Responses of PSII photochemical parameter to a snowfall event in early growing season in Artemisia ordosica
-
摘要:
目的研究生长季早期降雪事件对于典型沙生灌木光合生理状态的影响,以及胁迫发生后植物适应胁迫的光合生理机制。 方法在降雪前后,使用多通道连续监测荧光仪,通过原位连续监测当地建群种油蒿的叶绿素荧光参数和能量分配参数的变化,确定胁迫恢复期,并分析恢复期各参数与环境因子的关系。 结果实际光化学量子效率(ΦPSII)在降雪当天达到最低值,且ΦPSII的日间均值比降雪前后分别下降了约40%和33%。调节性能量耗散(ΦNPQ)和非光化学淬灭(NPQ)均在降雪当天达到最高值,其中降雪当天ΦNPQ的日间均值比降雪前后分别升高了95%和48%,NPQ分别升高了94%和76%。降雪当天的最大光化学量子效率(Fv/Fm)降到了最低(0.69),比降雪前降低了约12%,并且低于了0.73的胁迫线。Fv/Fm经过3 d恢复到了降雪前的水平。在恢复过程中油蒿伴随着光照900 μmol/(m2·s)和温度10 ℃的阈值拥有不同的响应关系,可能是在阈值前后拥有不同的环境主导因子。土壤水分始终是油蒿恢复过程中的限制性因素。 结论本次降雪对于油蒿产生了胁迫,胁迫的原因主要是由于融雪产生的低温和高光强的协同作用导致的。油蒿通过动态调节自身光系统II反应中心的能量分配机制,增大调节性热能耗散比重来适应低温胁迫。油蒿从一次胁迫中恢复约需3 ~ 4 d,低光照、较高温度和较高水分有利于植物恢复过程。 Abstract:ObjectiveThe aim is to examine the impact of a snow event in the early growing season on photosynthetically physiological status of a typical shrub, and to understand photosynthetically physiological mechanism to acclimate to the snow stress. MethodWe monitored the variations in chlorophyll fluorescence and calculated energy partitioning parameters continuously in situ by a multi-channel monitoring fluorometry during a snow event which covered a period of prior- and post-snowing days, in relation to environmental factors. ResultActual photosynthetic quantum yield (ΦPSII) was lowest on snow day. The daytime mean value of ΦPSII on snow day was 40% and 33% lower than that of prior and post snow. Regulatory energy dissipation (ΦNPQ) and non-photochemical quenching (NPQ) were highest on snow day, with daytime mean value of ΦNPQ being 95% and 48% higher than that of prior and post snow, respectively. The daytime mean value of NPQ on snow day was 94% and 76% higher than that of prior and post snow. Maximal quantum yield of PSII photochemistry (Fv/Fm) was 0.69 on snow day, smaller than that of prior snow, and smaller than stress line of 0.73. Fv/Fm recovered back within 3−4 days. There were opposite response trends at PAR threshold of 900 μmol/(m2·s)and at air temperature of 10 ℃, indicating different controlling environmental factors around the thresholds. Water availability was always one of the most common limitations during the stress recovery. ConclusionThere was a stress for Artemisia ordosica during the snow event. The stress was mainly induced by the synergy of low temperature and high radiation. A. ordosica acclimated to the stress by mechanism of increasing ratio of regulatory thermal energy dissipation of energy partitioning in PSII reaction center. The 3−4 days were needed for A. ordosica to recover from the snow stress. The recovery period could be shortened by condition of low radiation, moderate high temperature and high moisture. -
图 2 降雪前后叶绿素荧光参数的动态变化
ΦPSII、ΦNPQ和ΦNO分别表示实际光化学量子效率、调节性能量耗散和非调节性能量耗散。NPQ为非光化学淬灭。下同。ΦPSII, ΦNPQ and ΦNO are actual photosynthetic quantum yield, regulatory energy dissipation, and non-regulatory energy dissipation, respectively. NPQ is non-photochemical quenching. Same as below.
Figure 2. Dynamics of chlorophyll fluorescence parameters before and after the snow event
-
[1] Donat G, Lowry L, Alexander V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6(5): 508−513. doi: 10.1038/nclimate2941 [2] 葛红元, 王红义, 韦炜, 等. 春季降雪对祁连山区青海云杉林的影响[J]. 甘肃林业科技, 2014, 39(3):18−22. doi: 10.3969/j.issn.1006-0960.2014.03.005Ge H Y, Wang H Y, Wei W, et al. Effect of snow in spring on Picea crassifolia forest in Qilian Mountains[J]. Journal of Gansu Forestry Science and Technolgy, 2014, 39(3): 18−22. doi: 10.3969/j.issn.1006-0960.2014.03.005 [3] Ashraf M, Harris C. Photosynthesis under stressful environments: an overview[J]. Photosynthetica, 2013, 51(2): 163−190. doi: 10.1007/s11099-013-0021-6 [4] Pietrini F, Chaudhuri D, Thapliyal P, et al. Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery[J]. Agriculture Ecosystems & Environment, 2005, 106(2): 189−198. [5] 丁金枝, 来利明, 赵学春, 等. 荒漠化对毛乌素沙地土壤呼吸及生态系统碳固持的影响[J]. 生态学报, 2011, 31(6):1594−1603.Ding J Z, Lai L M, Zhao X C, et al. Effects of desertification on soil respiration and ecosystem carbon fixation in Mu Us sandy land[J]. Acta Ecologica Sinica, 2011, 31(6): 1594−1603. [6] Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview[J]. Chlorophyll A Fluorescence: A Signature of Photosynthesis, 2004, 19: 279−319. [7] Perks P, Osborne A, Mitchell T. Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing[J]. New Forests, 2004, 28(1): 49−62. doi: 10.1023/B:NEFO.0000031331.08847.49 [8] Hegedűs A, Sára Erdei, Janda T, et al. Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress[J]. Plant Science, 2004, 166(5): 1329−1333. doi: 10.1016/j.plantsci.2004.01.013 [9] Gilmore M, Ball C. Protection and storage of chlorophyll in overwintering evergreens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20): 11098−11101. doi: 10.1073/pnas.150237697 [10] Ensminger I, Busch F, Huner A. Photostasis and cold acclimation: sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2010, 126(1): 28−44. [11] Niinemets U. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation[J]. Forest Ecology and Management, 2010, 260(10): 1630−1639. [12] Porcar-Castell A, Pfündel E, Korhonen J, et al. A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem Ⅱ in field conditions[J]. Photosynthesis Research, 2008, 96(2): 173−179. doi: 10.1007/s11120-008-9292-3 [13] 张明艳, 贾昕, 查天山, 等. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应[J]. 中国沙漠, 2017, 37(3):475−482. doi: 10.7522/j.issn.1000-694X.2016.00021Zhang M Y, Jia X, Zha T S, et al. PSⅡ photochemical efficiency of Artemisia ordosica in response to rainfall exclusion[J]. Journal of Desert Research, 2017, 37(3): 475−482. doi: 10.7522/j.issn.1000-694X.2016.00021 [14] 夏静芳, 王玉杰, 张友焱, 等. 半固定与固定沙地油蒿枝条水势及气体交换特征[J]. 水土保持研究, 2011, 18(1):239−242.Xia J F, Wang Y J, Zhang Y Y, et al. Water potential of branch and gas exchange characteristics of Artemisia ordosica in semi-fixed and fixed sand dunes[J]. Research of Soil and Water Conservation, 2011, 18(1): 239−242. [15] 邓文红. 黑沙蒿群落植物演替过程中的化感作用研究[D]. 北京: 北京林业大学, 2016.Deng W H. Allelopathy of community in the process of plant succession[D]. Beijing: Beijing Forestry University, 2016. [16] Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11(17): 4679−4693. doi: 10.5194/bg-11-4679-2014 [17] Porcar-Castell A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris[J]. Physiologia Plantarum, 2011, 143(2): 139−153. doi: 10.1111/j.1399-3054.2011.01488.x [18] Zha T S, Wu Y J, Jia X, et al. Diurnal response of effective quantum yield of PSⅡ photochemistry to irradiance as an indicator of photosynthetic acclimation to stressed environments revealed in a xerophytic species[J]. Ecological Indicators, 2017, 74: 191−197. doi: 10.1016/j.ecolind.2016.11.027 [19] Murchie H, Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. Journal of Experimental Botany, 2013, 64(13): 3983−3998. doi: 10.1093/jxb/ert208 [20] Yajuan W, Cai R, Yun T, et al. Photosynthetic gas-exchange and PSⅡ photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila)[J]. Ecological Indicators, 2018, 94: 130−138. doi: 10.1016/j.ecolind.2018.06.040 [21] 韩旖旎. 两种沙生灌木适应波动环境的非光化学淬灭调节[D]. 北京: 北京林业大学, 2016.Han Y N. Regulation of non-photochemical quenching in photosynthetica acclimation of two xerophytic shrubs to fluctuating environments[D]. Beijing: Beijing Forestry University, 2016. [22] Terashima I. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion[J]. Journal of Experimental Botany, 2005, 57(2): 343−354. [23] Ren C, Wu Y, Zha T, et al. Seasonal Changes in photosynthetic energy utilization in a desert shrub (Artemisia ordosica Krasch.) during its different phenophases[J]. Forests, 2018, 9(4): 171−176. doi: 10.3390/f9040176 [24] Dennis J, Berg E, Sandell D, et al. Cooling the NGI - an approach to size a nebulised aerosol more accurately[J]. Pharmeur Sci Notes, 2008, 2008(1): 27−30. [25] 杨毅. 中国云杉属主要物种光系统Ⅱ热稳定性研究[D]. 兰州: 兰州大学, 2017.Yang Y. Thermal stability of PSⅡ of main Picea species in China[D]. Lanzhou: Lanzhou University, 2017. [26] Yini H, Juying W, Yun T, et al. Light energy partitioning and photoprotection in an exotic species (Salix Psammophila) grown in a semi-arid area of northwestern China[J/OL]. Forests, 2018, 9(6): 341 [2018−12−19]. https://www.mdpi.com/1999-4907/9/6/341. [27] Horton P, Johnson P, Perez-Bueno L, et al. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem Ⅱ in higher plant grana membranes regulate light harvesting states?[J]. The FEBS Journal, 2008, 275(6): 1069−1079. doi: 10.1111/j.1742-4658.2008.06263.x [28] 吴雅娟, 查天山, 贾昕, 等. 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子[J]. 生态学杂志, 2015, 34(2):319−325.Wu Y J, Zha T S, Jia X, et al. Temporal variation and controlling factors of photochemical efficiency and non-photochemical quenching in Artemisia ordosica[J]. Chinese Journal of Ecology, 2015, 34(2): 319−325. [29] Sacharz J, Giovagnetti V, Ungerer P, et al. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex Ⅱ to control non-photochemical quenching[J/OL]. Nature Plants, 2017, 3: 16225 [2018−12−16]. https://www.nature.com/articles/nplants2016225. [30] Faik A, Popova V, Velitchkova M. Effects of long-term action of high temperature and high light on the activity and energy interaction of both photosystems in tomato plants[J]. Photosynthetica, 2016, 54(4): 611−619. doi: 10.1007/s11099-016-0644-5 [31] Flexas J, Bota J, Escalona J M, et al. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations[J]. Functional Plant Biology, 2002, 29(4): 461−471. doi: 10.1071/PP01119 -