高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固沙植被景观格局变化及其影响因子

高岩 张宇清 秦树高 张举涛 刘振

高岩, 张宇清, 秦树高, 张举涛, 刘振. 固沙植被景观格局变化及其影响因子[J]. 北京林业大学学报, 2020, 42(4): 102-112. doi: 10.12171/j.1000-1522.20190061
引用本文: 高岩, 张宇清, 秦树高, 张举涛, 刘振. 固沙植被景观格局变化及其影响因子[J]. 北京林业大学学报, 2020, 42(4): 102-112. doi: 10.12171/j.1000-1522.20190061
Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. doi: 10.12171/j.1000-1522.20190061
Citation: Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. doi: 10.12171/j.1000-1522.20190061

固沙植被景观格局变化及其影响因子

doi: 10.12171/j.1000-1522.20190061
基金项目: 国家重点研发计划课题(2016YFC0500905),中央高校基本科研业务费专项(2015ZCQ-SB-02)
详细信息
    作者简介:

    高岩。主要研究方向:荒漠化遥感监测。Email:gaoyan2012@bjfu.edu.cn  地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    秦树高,博士,高级实验师。主要研究方向:荒漠化防治。Email:qinshugao@bjfu.edu.cn  地址:同上

  • 中图分类号: S288;S181;S127

Landscape pattern change and its influencing factors of sand-binding vegetation

  • 摘要: 目的植物固沙作为重要的防沙治沙手段,在中国北方沙区生态重建与恢复工作中应用已60余年。了解不同固沙植被的景观格局动态及影响因子,可以为沙区的植被建设提供依据。方法本文通过中国植被图数据,选取了以蒿属(褐沙蒿和黑沙蒿为主)、锦鸡儿属(中间锦鸡儿、小叶锦鸡儿和柠条锦鸡儿为主)、榆树和樟子松为优势种的典型植被,在四大沙地(毛乌素、浑善达克、科尔沁和呼伦贝尔沙地)内的分布区域,采用景观脆弱度指数和地理探测器模型,分析了其在1990—2015年间景观格局变化及其影响因子。结果蒿属和锦鸡儿属灌丛总体呈扩张趋势且逐渐稳定,景观格局主要受年降水量的影响(贡献率分别为 0.31、0.41),榆树疏林和人工樟子松林表现出衰退趋势,其主要影响因子分别是土地覆盖(贡献率为 0.34)和生长季气温(贡献率为 0.24)。结论在未来可能的气候条件下,蒿属灌丛和锦鸡儿属灌丛能够稳定存在并继续发挥其防风固沙的生态功能;榆树疏林和人工樟子松林可能会发生进一步退化,在植被建设工程中需要根据沙区气候条件合理选择树种并加强管理。

     

  • 图  1  四大沙地区位及其典型植被分布

    Figure  1.  Location and typical vegetation distribution of the four sandy lands in northern China

    图  2  四大沙地典型植被不同盖度斑块数量

    MU、OT、HO和HU和分别代表毛乌素、浑善达克、科尔沁和呼伦贝尔沙地,下同。MU, Mu Us Sandy Land; OT, Otindag Sandy Land; HO, Horqin Sandy Land; HU, Hulunbuir Sandy Land, same as below.

    Figure  2.  Patch number of different coverage for typical vegetation in four sandy lands

    图  3  沙地典型植被盖度动态图

    Figure  3.  Coverage change pattern for typical vegetation in four sandy lands

    图  4  沙地典型植被景观脆弱度指数

    Figure  4.  Landscape vulnerability index of typicalvegetation in four sandy lands

    图  5  沙地典型植被覆盖度影响因子的贡献率

    LUCC.土地覆盖变化;PRE.多年平均降水量;TEM.多年平均气温;GST.多年平均生长季气温;DEM.海拔;SLO.坡度;ASP.坡向。LUCC, land use and land cover change; PRE, average annual precipitation; TEM, average annual air temperature; GST, average annual air temperature in growth season; DEM, digital elevation model; SLO, slope degree; ASP, slope aspect.

    Figure  5.  Contribution rate of influencing factors on typical vegetation coverage in sandy lands

    表  1  沙地典型植被覆盖度分级

    Table  1.   Coverage grading of typical vegetationin four sandy lands

    等级
    Grade
    等级代码
    Grade code
    植被覆盖度
    Fraction of vegetation coverage
    低度 Low≤ 10%
    中低 Low-medium10% ~ 20%
    中度 Medium20% ~ 40%
    中高 Medium-high40% ~ 60%
    高度 High≥ 60%
    下载: 导出CSV

    表  2  1990—2015年沙地典型植被分布区土地覆盖转移面积比例

    Table  2.   LUCC change proportion of typical vegetation distributing area in sandy lands from 1990 to 2015 %

    变化方式
    Change type
    蒿属灌丛
    Artemisia sp. shrub
    锦鸡儿属灌丛
    Caragana sp. shrub
    榆树疏林
    Ulmus sp. sparse forest
    樟子松林
    P. sylvestris var. mongolica forest
    未变化
    Unchanged
    75.5680.1169.5790.83
    非植被到植被
    Non-vegetation to vegetation
    11.729.0713.315.98
    植被到非植被
    Vegetation to non-vegetation
    12.7110.8817.123.19
    下载: 导出CSV

    表  3  沙地典型植被景观格局指数

    Table  3.   Landscape-level index of typical vegetation in sandy lands

    典型植被
    Typical vegetation
    沙地
    Sandy land
    景观指数
    Landscape index
    年份 Year
    199019952000200520102015
    蒿属灌丛
    Artemisia sp. shrub
    呼伦贝尔HU ED 110.40 131.27 169.84 129.40 129.46 65.63
    LSI 32.41 37.90 46.11 37.10 37.54 19.47
    AI 85.00 82.21 78.38 82.91 82.49 91.49
    科尔沁HO ED 136.08 179.55 163.03 128.42 207.69 62.65
    LSI 163.25 211.00 193.84 154.08 214.69 75.53
    AI 80.38 74.94 76.82 81.44 74.42 91.12
    毛乌素MU ED 149.96 175.76 316.05 137.05 219.45 77.44
    LSI 444.88 562.93 527.99 418.64 605.43 259.11
    AI 82.89 76.08 70.11 84.31 74.07 88.90
    锦鸡儿属灌丛
    Caragana sp. shrub
    科尔沁HO ED 104.99 129.83 186.65 138.22 312.31 106.59
    LSI 90.20 106.89 118.79 121.11 155.30 95.03
    AI 86.70 83.03 80.60 80.99 67.88 86.78
    浑善达克OT ED 150.47 170.65 142.26 119.91 129.35 65.24
    LSI 284.11 345.79 279.93 235.75 274.62 198.22
    AI 82.74 76.77 80.88 84.24 81.29 90.75
    毛乌素MU ED 78.10 152.78 219.85 66.04 196.63 57.08
    LSI 105.57 214.65 148.85 87.32 189.13 81.32
    AI 91.83 78.01 81.45 92.93 82.56 91.97
    榆树疏林
    Ulmus sp. sparse forest
    呼伦贝尔HU ED 193.15 208.27 175.02 331.82 61.54 44.66
    LSI 40.74 43.83 36.25 67.47 33.05 39.47
    AI 72.93 70.75 76.80 54.85 92.17 94.72
    科尔沁HO ED 128.65 160.35 160.77 131.81 199.61 64.80
    LSI 383.49 383.49 453.29 394.24 505.40 194.30
    AI 81.48 77.34 78.62 80.84 76.28 90.75
    浑善达克OT ED 171.83 193.17 135.80 90.54 142.63 96.99
    LSI 242.50 315.41 291.63 262.77 237.54 215.34
    AI 81.25 72.53 80.58 87.33 79.38 86.14
    樟子松林
    P. sylvestris var. mongolica forest
    呼伦贝尔HU ED 104.85 114.32 129.61 166.78 87.85 96.16
    LSI 107.82 117.56 133.24 170.99 87.13 98.75
    AI 84.93 83.53 81.22 75.83 87.62 86.33
    科尔沁HO ED 97.00 171.74 182.92 183.06 248.81 98.13
    LSI 28.96 47.12 47.79 55.11 61.44 29.85
    AI 87.90 79.85 79.02 74.78 69.84 86.82
    浑善达克OT ED 115.30 47.57 109.45 108.14 127.45 112.27
    LSI 40.88 17.00 39.06 38.47 45.32 41.69
    AI 83.58 93.59 84.45 84.65 81.70 83.90
    注:ED.景观边缘密度;LSI.景观形状指数;AI.聚集度。Notes: ED, landscape edge density;LSI, landscape shape index;AI, aggregation index.
    下载: 导出CSV
  • [1] Schlesinger W, Raikes J, Hartley A, et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology, 1996, 77(2): 364−374.
    [2] 国家林业局. 中国荒漠化和沙化状况公报[EB/OL]. (2015−12−29) [2019−01−14]. http://www.forestry.gov.cn/main/4170/20151229/880564.html.

    State Forestry Administration. Bulletin of desertification and desertification in China[EB/OL]. (2015−12−29) [2019−01−14]. http://www.forestry.gov.cn/main/4170/20151229/880564.html.
    [3] Zhang J, Zhang Y, Qin S, et al. Effects of seasonal variability of climatic factors on vegetation coverage across drylands in northern China[J]. Land Degradation & Development, 2018, 29(6): 1782−1791.
    [4] 李新荣, 周海燕, 王新平, 等. 中国干旱沙区的生态重建与恢复: 沙坡头站60年重要研究进展综述[J]. 中国沙漠, 2016, 36(2):247−264.

    Li X R, Zhou H Y, Wang X P, et al. Ecological restoration and recovery in arid desert region of China: a review for 60 year research progresses of Shapotou Desert Research and Experiment Station, Chinese Academy of Sciences[J]. Journal of Desert Research, 2016, 36(2): 247−264.
    [5] Houerou H L. Restoration and rehabilitation of arid and semiarid mediterranean ecosystems in North Africa and West Asia: a review[J]. Arid Soil Research and Rehabilitation, 2000, 14(1): 3−14. doi: 10.1080/089030600263139
    [6] Wei F, Wang S, Fu B, et al. Vegetation dynamic trends and the main drivers detected using the ensemble empirical mode decomposition method in East Africa[J]. Land Degradation & Development, 2018, 29(8): 2542−2553.
    [7] Du Z, Xu X, Zhang H, et al. Geographical detector-based identification of the impact of major determinants on aeolian desertification risk[J/OL]. PloS One, 2016, 11(3): e0151331 [2019−01−11]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151331.
    [8] Turner M, Romme W, Gardner R H, et al. A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes[J]. Landscape Ecology, 1993, 8(3): 213−227. doi: 10.1007/BF00125352
    [9] 吴波, 慈龙骏. 毛乌素沙地景观格局变化研究[J]. 生态学报, 2001, 21(2):191−196. doi: 10.3321/j.issn:1000-0933.2001.02.003

    Wu B, Ci L J. Temporal and spatial patterns of landscape in the Mu Us Sand Land, northern China[J]. Acta Ecologica Sinica, 2001, 21(2): 191−196. doi: 10.3321/j.issn:1000-0933.2001.02.003
    [10] 周淑琴, 荆耀栋, 张青峰, 等. 毛乌素沙地南缘植被景观格局演变与空间分布特征[J]. 生态学报, 2013, 33(12):3774−3782. doi: 10.5846/stxb201208251201

    Zhou S Q, Jing Y D, Zhang Q F, et al. Vegetation landscape pattern change and characteristics of spatial distribution in south edge of Mu Us Sandy Land[J]. Acta Ecologica Sinica, 2013, 33(12): 3774−3782. doi: 10.5846/stxb201208251201
    [11] Piao S, Fang J, Ji W, et al. Variation in a satellite-based vegetation index in relation to climate in China[J]. Journal of Vegetation Science, 2004, 15(2): 219−226. doi: 10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2
    [12] Tischendorf L. Can landscape indices predict ecological processes consistently?[J]. Landscape Ecology, 2001, 16(3): 235−254. doi: 10.1023/A:1011112719782
    [13] Zhou D, Zhao X, Hu H, et al. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China[J]. Landscape Ecology, 2015, 30(9): 1613−1626. doi: 10.1007/s10980-015-0151-2
    [14] 高宾, 李小玉, 李志刚, 等. 基于景观格局的锦州湾沿海经济开发区生态风险分析[J]. 生态学报, 2011, 31(12):3441−3450.

    Gao B, Li X Y, Li Z G, et al. Assessment of ecological risk of coastal economic developing zone in Jinzhou Bay based on landscape pattern[J]. Acta Ecologica Sinica, 2011, 31(12): 3441−3450.
    [15] 彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望[J]. 地理学报, 2015, 70(4):664−677.

    Peng J, Dang W X, Liu Y X, et al. Review on landscape ecological risk assessment[J]. Acta Geographica Sinica, 2015, 70(4): 664−677.
    [16] 高杨, 黄华梅, 吴志峰. 基于投影寻踪的珠江三角洲景观生态安全评价[J]. 生态学报, 2010, 30(21):5894−5093.

    Gao Y, Huang H M, Wu Z F. Landscape ecological security assessment based on projection pursuit: a case study of nine cities in the Pearl River Delta[J]. Acta Ecologica Sinica, 2010, 30(21): 5894−5093.
    [17] 孙才志, 闫晓露, 钟敬秋. 下辽河平原景观格局脆弱性及空间关联格局[J]. 生态学报, 2014, 34(2):247−257.

    Sun C Z, Yan X L, Zhong J Q. Evaluation of the landscape patterns vulnerability and analysis of spatial correlation patterns in the lower reaches of Liaohe River Plain[J]. Acta Ecologica Sinica, 2014, 34(2): 247−257.
    [18] 梁佳欢, 李新举. 南四湖湿地景观格局脆弱度的时空分异特征[J]. 应用生态学报, 2018, 29(2):626−634.

    Liang J H, Li X J. Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake Wetland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 626−634.
    [19] 任志远, 张晗. 银川盆地土地利用变化对景观格局脆弱性的影响[J]. 应用生态学报, 2016, 27(1):243−249.

    Ren Z Y, Zhang H. Effects of land use change on landscape pattern vulnerability in Yinchuan Basin, Northwest China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 243−249.
    [20] Guo L, Cheng J, Luedeling E, et al. Critical climate periods for grassland productivity on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 233: 101−109. doi: 10.1016/j.agrformet.2016.11.006
    [21] Zhang F, Zhang H, Evans M R, et al. Vegetation patterns generated by a wind driven sand-vegetation system in arid and semi-arid areas[J]. Ecological Complexity, 2017, 31: 21−33. doi: 10.1016/j.ecocom.2017.02.005
    [22] 王新军, 赵成义, 杨瑞红, 等. 基于像元二分法的沙地植被景观格局特征变化分析[J]. 农业工程学报, 2016, 32(3):285−294. doi: 10.11975/j.issn.1002-6819.2016.03.041

    Wang X J, Zhao C Y, Yang R H, et al. Dynamic characteristics of sandy vegetation landscape pattern based on dimidiate pixel model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 285−294. doi: 10.11975/j.issn.1002-6819.2016.03.041
    [23] 李新荣, 肖洪浪, 刘立超, 等. 腾格里沙漠沙坡头地区固沙植被对生物多样性恢复的长期影响[J]. 中国沙漠, 2005, 25(2):173−181. doi: 10.3321/j.issn:1000-694X.2005.02.003

    Li X R, Xiao H L, Liu L C, et al. Long-term effects of sand-binding vegetation on the restoration of biodiversity in Shapotou Region of Tengger Desert, Northern China[J]. Journal of Desert Research, 2005, 25(2): 173−181. doi: 10.3321/j.issn:1000-694X.2005.02.003
    [24] 唐蛟, 蒋德明, 王永翠. 疏林草原榆树种子-幼苗更新过程研究进展[J]. 生态学杂志, 2014, 33(4):1114−1120.

    Tang J, Jiang D M, Wang Y C, et al. A review on the process of seed-seedling regeneration of Ulmus pumila in sparse forest grassland[J]. Chinese Journal of Ecology, 2014, 33(4): 1114−1120.
    [25] 李露露, 李丽光, 陈振举, 等. 辽宁省人工林樟子松径向生长对水热梯度变化的响应[J]. 生态学报, 2015, 35(13):4508−4517.

    Li L L, Li L G, Chen Z J, et al. Responses of Pinus sylvestris var. mongolica to gradient change of hydrothermal in plantations in Liaoning Province[J]. Acta Ecologica Sinica, 2015, 35(13): 4508−4517.
    [26] 朱教君, 康宏樟, 许美玲. 科尔沁沙地南缘樟子松(Pinus sylvestris var. mongolica)人工林天然更新障碍[J]. 生态学报, 2007, 27(10):4086−4095. doi: 10.3321/j.issn:1000-0933.2007.10.016

    Zhu J J, Kang H Z, Xu M L. Natural regeneration barriers of Pinus sylvestris var. mongolica plantations in southern Keerqin Sandy Land, China[J]. Acta Ecologica Sinica, 2007, 27(10): 4086−4095. doi: 10.3321/j.issn:1000-0933.2007.10.016
    [27] 蒋德明, 张娜, 李雪华, 等. 我国固沙植物抗旱性及基于水量平衡的沙地造林合理密度研究进展[J]. 西北林学院学报, 2013, 28(6):75−83. doi: 10.3969/j.issn.1001-7461.2013.06.14

    Jiang D M, Zhang N, Li X H, et al. Plant drought resistance and afforestation density based on water balance in sandy land, China: a review[J]. Journal of Northwest Forestry University, 2013, 28(6): 75−83. doi: 10.3969/j.issn.1001-7461.2013.06.14
    [28] Zhu Y, Zhang J, Zhang Y, et al. Responses of vegetation to climatic variations in the desert region of northern China[J]. Catena, 2019, 175: 27−36. doi: 10.1016/j.catena.2018.12.007
    [29] 刘振, 董智, 李红丽, 等. 浑善达克沙地榆树疏林幼苗更新空间格局[J]. 生态学报, 2013, 33(1):294−301. doi: 10.5846/stxb201108281253

    Liu Z, Dong Z, Li H L, et al. Spatial pattern of seedling regeneration of Ulmus pumila woodland in the Otindag Sand Land[J]. Acta Ecologica Sinica, 2013, 33(1): 294−301. doi: 10.5846/stxb201108281253
    [30] 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报, 2010, 26(2):7−15. doi: 10.3969/j.issn.1673-503X.2010.02.002

    Qian Y L, Lü H Q, Zhang Y H. Application and assessment of spatial interpolation method and daily meteorological elements based on ANUSPLIN software[J]. Journal of Meteorology and Environment, 2010, 26(2): 7−15. doi: 10.3969/j.issn.1673-503X.2010.02.002
    [31] 宁静, 张树文, 王蕾, 等. 农林交错区景观敏感性分析—以黑龙江省牡丹江地区为例[J]. 东北林业大学学报, 2009, 37(1):35−38. doi: 10.3969/j.issn.1000-5382.2009.01.014

    Ning J, Zhang S W, Wang L, et al. Sensitivity analysis of landscape in forest-agriculture ecotones: a case study of Mudanjiang in Heilongjiang Province[J]. Journal of Northeast Forestry University, 2009, 37(1): 35−38. doi: 10.3969/j.issn.1000-5382.2009.01.014
    [32] Liang P, Yang X. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors[J]. Catena, 2016, 145: 321−333. doi: 10.1016/j.catena.2016.06.023
    [33] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116−134.

    Wang J F, Xu C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134.
    [34] Wang J, Zhang T, Fu B. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250−256. doi: 10.1016/j.ecolind.2016.02.052
    [35] 杨洪晓, 张金屯, 吴波, 等. 油蒿 (Artemisia ordosica) 对半干旱区沙地生境的适应及其生态作用[J]. 北京师范大学学报 (自然科学版), 2004, 40(5):684−689.

    Yang H X, Zhang J T, Wu B, et al. Adaptation of Artemisia ordosica to temperate arid sandy land and its roles in habitat shift[J]. Journal of Beijing Normal University (Natural Science), 2004, 40(5): 684−689.
    [36] 王林龙, 李清河, 徐军, 等. 不同种源油蒿形态与生理特征对干旱胁迫的响应[J]. 林业科学, 2015, 51(2):37−43.

    Wang L L, Li Q H, Xu J, et al. Morphology and physiology characteristic responses of different provenances of Artemisia ordosica to drought stress[J]. Scientia Silvae Sinicae, 2015, 51(2): 37−43.
    [37] 刘利. 松嫩平原榆树疏林生态系统退化机制的研究[D]. 长春: 东北师范大学, 2012.

    Liu L. The degradation mechanisms of Ulmus pumila woodlands in the Songnen Plains[D]. Changchun: Northeast Normal University, 2012.
    [38] 宋立宁, 朱教君, 郑晓. 基于沙地樟子松人工林衰退机制的营林方案[J]. 生态学杂志, 2017, 36(11):3249−3256.

    Song L N, Zhu J J, Zheng X. Forestation and management scheme of Pinus sylvestris var. mongolica plantations in sandy lands based on their decline mechanisms[J]. Chinese Journal of Ecology, 2017, 36(11): 3249−3256.
    [39] Liu Y, Wang A, An Y, et al. Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China[J/OL]. Plant, Cell & Environment, 2018: 13160 [2019−01−13]. https://onlinelibrary.wiley.com/doi/abs/10.111/pce.13160.
    [40] 吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 2004, 15(12):2225−2228. doi: 10.3321/j.issn:1001-9332.2004.12.006

    Wu X Y, Jiang F Q, Li X D, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land[J]. Chinese Journal of Application Ecology, 2004, 15(12): 2225−2228. doi: 10.3321/j.issn:1001-9332.2004.12.006
    [41] Wu Z, Wu J, Liu J, et al. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin sand source region of China[J]. Ecological Engineering, 2013, 52: 37−50.
    [42] Zhang G, Xu X, Zhou C, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years[J]. Journal of Geographical Sciences, 2011, 21(4): 634−650. doi: 10.1007/s11442-011-0869-y
    [43] Cacho M D, Lloret F. Resilience of Mediterranean shrubland to a severe drought episode: the role of seed bank and seedling emergence[J]. Plant Biology, 2012, 14(3): 458−466. doi: 10.1111/j.1438-8677.2011.00523.x
    [44] Zhou D, Zhao X, Hu H, et al. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China[J]. Landscape Ecology, 2015, 3(9): 1613−1626.
    [45] 刘新平, 何玉惠, 魏水莲, 等. 科尔沁沙地樟子松(Pinus sylvestris var. mongolica)生长对降水和温度的响应[J]. 中国沙漠, 2016, 36(1):57−63. doi: 10.7522/j.issn.1000-694X.2015.00105

    Liu X P, He Y H, Wei S L, et al. Growth response of Pinus sylvestris var. mongolica to precipitation and air temperature in the Horqin Sandy Land[J]. Journal of Desert Research, 2016, 36(1): 57−63. doi: 10.7522/j.issn.1000-694X.2015.00105
    [46] 王晓春, 宋来萍, 张远东. 大兴安岭北部樟子松树木生长与气候因子的关系[J]. 植物生态学报, 2011, 35(3):294−302. doi: 10.3724/SP.J.1258.2011.00294

    Wang X C, Song L P, Zhang Y D. Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China[J]. Chinese Journal of Plant Ecology, 2011, 35(3): 294−302. doi: 10.3724/SP.J.1258.2011.00294
    [47] D’Arrigo R, Kaufmann K, Davi N, et al. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada[J]. Global Biogeochemical Cycles, 2004, 18(3): 10−29.
    [48] Pichler P, Oberhuber W. Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003[J]. Forest Ecology and Management, 2007, 242(2−3): 688−699. doi: 10.1016/j.foreco.2007.02.007
    [49] Li Y, Huang J, Ji M, et al. Dryland expansion in northern China from 1948 to 2008[J]. Advances in Atmospheric Sciences, 2015, 32(6): 870−876. doi: 10.1007/s00376-014-4106-3
    [50] Shao Y, Zhang Y, Wu X, et al. Relating historical vegetation cover to aridity patterns in the greater desert region of northern China: implications to planned and existing restoration projects[J]. Ecological Indicators, 2018, 89: 528−537. doi: 10.1016/j.ecolind.2018.02.035
    [51] 邵艳莹. 中国四大沙地植被动态变化及其对气候变化的响应[D]. 北京: 北京林业大学, 2018.

    Shao Y Y. Vegetation dynamic and responses to climate change in four greater sandy lands of China[D]. Beijing: Beijing Forestry University, 2018.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  567
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-04-23
  • 网络出版日期:  2020-03-24
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回