高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPEI的中亚地区1901—2015年干旱时空趋势分析

魏巍 王百田 张克斌

魏巍, 王百田, 张克斌. 基于SPEI的中亚地区1901—2015年干旱时空趋势分析[J]. 北京林业大学学报, 2020, 42(4): 113-121. doi: 10.12171/j.1000-1522.20190055
引用本文: 魏巍, 王百田, 张克斌. 基于SPEI的中亚地区1901—2015年干旱时空趋势分析[J]. 北京林业大学学报, 2020, 42(4): 113-121. doi: 10.12171/j.1000-1522.20190055
Wei Wei, Wang Baitian, Zhang Kebin. Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI[J]. Journal of Beijing Forestry University, 2020, 42(4): 113-121. doi: 10.12171/j.1000-1522.20190055
Citation: Wei Wei, Wang Baitian, Zhang Kebin. Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI[J]. Journal of Beijing Forestry University, 2020, 42(4): 113-121. doi: 10.12171/j.1000-1522.20190055

基于SPEI的中亚地区1901—2015年干旱时空趋势分析

doi: 10.12171/j.1000-1522.20190055
基金项目: 国家国际科技合作专项项目(2015DFR31130);河北地质大学博士科研启动基金资助
详细信息
    作者简介:

    魏巍,博士。主要研究方向:恢复生态学。Email:weibjfu@126.com 地址:050031 河北省石家庄市裕华区槐安东路136号河北地质大学土地资源与城乡规划学院

    责任作者:

    王百田,教授,博士生导师。主要研究方向:水土保持学。Email:wbaitian@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI

  • 摘要: 目的中亚地区是位于欧亚大陆中心、远离海洋的内陆旱地,其旱地生态系统支持很大比例的人口和经济,评估干旱对该区域可持续性发展有重要意义。方法本研究基于1901—2015年空间分辨率0.5° × 0.5°的标准化降水蒸散指数(SPEI)月数据,应用关联Mann-Kendall检验和Theil-Sen(TS)slope分析了1901—2015年中亚地区1、3、6和12个月的SPEI(SPEI01、SPEI03、SPEI06、SPEI12)的趋势空间分布情况,以评估不同时间尺度的干旱变化。结果研究显示(1)SPEI01在39.24%的研究区面积上呈显著下降趋势(P < 0.05),且我国新疆天山山脉以南地区下降幅度最大,为− 5×10− 4 a1;在45.73%的研究区面积上呈显著上升趋势,其中塔吉克斯坦的上升幅度最大,为3×10− 4 a1。(2)SPEI03在76.32%的研究区面积上呈显著下降趋势(P < 0.05),其中吉尔吉斯斯坦下降幅度最大,为− 4×10− 4 a1;在15.39%的研究区面积上呈显著上升趋势(P < 0.05),其中塔吉克斯坦上升幅度最大,为3×10− 4 a1。(3)SPEI06和SPEI12的趋势空间分布基本相同,且哈萨克斯坦的下降幅度最大,分别为− 3×10− 4和− 5×10− 4 a1,塔吉克斯坦的上升幅度最大,分别为5×10− 4和6×10− 4 a1结论中亚地区年和季节降水的时空变化影响水资源的时空分布,造成不同区域不同时间尺度的湿润化和干旱化趋势。对于哈萨克斯坦中部、土库曼斯坦西南部和我国新疆天山以南地区出现的短期和中长期干旱化趋势以及中亚大面积区域出现的季节性干旱化趋势,当地政府有必要采取相应措施应对干旱,以防治植被退化和荒漠化,保证粮食生产及其人口福祉和安全。对于其他区域出现的湿润化趋势,特别是极端降水事件增多,当地政府需进一步完善防洪和水利灌溉设施,以防止洪旱灾害扩大和实现水资源的有效利用。

     

  • 图  1  研究区位置图

    Figure  1.  Location of the study area

    图  2  1901—2015年SPEI的趋势和趋势率空间分布

    Figure  2.  Spatial distribution of trend and trend slope of SPEI in 1901−2015

    图  3  趋势在各区域面积所占的百分比

    XIN, 中国新疆; KAZ, 哈萨克斯坦; KGZ, 吉尔吉斯斯坦; TJK, 塔吉克斯坦; UZB, 乌兹别克斯坦; TKM, 土库曼斯坦。XIN, Xinjiang, China; KAZ, Kazakhstan; KGZ, Kyrgyzstan; TJK, Tajikistan; UZB, Uzbekistan; TKM, Turkmenistan

    Figure  3.  Percentage of trend in each region area

  • [1] Alexander L, Allen S, Bindoff N L. Climate change 2013: the physical science basis[R]//Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.
    [2] Murray V, Ebi K L. IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX)[J]. Journal of Epidemiology and Community Health, 2012, 66(9): 759−760. doi: 10.1136/jech-2012-201045
    [3] Asl S J, Khorshiddoust A M, Dinpashoh Y, et al. Frequency analysis of climate extreme events in Zanjan, Iran[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(7): 1637−1650. doi: 10.1007/s00477-013-0701-6
    [4] Kao S C, Rao S G. Hutchinson on trivariate statistical analysis of extreme rainfall events via the plackett family of copulas[J]. Water Resources Research, 2008, 44(2): 32−37.
    [5] Nohegar N, Heydarzadeh M, Malekian A. Assessment of severity of droughts using geostatistics method (case study: southern Iran)[J]. Desert, 2013, 18: 79−87.
    [6] Masoudi M, Hakimi S. A new model for vulnerability assessment of drought in Iran using percent of normal precipitation index (PNPI)[J]. Iranian Journal of Science and Technology Transaction A-Science, 2014, 38(4): 435−440.
    [7] 刘晓云, 李栋梁, 王劲松. 1961—2009年中国区域干旱状况的时空变化特征[J]. 中国沙漠, 2012, 32(2):473−483.

    Liu X Y, Li D L, Wang J S. Spatiotemporal characteristics of drought over China during 1961 –2009[J]. Journal of Desert Research, 2012, 32(2): 473−483.
    [8] Carrão H, Naumann G, Barbosa P. Global projections of drought hazard in a warming climate: a prime for disaster risk management[J]. Climate Dynamics, 2018, 50(5−6): 1−19.
    [9] Dracup J A, Lee K S, Paulson E G. On the definition of droughts[J]. Water Resources Research, 1980, 16(2): 297−302. doi: 10.1029/WR016i002p00297
    [10] Wilhite D A, Glantz M H. Understanding the drought phenomenon: the role of definitions[J]. Water International, 1985, 10(3): 111−120. doi: 10.1080/02508068508686328
    [11] Orville H D. AMS statement on meteorological drought[J]. Bulletin of the American Meteorological Society, 1990, 71(7): 1021−1025. doi: 10.1175/1520-0477-71.7.1021
    [12] Kallis G. Droughts[J]. Annual Review of Environment and Resources, 2008, 33(1): 85−118.
    [13] Wilhite D A, Hayes M J, Svoboda M D. Drought monitoring and assessment: status and trends in the United States[M]//Drought and drought mitigation in Europe. Amsterdam: Springer, 2000.
    [14] Tsakiris G, Pangalou D, Vangelis H. Regional drought assessment based on the reconnaissance drought index (RDI)[J]. Water Resources Management, 2007, 21(5): 821−833. doi: 10.1007/s11269-006-9105-4
    [15] Dai A. Characteristics and trends in various forms of the palmer drought severity index during 1900 –2008[J/OL]. Journal of Geophysical Research: Atmospheres, 2011, 116(D12) [2019–01–12]. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JD015541.
    [16] Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[R]. California: Eighth Conference on Applied Climatology, 1993.
    [17] Akbar N, Ahmad N, Ardavan G. Comparison of the suitability of standardized precipitation index (SPI) and aggregated drought index (ADI) in Minab Watershed (Hormozgan Province/South of Iran)[J]. African Journal of Agricultural Research, 2012, 7(44): 5905−5911. doi: 10.5897/AJAR12.1521
    [18] Vicente-Serrano S M, Begueria S, López- Moreno J I. A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index:SPEI[J]. Journal of Climate, 2010, 23(7): 1696−1718. doi: 10.1175/2009JCLI2909.1
    [19] 孙滨峰, 赵红, 王效科. 基于标准化降水蒸发指数(SPEI)的东北干旱时空特征[J]. 生态环境学报, 2015, 24(1):22−28.

    Sun B F, Zhao H, Wang X K. Spatiotemporal characteristics of drought in Northeast China based on SPEI[J]. Ecology and Environmental Sciences, 2015, 24(1): 22−28.
    [20] 李洁, 莫淑红, 沈冰, 等. 基于SPEI的渭河流域干旱特征分析[J]. 西安理工大学学报, 2016, 32(1):70−76.

    Li J, Mo S H, Shen B, et al. Analysis of drought characteristics in Weihe River Basin based on SPEI[J]. Journal of Xi’an University of Technology, 2016, 32(1): 70−76.
    [21] Yu M, Li Q, Hayes M J, et al. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951 –2010?[J]. International Journal of Climatology, 2014, 34(3): 545−558. doi: 10.1002/joc.3701
    [22] Tan C P, Yang J P, Li M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China[J]. Atmosphere (Basel), 2015, 6(10): 1399−1421.
    [23] Hu Z Y, Zhang C, Hu Q S, et al. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets[J]. Journal of Climate, 2014, 27(3): 1143−1167. doi: 10.1175/JCLI-D-13-00064.1
    [24] Gessner U, Naeimi V, Klein I, et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia[J]. Global and Planetary Change, 2013, 110: 74−87. doi: 10.1016/j.gloplacha.2012.09.007
    [25] Lioubimtseva E, Henebry G M. Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations[J]. Journal of Arid Environments, 2009, 73(11): 963−977. doi: 10.1016/j.jaridenv.2009.04.022
    [26] Mohammat A, Wang X H, Xu X T, et al. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia[J]. Agricultural and Forest Meteorology, 2013, 178–179(5): 21−30.
    [27] De Beurs K M, Wright C K, Henebry G M. Dual scale trend analysis forevaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan[J/OL]. Environmental Research Letters, 2009, 4(4): 045012 [2019−01−12]. https://iopscience.iop.org/article/10.1088/1748-9326/4/4/045012.
    [28] Zhang C, Ren W. Complex climatic and CO2 controls on net primary productivity of temperate dryland ecosystems over central Asia during 1980 –2014[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2356−2374. doi: 10.1002/2017JG003781
    [29] Sheffield J, Wood E F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations[J]. Climate Dynamics, 2008, 31(1): 79−105. doi: 10.1007/s00382-007-0340-z
    [30] Jiang L L, Jiapaer G, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 2017, 599−600: 967−980.
    [31] Beckwith C I. Empires of the silk road: a history of central Eurasia from the Bronze Age to the present[M]. Princeton: Princeton University Press, 2009.
    [32] Barrow C J. World atlas of desertification[J]. Land Degradation & Development, 1992, 3(4): 249.
    [33] Vicente-Serrano S M, Célia G, Jesús J, et al. Response of vegetation to drought time-scales across global land biomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 52−57. doi: 10.1073/pnas.1207068110
    [34] Sangüesa-Barreda G, Camarero J J, Oliva J, et al. Past logging, drought and pathogens interact and contribute to forest dieback[J]. Agricultural and Forest Meteorology, 2015, 208: 85−94. doi: 10.1016/j.agrformet.2015.04.011
    [35] Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A new global 0.5° gridded dataset (1901 –2006) of a multiscalar drought index: comparison with current drought index datasets based on the palmer drought severity index[J]. Journal of Hydrometeorology, 2010, 11(4): 1033−1043. doi: 10.1175/2010JHM1224.1
    [36] Um M J, Kim Y, Park D, et al. Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014[J]. Hydrology & Earth System Sciences, 2017, 21(10): 4989−5007.
    [37] 王芝兰, 李耀辉, 王素萍, 等. 1901—2012年中国西北地区东部多时间尺度干旱特征[J]. 中国沙漠, 2015, 35(6):1666−1673. doi: 10.7522/j.issn.1000-694X.2014.00190

    Wang Z L, Li Y H, Wang S P, et al. Characteristics of drought at multiple time scales in the east of northwest China from 1901−2012[J]. Journal of Desert Research, 2015, 35(6): 1666−1673. doi: 10.7522/j.issn.1000-694X.2014.00190
    [38] 沈国强, 郑海峰, 雷振锋. SPEI指数在中国东北地区干旱研究中的适用性分析[J]. 生态学报, 2017, 37(11):3787−3795.

    Shen G Q, Zheng H F, Lei Z F. Applicability analysis of SPEI for drought research in Northeast China[J]. Acta Ecologica Sinica, 2017, 37(11): 3787−3795.
    [39] 芦佳玉, 延军平, 李英杰, 等. 基于SPEI及游程理论的云贵地区1960—2014年干旱时空变化特征[J]. 浙江大学学报(理学版), 2018, 45(3):363−372.

    Lu J Y, Yan J P, Li Y J, et al. The temporal variation characteristics of drought in Yunnan-Guizhou area during 1960 to 2014 based on SPEI and run-length theory[J]. Journal of Zhejiang University (Science Edition), 2018, 45(3): 363−372.
    [40] Hoaglin D C, Mosteller F, Tukey J W. Understanding robust and exploratory data analysis[M]//Understanding robust and exploratory data analysis. New York: John Wiley and Sons, 2000.
    [41] Neeti N, Eastman J R. A contextual Mann-Kendall approach for the assessment of trend significance in image time series[J]. Transactions in Gis, 2011, 15(5): 599. doi: 10.1111/j.1467-9671.2011.01280.x
    [42] Von Storch H. Misuses of statistical analysis in climate research[M]. New York: Springer-Verlag, 1995.
    [43] Eastman J R. TerrSet: geospatial monitoring and modeling system manual[EB/OL]. (2016−10−11)[2018−12−21]. http://clarklabs.org/wp-content/uploads/2016/10/Terrset-Manual.pdf.
    [44] Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. International Journal of Climatology, 2005, 25(6): 693−712. doi: 10.1002/joc.1181
    [45] 吴燕锋, 巴特尔巴克, 罗那那, 等. 1901—2013年塔吉克斯坦极端降水事件时空变化特征[J]. 干旱区研究, 2016, 33(5):943−951.

    Wu Y F, Baterbake, Luo N N, et al. Spatiotemporal variation of extreme precipitation events in Tajikistan during the period of 1901−2013[J]. Arid Zone Research, 2016, 33(5): 943−951.
    [46] Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37: 157−170.
    [47] 张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响[J]. 干旱气象, 2010, 28(1):1−7. doi: 10.3969/j.issn.1006-7639.2010.01.001

    Zhang Q, Zhang C J, Bai H Z, et al. New development of climate change in northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28(1): 1−7. doi: 10.3969/j.issn.1006-7639.2010.01.001
    [48] 张延伟, 李红忠, 魏文寿, 等. 1961—2010年北疆地区极端气候事件变化[J]. 中国沙漠, 2013, 33(6):1891−1897. doi: 10.7522/j.issn.1000-694X.2013.00245

    Zhang Y W, Li H Z, Wei W S, et al. Change of extreme climate events during 1961 to 2010 in Northern Xinjiang, China[J]. Journal of Desert Research, 2013, 33(6): 1891−1897. doi: 10.7522/j.issn.1000-694X.2013.00245
    [49] 姜逢清, 朱诚, 胡汝骥. 新疆1950—1997年洪旱灾害的统计与分形特征分析[J]. 自然灾害学报, 2002, 11(4):96−100. doi: 10.3969/j.issn.1004-4574.2002.04.016

    Jiang F Q, Zhu C, Hu R J. Statistical and fractal features of the flood and drought disasters in Xinjiang from 1950 to 1997[J]. Journal of Natural Disasters, 2002, 11(4): 96−100. doi: 10.3969/j.issn.1004-4574.2002.04.016
    [50] Bolch T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data[J]. Global and Planetary Change, 2007, 56(1–2): 1−12.
    [51] 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2012, 41(11):1647−1657.

    Chen F H, Huang W, Jin L Y, et al. Characteristics and spatial differences of precipitation in arid region of Central Asia under the background of global warming[J]. Chinese Science: Earth Science, 2012, 41(11): 1647−1657.
    [52] Ho P. Rangeland degradation in north China revisited? A preliminary statistical analysis to validate non-equilibrium range ecology[J]. Journal of Development Studies, 2001, 37(3): 99−133. doi: 10.1080/00220380412331321991
    [53] Chen X, Wang S S, Hu Z Y, et al. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901 –2013[J]. Journal of Geographical Sciences, 2018, 28(9): 1341−1368. doi: 10.1007/s11442-018-1529-2
    [54] 沈伟峰, 缪启龙, 魏铁鑫, 等. 中亚地区近130多a温度变化特征[J]. 干旱气象, 2013, 31(1):32−36.

    Shen W F, Liao Q L, Wei T X, et al. Analysis of temperature variation in recent 130 years in Central Asia[J]. Journal of Arid Meteorology, 2013, 31(1): 32−36.
    [55] Wehrden H V, Hanspach J, Ronnenberg K, et al. Inter-annual rainfall variability in Central Asia : a contribution to the discussion on the importance of environmental stochasticity in drylands[J]. Journal of Arid Environments, 2010, 74(10): 1212−1215. doi: 10.1016/j.jaridenv.2010.03.011
    [56] Xu H J, Wang X P, Zhang X X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52: 390−402. doi: 10.1016/j.jag.2016.07.010
    [57] Angert A, Biraud S, Bonfils C, et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 10823−10827. doi: 10.1073/pnas.0501647102
  • 加载中
图(3)
计量
  • 文章访问数:  1100
  • HTML全文浏览量:  537
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 修回日期:  2019-01-26
  • 网络出版日期:  2020-03-21
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回