [18] 孟宪磊. 不透水面、植被、水体与城市热岛关系的多尺度研究[D]. 上海: 华东师范大学, 2010.

    Meng X L. Multi-scale relationships between impervious surface, vegetation, water and urban heat island[D]. Shanghai: East China Normal University, 2010.
    [19] Zhou J, Chen Y H, Zhang X, et al. Modelling the diurnal variations of urban heat islands with multi-source satellite data[J]. International Journal of Remote Sensing, 2013, 34(21): 7568−7588. doi: 10.1080/01431161.2013.821576
    [20] 李延明, 张济和, 古润泽. 北京城市绿化与热岛效应的关系研究[J]. 中国园林, 2004, 20(1):72−75. doi: 10.3969/j.issn.1000-6664.2004.01.020

    Li Y M, Zhang J H, Gu R Z. Research on the relationship between urban greening and the effect of urban heat island[J]. Chinese Landscape Architecture, 2004, 20(1): 72−75. doi: 10.3969/j.issn.1000-6664.2004.01.020
    [21] 彭静, 刘伟东, 龙步菊, 等. 北京城市热岛的时空变化分析[J]. 地球物理学进展, 2007, 22(6):1942−1947. doi: 10.3969/j.issn.1004-2903.2007.06.043

    Peng J, Liu W D, Long B J, et al. A study of the urban heat island of Beijing based on remote sensing images[J]. Progress in Geophysics, 2007, 22(6): 1942−1947. doi: 10.3969/j.issn.1004-2903.2007.06.043
    [22] 葛荣凤, 王京丽, 张力小, 等. 北京市城市化进程中热环境响应[J]. 生态学报, 2016, 36(19):6040−6049.

    Ge R F, Wang J L, Zhang L X, et al. Impacts of urbanization on the urban thermal environment in Beijing[J]. Acta Ecologica Sinica, 2016, 36(19): 6040−6049.
    [23] 曹丽琴, 张良培, 李平湘, 等. 城市下垫面覆盖类型变化对热岛效应影响的模拟研究[J]. 武汉大学学报(信息科学版), 2008, 33(12):1229−1232.

    Cao L Q, Zhang L P, Li P X, et al. Simulation study of influence of change of land surface types on urban heat island[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1229−1232.
    [24] 祝善友, 高牧原, 陈亭, 等. 基于ENVI-met模式的城市近地表气温模拟与分析:以南京市部分区域为例[J]. 气候与环境研究, 2017, 22(4):499−508. doi: 10.3878/j.issn.1006-9585.2017.16197

    Zhu S Y, Gao M Y, Chen T, et al. Simulation and analysis of urban near-surface air temperature based on ENVI-met model: a case study in some areas of Nanjing[J]. Climatic and Environmental Research, 2017, 22(4): 499−508. doi: 10.3878/j.issn.1006-9585.2017.16197
    [25] Pakarnseree R, Chunkao K, Bualert S. Physical characteristics of Bangkok and its urban heat island phenomenon[J]. Building and Environment, 2018, 143: 561−569. doi: 10.1016/j.buildenv.2018.07.042
    [26] Yin C H, Yuan M, Lu Y P, et al. Effects of urban form on the urban heat island effect based on spatial regression model[J]. Science of the Total Environment, 2018, 634: 696−704. doi: 10.1016/j.scitotenv.2018.03.350
    [27] Xu Y, Ren C, Ma P F, et al. Urban morphology detection and computation for urban climate research[J]. Landscape and Urban Planning, 2017, 167: 212−224. doi: 10.1016/j.landurbplan.2017.06.018
    [28] 北京市统计局. 北京区域统计年鉴2018[M]. 北京: 中国统计出版社, 2018.

    Beijing Municipal Burbeau of Statistics. Beijing Statistical Yearbook 2018[M]. Beijing: China Statistics Press, 2018.
    [29] Sobrino J A, Jiménez-Muñoz J C, Paolin L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment, 2004, 90(4): 434−440. doi: 10.1016/j.rse.2004.02.003
    [30] 徐涵秋, 陈本清. 不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J]. 遥感技术与应用, 2003, 18(3):129−133. doi: 10.3969/j.issn.1004-0323.2003.03.002

    Xu H Q, Chen B Q. An image processing technique for the study of urban heat island changes using different seasonal remote sensing data[J]. Remote Sensing Technology and Application, 2003, 18(3): 129−133. doi: 10.3969/j.issn.1004-0323.2003.03.002
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1166
  • HTML全文浏览量:  630
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-08-22
  • 网络出版日期:  2020-01-20
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回