高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气候区失稳性坡面植被生物量与土壤密度的关系

吴建召 孙凡 崔羽 贺静雯 刘颖 李键 林勇明 王道杰

吴建召, 孙凡, 崔羽, 贺静雯, 刘颖, 李键, 林勇明, 王道杰. 不同气候区失稳性坡面植被生物量与土壤密度的关系————以云南省昆明市东川区蒋家沟流域为例[J]. 北京林业大学学报, 2020, 42(3): 24-35. doi: 10.12171/j.1000-1522.20190066
引用本文: 吴建召, 孙凡, 崔羽, 贺静雯, 刘颖, 李键, 林勇明, 王道杰. 不同气候区失稳性坡面植被生物量与土壤密度的关系————以云南省昆明市东川区蒋家沟流域为例[J]. 北京林业大学学报, 2020, 42(3): 24-35. doi: 10.12171/j.1000-1522.20190066
Wu Jianzhao, Sun Fan, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie. Relationship between vegetation biomass and soil bulk density on unstable slopes in different climatic regions: a case study of Jiangjiagou Watershed in Dongchuan District of Kunming City, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 24-35. doi: 10.12171/j.1000-1522.20190066
Citation: Wu Jianzhao, Sun Fan, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie. Relationship between vegetation biomass and soil bulk density on unstable slopes in different climatic regions: a case study of Jiangjiagou Watershed in Dongchuan District of Kunming City, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 24-35. doi: 10.12171/j.1000-1522.20190066

不同气候区失稳性坡面植被生物量与土壤密度的关系

————以云南省昆明市东川区蒋家沟流域为例

doi: 10.12171/j.1000-1522.20190066
基金项目: 国家自然科学基金项目(41790434),中国科学院山地灾害与地表过程重点实验室开放研究基金资助项目(2019),福建农林大学杰出青年科研人才计划项目(xjq2017016),福建农林大学科技创新专项基金项目(CXZX2017111、CXZX2017283)
详细信息
    作者简介:

    吴建召。主要研究方向:自然资源管理。Email:wjzhao168@163.com  地址:350002 福建省福州市仓山区上下店路15号福建农林大学林学院

    责任作者:

    林勇明,博士,教授。主要研究方向:区域资源优化、生态学。Email:monkey1422@163.com  地址:同上

Relationship between vegetation biomass and soil bulk density on unstable slopes in different climatic regions: a case study of Jiangjiagou Watershed in Dongchuan District of Kunming City, Yunnan Province of southwestern China

  • 摘要: 目的探讨泥石流频发流域不同气候类型失稳性坡面土壤密度与生物量特征及其关系,是因地制宜进行生态恢复的先决条件,对促进该区域生态系统稳定发展及其变化的准确评估极为重要。方法选择蒋家沟流域温带湿润山岭区(大地阴坡和小尖风阳坡)、亚热带和暖温带半湿润区(多照沟阳坡)、亚热带干热河谷区(大凹子沟阴坡和查菁沟阳坡)3个主要气候区为研究区,在各气候区失稳性坡面的不同区段(稳定区、失稳区、堆积区)设置样地,进行植被群落调查、植物和分层土壤样品(0 ~ 5 cm、5 ~ 10 cm、10 ~ 20 cm)采集,测定植物地上和地下部分生物量及土壤密度等。结果(1)乔木生物量在亚热带和暖温带半湿润区显著高于温带湿润山岭区(P < 0.05);凋落物生物量则表现为温带湿润山岭区显著高于亚热带和暖温带半湿润区(P < 0.05);在无乔木分布的亚热带干热河谷区失稳性坡面,地上生物量、地下生物量和总生物量均表现为稳定区 > 失稳区 > 堆积区(P < 0.05)。(2)不同气候区失稳性坡面的草本植物地上生物量和地下生物量的关系符合根冠异速生长幂函数模型,表现出稳定的生长比例。(3)总体上,气候区和坡面不同区段及其交互作用对生物量和分层土壤密度均存在显著的影响(P < 0.05),但不同气候区坡面土壤密度空间变异不大,表现为弱变异性。(4)随0 ~ 5 cm土壤密度增大,地上、地下生物量和总生物量均下降,但根冠比无显著变化。结论本研究阐明了泥石流频发流域土壤密度、地下与地上生物量和根冠比沿环境梯度的空间分布格局,系统分析其相互间的关系,促进了环境因子对植被调控机制方面的认识,对基于环境因子效应开展生态恢复研究具有重要意义。

     

  • 图  1  研究区地理位置和样地分布示意图

    Figure  1.  Location of study area and sample plot distribution

    图  2  根冠异速生长模型

    Figure  2.  Allometric growth model of root and crown

    表  1  不同气候区样地基本概况

    Table  1.   Characteristics of study areas in different climate regions

    气候类型
    Climate type
    样地
    Sample plot
    位置
    Location
    区段
    Section
    坡度
    Slope degree/(°)
    植被覆盖度
    Vegetation coverage/%
    优势物种
    Dominant species
    亚热带干热河谷区
    Subtropical dry-hot valley region
    大凹子沟阴坡
    Daaozi Gully shady slope (Ⅰ)
    103°08′30″ E,26°14′38″ N稳定区
    Stable area
    1692扭黄茅Heteropogon contortus、拟金茅Eulaliopsis binata
    失稳区
    Unstable area
    2562扭黄茅Heteropogon contortus
    堆积区
    Accumulation area
    3028鬼针草Bidens pilosa
    查菁沟阳坡
    Chajing Gully sunny slope (Ⅱ)
    103°08′01″ E,26°15′06″ N稳定区
    Stable area
    2592扭黄茅Heteropogon contortus、黄背草Themeda triandra、田菁Sesbania cannabina
    失稳区
    Unstable area
    3063田菁Sesbania cannabina、荩草Arthraxon hispidus、扭黄茅Heteropogon contortus
    堆积区
    Accumulation area
    4032扭黄茅Heteropogon contortus、荩草Arthraxon hispidus、铁苋菜Acalypha australis
    亚热带和暖温带半湿润区
    Subtropical and warm temperate subhumid region
    多照沟阳坡
    Duozhao Gully sunny slope (Ⅲ)
    103°11′02″ E,26°14′29″ N稳定区
    Stable area
    2070云南松Pinus yunnanensis
    失稳区
    Unstable area
    3725艾纳香Blumea balsamifera、茅Imperata cylindrica、艾Artemisia argyi
    堆积区
    Accumulation area
    4554铁苋菜Acalypha australis、艾Artemisia argyi、菊叶香藜Chenopodium foetidum
    温带湿润山岭区
    Temperate humid mountain ridge region
    大地阴坡
    Dadi shady slope (Ⅳ)
    103°11′49″ E,26°16′32″ N稳定区
    Stable area
    2775鹅绒委陵菜Potentilla anserine、黄独Dioscorea bulbifera、画眉草Eragrostis pilosa
    失稳区
    Unstable area
    3557鹅绒委陵菜Potentilla anserine、香薷Elsholtzia ciliata、紫苑Aster tataricus
    堆积区
    Accumulation area
    4536野棉花Anemone vitifolia、东方草莓Fragaria orientalis、景天Androsace bulleyana
    小尖风阳坡Xiaojianfeng sunny slope (Ⅴ)103°10′55″ E,26°16′46″ N稳定区
    Stable area
    3065东方草莓Fragaria orientalis、老鹳草Geranium wilfordii、广布野豌豆Vicia cracca
    失稳区
    Unstable area
    3838毛马唐Digitaria chrysoblephara、广布野豌豆Vicia cracca、牛至Origanum vulgare
    堆积区
    Accumulation area
    4620牛筋草Eleusine indica、牛至Origanum vulgare、香薷Elsholtzia ciliata
    下载: 导出CSV

    表  2  不同气候区失稳性坡面植被生物量

    Table  2.   Vegetation biomass for unstable slope of different climate regions g/m2

    生物量
    Biomass
    区段
    Section
    大凹子沟阴坡
    Daaozi Gully shady slope (Ⅰ,n = 9)
    查菁沟阳坡
    Chajing Gully sunny slope (Ⅱ,n = 9)
    多照沟阳坡
    Duozhao Gully sunny slope (Ⅲ,n = 3)
    大地阴坡
    Dadi shady slope (Ⅳ,n = 3)
    小尖风阳坡
    Xiaojianfeng sunny slope (Ⅴ,n = 3)
    乔木生物量
    Tree biomass
    稳定区
    Stable area
    4 973.01 ± 212.12a2 508.95 ± 134.37b1 896.72 ± 130.14c
    灌木生物量
    Shrub biomass
    稳定区
    Stable area
    1 9761 9761 976
    凋落物生物量
    Litter biomass
    稳定区
    Stable area
    244.75 ± 55.61b554.20 ± 77.37a521.40 ± 136.45a
    草本地上生物量
    Herbaceous aboveground biomass
    稳定区
    Stable area
    444.76 ± 39.50 Aa276.13 ± 48.91Ab48.87 ± 1.03Ac21.20 ± 8.41Bc38.55 ± 8.72Ac
    失稳区
    Unstable area
    259.18 ± 31.82Ba96.03 ± 8.87Bb110.60 ± 25.16Ab86.17 ± 7.28ABb39.97 ± 6.65Ab
    堆积区
    Accumulation area
    38.11 ± 5.64Cc53.29 ± 6.49Cb103.72 ± 24.64Aa165.47 ± 41.61Aa46.57 ± 9.28Ab
    草本地下生物量
    Herbaceous underground biomass
    稳定区
    Stable area
    161.11 ± 20.71Aa55.82 ± 10.16Ab31.83 ± 1.53Bb22.93 ± 13.00Ab29.29 ± 7.16Ab
    失稳区
    Unstable area
    102.36 ± 12.22Ba34.79 ± 6.43Bb107.68 ± 10.56Aa106.17 ± 26.22Aa79.03 ± 16.63Aab
    堆积区
    Accumulation area
    10.94 ± 2.51Cc23.68 ± 4.58Cb60.25 ± 16.70ABa55.53 ± 16.13Aa34.97 ± 9.01Aab
    草本总生物量
    Herbaceous total biomass
    稳定区
    Stable area
    605.87 ± 57.15Aa331.95 ± 57.36Ab80.70 ± 1.46Bb44.13 ± 21.13Bb67.84 ± 15.67Ab
    失稳区
    Unstable area
    361.53 ± 35.77Ba130.82 ± 13.41Bb218.28 ± 35.67Aab192.33 ± 31.30ABb119.00 ± 23.27Ab
    堆积区
    Accumulation area
    49.05 ± 7.64Cc76.97 ± 10.26Cb163.97 ± 22.08ABa221.00 ± 57.39Aa81.53 ± 11.59Ab
    草本根冠比
    Herbaceous root shoot ratio
    稳定区
    Stable area
    0.36 ± 0.04Abc0.21 ± 0.02Ac0.65 ± 0.04Aa1.01 ± 0.29Aa0.76 ± 0.05Aa
    失稳区
    Unstable area
    0.46 ± 0.09Ac0.36 ± 0.06Ac1.03 ± 0.13Ab1.22 ± 0.25Ab1.95 ± 0.08Aa
    堆积区
    Accumulation area
    0.28 ± 0.05Ab0.42 ± 0.06Aab0.74 ± 0.37Aab0.33 ± 0.03Bab0.82 ± 0.23Aa
    注:数据为均值 ± 标准误;同列不同大写字母表示同一气候区各样地不同区段间差异显著(P < 0.05);同行不同小写字母表示不同样地差异显著(P < 0.05)。下同。Notes: data are mean ± standard error; different capital letters in the same column indicate significant differences between different sections of the same climate region (P < 0.05); different lowercase letters in the same row indicate significant differences between different sample plots (P < 0.05). Same as below.
    下载: 导出CSV

    表  3  不同气候区失稳性坡面植被含水率

    Table  3.   Vegetation water content for unstable slope of different climate regions

    植被含水率
    Vegetation water content
    区段
    Section
    大凹子沟阴坡
    Daaozi Gully shady slope (Ⅰ)
    查菁沟阳坡
    Chajing Gully sunny slope (Ⅱ)
    多照沟阳坡
    Duozhao Gully sunny slope (Ⅲ)
    大地阴坡
    Dadi shady slope (Ⅳ)
    小尖风阳坡
    Xiaojianfeng sunny slope (Ⅴ)
    地上部分
    Aboveground part
    稳定区
    Stable area
    0.39 ± 0.02Bd0.48 ± 0.02Bc0.66 ± 0.03Ab0.80 ± 0.02Aa0.73 ± 0.04Aab
    失稳区
    Unstable area
    0.33 ± 0.03Bb0.60 ± 0.03Aa0.61 ± 0.02Aa0.69 ± 0.03Aa0.61 ± 0.03Ba
    堆积区
    Accumulation area
    0.66 ± 0.06Aa0.64 ± 0.02Aa0.71 ± 0.04Aa0.72 ± 0.03Aa0.64 ± 0.03ABa
    地下部分Underground part稳定区
    Stable area
    0.38 ± 0.02ABb0.36 ± 0.01Ab0.62 ± 0.02Aa0.69 ± 0.02Aa0.63 ± 0.01Aa
    失稳区
    Unstable area
    0.30 ± 0.02Bb0.45 ± 0.04Ab0.50 ± 0.02Aa0.63 ± 0.03Aa0.52 ± 0.02Ba
    堆积区
    Accumulation area
    0.48 ± 0.04Abc0.45 ± 0.02Ac0.62 ± 0.05Aab0.65 ± 0.01Aa0.54 ± 0.02Babc
    下载: 导出CSV

    表  4  不同气候区失稳性坡面平均土壤密度

    Table  4.   Average soil bulk density for unstable slope of different climate regions g/cm3

    区段
    Section
    大凹子沟阴坡
    Daaozi Gully shady slope (Ⅰ)
    查菁沟阳坡
    Chajing Gully sunny slope (Ⅱ)
    多照沟阳坡
    Duozhao Gully sunny slope (Ⅲ)
    大地阴坡
    Dadi shady slope (Ⅳ)
    小尖风阳坡
    Xiaojianfeng sunny slope (Ⅴ)
    稳定区
    Stable area
    1.45 ± 0.00Cc1.55 ± 0.02Cb1.59 ± 0.00Bab1.46 ± 0.01Bc1.67 ± 0.03Ba
    失稳区
    Unstable area
    1.62 ± 0.00Aa1.64 ± 0.03Aa1.58 ± 0.01Ba1.30 ± 0.02Cb1.60 ± 0.09Ca
    堆积区
    Accumulation area
    1.53 ± 0.00Bc1.61 ± 0.02Bb1.67 ± 0.02Aab1.72 ± 0.03Aa1.76 ± 0.01Aa
    注:数据为均值 ± 标准误;同列不同大写字母表示同一气候区各样地不同区段间土壤密度差异显著(P < 0.05);同行不同小写字母表示不同样地土壤密度差异显著(P < 0.05)。Notes: data are mean ± standard error; different capital letters in the same column indicate significant differences in soil bulk density between different sections of the same climate region (P < 0.05); different lowercase letters in the same row indicate significant differences in soil bulk density between different sample plots (P < 0.05).
    下载: 导出CSV

    表  5  气候类型和失稳性坡面区段对土壤密度、生物量和植被含水率的影响及其交互作用

    Table  5.   Effects of climate type and instability slope sections on soil bulk density, biomass and vegetation water content and their interactions

    指标
    Index
    气候类型 Climate type区段 Section气候类型 × 区段 Climate type × section
    dfFdfFdfF
    BA214.514***225.826***412.208***
    BU20.399212.529***46.478***
    BT28.576***222.433***411.130***
    BU/A248.032***210.778***47.533***
    WA219.174***211.749***43.976**
    WU249.013***25.840**42.448
    SBD21.134 29.830***412.453***
    注:BA. 地上生物量;BU. 地下生物量;BT. 总生物量;BU/A. 根冠比;WA. 植被地上含水率;WU. 植被地下含水率;SBD. 0 ~ 20 cm深平均土壤密度。*表示在P < 0.05水平上影响显著;**表示 在P < 0.01水平上影响显著;***表示在P < 0.001水平上影响显著。下同。Notes: BA, aboveground biomass; BU, underground biomass; BT, total biomass; BU/A, root shoot ratio; WA, aboveground vegetation water content; WU, underground vegetation water content; SBD, 0−20 cm deep average soil bulk density. * means P < 0.05; ** means P < 0.01; *** means P < 0.001. Same as below.
    下载: 导出CSV

    表  6  不同气候区失稳性坡面土壤密度与生物量的相关性

    Table  6.   Correlation between soil bulk density and biomass for unstable slope of different climate regions

    项目 ItemSBD0 ~ 5SBD5 ~ 10SBD10 ~ 20BABUBTBU/AWAWU
    SBD0 ~ 5 1
    SBD5 ~ 10 0.547** 1
    SBD10 ~ 20 0.476** 0.538** 1
    BA − 0.287** − 0.122 − 0.151 1
    BU − 0.260* − 0.251* − 0.194 0.764** 1
    BT − 0.294** − 0.164 − 0.170 0.984** 0.867** 1
    BU/A 0.048 − 0.054 − 0.162 − 0.331** 0.195 − 0.202 1
    WA 0.191 0.005 − 0.104 − 0.656** − 0.523** − 0.652** 0.236* 1
    WU 0.220* 0.020 − 0.180 − 0.502** − 0.304** − 0.472** 0.337** 0.807** 1
    注:* 在0.05水平(双侧)上显著相关,** 在0.01水平(双侧)上显著相关。SBD0 ~ 5. 0 ~ 5 cm深土壤密度;SBD5 ~ 10. 5 ~ 10 cm深土壤密度;SBD10 ~ 20. 10 ~ 20 cm深土壤密度。Notes: * means significantly correlated at the 0.05 level (two-tailed), ** means significantly correlated at the 0.01 level (two-tailed). SBD0 ~ 5, 0 − 5 cm deep soil bulk density; SBD5 ~ 10, 5 − 10 cm deep soil bulk density; SBD10 ~ 20, 10 − 20 cm deep soil bulk density.
    下载: 导出CSV
  • [1] 李潮海, 王群, 郝四平. 土壤物理性质对土壤生物活性及作物生长的影响研究进展[J]. 河南农业大学学报, 2002, 36(1):32−37. doi: 10.3969/j.issn.1000-2340.2002.01.008

    Li C H, Wang Q, Hao S P. Advances of studies on the effect of soil physical properties on soil biological activity and crop growth[J]. Journal of Henan Agricultural University, 2002, 36(1): 32−37. doi: 10.3969/j.issn.1000-2340.2002.01.008
    [2] 吴刚, 冯宗炜. 中国主要五针松群落学特征及其生物量的研究[J]. 生态学报, 1995, 15(3):260−267. doi: 10.3321/j.issn:1000-0933.1995.03.005

    Wu G, Feng Z W. The sociological characteristics and biomass of stone pine forests in China[J]. Acta Ecologica Sinica, 1995, 15(3): 260−267. doi: 10.3321/j.issn:1000-0933.1995.03.005
    [3] 王同顺, 孙保平, 冯磊, 等. 不同水分处理对甘蒙柽柳幼苗根系生长特性的影响[J]. 生态学杂志, 2013, 32(3):591−596.

    Wang T S, Sun B P, Feng L, et al. Effects of different soil moisture contents on root growth characteristics of Tamarix austromongolica seedlings[J]. Chinese Journal of Ecology, 2013, 32(3): 591−596.
    [4] Troughton A. The rate of growth and partitioning of assimilates in young grass plants: a mathematical model[J]. Annals of Botany, 1977, 41(3): 553−565. doi: 10.1093/oxfordjournals.aob.a085325
    [5] 李雪华, 李晓兰, 蒋德明, 等. 科尔沁沙地70种草本植物个体和构件生物量比较研究[J]. 干旱区研究, 2009, 26(2):54−59.

    Li X H, Li X L, Jiang D M, et al. A comparative study of the individual biomass and modular biomass of 70 herbaceous species found in the Horqin Sandy Land[J]. Arid Zone Research, 2009, 26(2): 54−59.
    [6] Hanawalt R B, Whittaker R H. Altitudinally coordinated patterns of soils and vegetation in-the San Jacinto Mountains, California[J]. Soil Science, 1976, 121(2): 114−124. doi: 10.1097/00010694-197602000-00007
    [7] 王丽华, 薛晶月, 谢雨, 等. 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018, 42(3):297−306.

    Wang L H, Xue J Y, Xie Y, et al. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 297−306.
    [8] 冯强, 段宝玲, 姜硕, 等. 小流域尺度土壤容重及其影响因素的空间变异[J]. 山西农业大学学报(自然科学版), 2016, 36(1):39−45.

    Feng Q, Duan B L, Jiang S, et al. Spatial heterogeneity of bulk density and its influencing factors at small watershed scale[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(1): 39−45.
    [9] 罗汝英. 森林土壤学[M]. 北京: 科学出版社, 1983.

    Luo R Y. Forest soil science[M]. Beijing: Science Press, 1983.
    [10] Reichert J M, Suzuki L E A S, Reinert D J, et al. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils[J]. Soil and Tillage Research, 2009, 102(2): 242−254. doi: 10.1016/j.still.2008.07.002
    [11] Parker M M, Van Lear D H. Soil heterogeneity and root distribution of mature loblolly pine stands in piedmont soils[J]. Soil Science Society of America Journal, 1996, 60(6): 1920−1925. doi: 10.2136/sssaj1996.03615995006000060043x
    [12] 刘晚苟, 李良贤, 谢海容, 等. 土壤容重对野生香根草幼苗根系形态及其生物量的影响[J]. 草业学报, 2015, 24(4):214−220. doi: 10.11686/cyxb20150425

    Liu W G, Li L X, Xie H R, et al. Effect of soil bulk density on root morphology and biomass of vetiver grass seedlings[J]. Acta Prataculturae Sinica, 2015, 24(4): 214−220. doi: 10.11686/cyxb20150425
    [13] 张千千, 王彦辉, 缪丽萍, 等. 六盘山叠叠沟小流域草本地上生物量的空间变化及其与环境因子的关系[J]. 中国农学通报, 2009, 25(4):82−87.

    Zhang Q Q, Wang Y H, Miao L P, et al. Spatial variation of above-ground biomass of grasses and its relation with environmental factors in the small watershed of Diediegou of Liupan Mountains[J]. Chinese Agricultural Science Bulletin, 2009, 25(4): 82−87.
    [14] Benigno S M, Dixon K W, Stevens J C. Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils[J]. Plant Growth Regulation, 2012, 68(2): 261−270. doi: 10.1007/s10725-012-9714-2
    [15] Twum E K A, Nii-Annang S. Impact of soil compaction on bulk density and root biomass of Quercus petraea L. at reclaimed post-lignite mining site in Lusatia, Germany[J/OL]. Applied and Environmental Soil Science, 2015 [2019−01−13]. http://dx.doi.org/10.1155/2015/504603.
    [16] Walker L R, Moral R D. Lessons from primary succession for restoration of severely damaged habitats[J]. Applied Vegetation Science, 2009, 12(1): 55−67. doi: 10.1111/j.1654-109X.2009.01002.x
    [17] Pandit K, Sarkar S, Sharma M. Optimization techniques in slope stability analysis methods[M]// Pradhan S P, Vishal V, Singh T N. Landslides: theory, practice and modelling. Berlin: Springer, 2019: 227−264.
    [18] 罗清虎, 孙凡, 崔羽, 等. 蒋家沟泥石流频发流域失稳性坡面主要植物种间关联性分析[J]. 应用与环境生物学报, 2018, 24(4):689−696.

    Luo Q H, Sun F, Cui Y, et al. Interspecific association among main plant species in the unstable slope with high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 689−696.
    [19] 张有富. 蒋家沟流域的森林植被与泥石流[J]. 山地学报, 1987, 5(4):213−217.

    Zhang Y F. Vegetation destruction and debris flow disasters in the Jiangjia Ravine[J]. Mountain Research, 1987, 5(4): 213−217.
    [20] 张广帅, 俞伟, 邓浩俊, 等. 干热河谷泥石流流域不同分区土壤养分特征[J]. 西南林业大学学报, 2014, 34(1):8−13.

    Zhang G S, Yu W, Deng H J, et al. The soil nutrition characteristics in different partitions of debris flow basin in dry-hot valley[J]. Jounal of Southwest Forestry University, 2014, 34(1): 8−13.
    [21] 陈爱民, 邓浩俊, 严思维, 等. 泥石流频发流域物源区坡面不同植被类型土壤质量综合评价[J]. 应用与环境生物学报, 2016, 22(2):249−256.

    Chen A M, Deng H J, Yan S W, et al. Comprehensive assessment of soil quality under different vegetation types in the provenance slope of the area of high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(2): 249−256.
    [22] 罗清虎, 孙凡, 吴建召, 等. 泥石流频发流域物源区坡面植被群落特征[J]. 应用与环境生物学报, 2018, 24(4):681−688.

    Luo Q H, Sun F, Wu J Z, et al. Characterizing the vegetation community in the provenance slope with high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 681−688.
    [23] 吴建召, 陈爱民, 崔羽, 等. 干热河谷常见植物地表形态特征与泥沙拦截的关系[J]. 应用与环境生物学报, 2018, 24(6):1236−1246.

    Wu J Z, Chen A M, Cui Y, et al. The relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1236−1246.
    [24] 郭晓军, 苏凤洹, 洪勇, 等. 蒋家沟流域雨季降水中氢氧同位素特征分析[J]. 水土保持研究, 2012, 19(2):82−85.

    Guo X J, Su F H, Hong Y, et al. Characteristics of hydrogen and oxygen isotopes in rainy season precipitation in Jiangjiagou Watershed[J]. Research of Soil and Water Conservation, 2012, 19(2): 82−85.
    [25] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001: 549−580.

    Song Y C. Vegetation ecology[M]. Shanghai: East China Normal University Press, 2001: 549−580.
    [26] McRoberts R E, Tomppo E O, Czaplewski R L. Sampling designs for national forest assessments[Z]. Rome: FAO, 2015: 23−40.
    [27] 中国林业科学研究院林业研究所森林土壤研究室. 中华人民共和国林业行业标准(LY/T1219—1999)[S]. 北京: 标准出版社, 2000.

    Forest Soil Research Laboratory, Forestry Research Institute, Chinese Academy of Forestry. People’s Republic of China forestry industry standard (LY/T1219 —1999)[S]. Beijing: Standards Press, 2000.
    [28] 王磊, 丁晶晶, 季永华, 等. 江苏省森林碳储量动态变化及其经济价值评价[J]. 南京林业大学学报(自然科学版), 2010, 34(2):1−5. doi: 10.3969/j.issn.1000-2006.2010.02.001

    Wang L, Ding J J, Ji Y H, et al. The dynamic carbon storage and economic value assessment of forest in Jiangsu Province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(2): 1−5. doi: 10.3969/j.issn.1000-2006.2010.02.001
    [29] 罗恒春, 魏安超, 黄田, 等. 云南松生物量和碳储量动态变化分析[J]. 林业资源管理, 2016(6):37−43.

    Luo H C, Wei A C, Huang T, et al. Dynamic analysis of biomass and carbon storage of Pinus yunnanensis[J]. Forest Resources Management, 2016(6): 37−43.
    [30] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5):497−508.

    Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497−508.
    [31] 於琍, 李克让, 陶波, 等. 植物地理分布对气候变化的适应性研究[J]. 地理科学进展, 2010, 29(11):1326−1332. doi: 10.11820/dlkxjz.2010.11.012

    Yu L, Li K R, Tao B, et al. Simulating and assessing the adaptability of geographic distribution of vegetation to climate change in China[J]. Progress in Geography, 2010, 29(11): 1326−1332. doi: 10.11820/dlkxjz.2010.11.012
    [32] 张广帅, 邓浩俊, 俞伟, 等. 泥石流频发区山地土壤环境因子与植被群落垂直梯度及其关系分析: 以云南小江流域为例[J]. 应用与环境生物学报, 2014, 20(4):646−654.

    Zhang G S, Deng H J, Yu W, et al. Vertical gradient analysis of soil environmental factors and vegetation community in mountain areas of frequent debris flow: a case study in the Xiaojiang Watershed, Yunnan[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(4): 646−654.
    [33] 罗丹. 青藏高原东缘高寒草甸生物量动态及能量积累研究[D]. 成都: 四川师范大学, 2007.

    Luo D. Study on seasonal dynamics of biomass and energy storage of alpine meadow in eastern Qinghai-Tibetan Plateau[D]. Chengdu: Sichuan Normal University, 2007.
    [34] 周萍, 刘国彬, 侯喜禄. 黄土丘陵区不同坡向及坡位草本群落生物量及多样性研究[J]. 中国水土保持科学, 2009, 7(1):67−73. doi: 10.3969/j.issn.1672-3007.2009.01.012

    Zhou P, Liu G B, Hou X L. Biomass and species diversity of herbosa at different position and aspects of slope in the hilly-gully region of Loess Plateau[J]. Science of Soil and Water Conservation, 2009, 7(1): 67−73. doi: 10.3969/j.issn.1672-3007.2009.01.012
    [35] 张智袁, 李刚, 张宾宾, 等. 山西典型天然草地碳分布特征及碳储量估算[J]. 草地学报, 2017, 25(1):69−75. doi: 10.11733/j.issn.1007-0435.2017.01.011

    Zhang Z Y, Li G, Zhang B B, et al. Estimation on carbon distribution and storage of typical natural grassland in Shanxi Province[J]. Acta Agrestia Sinica, 2017, 25(1): 69−75. doi: 10.11733/j.issn.1007-0435.2017.01.011
    [36] 王合云, 董智, 郭建英, 等. 不同放牧强度下短花针茅荒漠草原植被-土壤系统有机碳组分储量特征[J]. 生态学报, 2016, 36(15):4617−4625.

    Wang H Y, Dong Z, Guo J Y, et al. Organic carbon storage properties in Stipa breviflora desert steppe vegetation soil systems under different grazing intensities[J]. Acta Ecologica Sinica, 2016, 36(15): 4617−4625.
    [37] 徐长林. 坡向对青藏高原东北缘高寒草甸植被构成和养分特征的影响[J]. 草业学报, 2016, 25(4):26−35. doi: 10.11686/cyxb2015481

    Xu C L. Variations in vegetation composition and nutrient characteristics related to aspect in an alpine meadow in the northeast margine of the Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2016, 25(4): 26−35. doi: 10.11686/cyxb2015481
    [38] 潘开文, 何静, 吴宁. 森林凋落物对林地微生境的影响[J]. 应用生态学报, 2004, 15(1):153−158. doi: 10.3321/j.issn:1001-9332.2004.01.035

    Pan K W, He J, Wu N. Effect of forest litter on microenvironment conditions of forestland[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 153−158. doi: 10.3321/j.issn:1001-9332.2004.01.035
    [39] Lloret F, Casanovas C, Peñuelas J. Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use[J]. Functional Ecology, 1999, 13(2): 210−216. doi: 10.1046/j.1365-2435.1999.00309.x
    [40] 宋香静, 李胜男, 韦玮, 等. 黄河三角洲柽柳根系分布特征及其影响因素[J]. 湿地科学, 2017, 15(5):716−723.

    Song X J, Li S N, Wei W, et al. Distribution characteristics of root system of Tamarix chinensis in Yellow River Delta and its influence factors[J]. Wetland Science, 2017, 15(5): 716−723.
    [41] 刘莹, 盖钧镒, 吕彗能. 作物根系形态与非生物胁迫耐性关系的研究进展[J]. 植物遗传资源学报, 2003, 4(3):265−269. doi: 10.3969/j.issn.1672-1810.2003.03.018

    Liu Y, Gai J Y, Lü H N. Advances of the relationship between crop root morphology and tolerance to antibiotic stress[J]. Journal of Plant Genetic Resources, 2003, 4(3): 265−269. doi: 10.3969/j.issn.1672-1810.2003.03.018
    [42] Goodman A M, Ennos A R. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize[J]. Annals of Botany, 1999, 83(3): 293−302. doi: 10.1006/anbo.1998.0822
    [43] Oussible M, Crookston R K, Larson W E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat[J]. Agronomy Journal, 1992, 84(1): 34−38. doi: 10.2134/agronj1992.00021962008400010008x
    [44] Iijima M, Kono Y, Yamauchi A, et al. Effects of soil compaction on the development of rice and maize root systems[J]. Environmental and Experimental Botany, 1991, 31(3): 333−342. doi: 10.1016/0098-8472(91)90058-V
    [45] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地沙丘固定过程中植物生物量及土壤特性[J]. 中国沙漠, 2015, 35(1):81−89. doi: 10.7522/j.issn.1000-694X.2014.00166

    Zhou X, Zuo X A, Zhao X Y, et al. Plant biomass and soil properties during the process of dune restoration in the Horqin Sandy Land[J]. Journal of Desert Research, 2015, 35(1): 81−89. doi: 10.7522/j.issn.1000-694X.2014.00166
    [46] 郑晓翾, 赵家明, 张玉刚, 等. 呼伦贝尔草原生物量变化及其与环境因子的关系[J]. 生态学杂志, 2007, 26(4):533−538. doi: 10.3321/j.issn:1000-4890.2007.04.015

    Zheng X X, Zhao J M, Zhang Y G, et al. Variation of grassland biomass and its relationships with environmental factors in Hulunbeier, Inner Mongolia[J]. Chinese Journal of Ecology, 2007, 26(4): 533−538. doi: 10.3321/j.issn:1000-4890.2007.04.015
    [47] Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and soil, 1999, 208(1): 9−19. doi: 10.1023/A:1004484518652
    [48] Atwell B J. The effect of soil compaction on wheat during early tillering[J]. New Phytologist, 1990, 115(1): 43−49. doi: 10.1111/j.1469-8137.1990.tb00920.x
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  1509
  • HTML全文浏览量:  913
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-25
  • 修回日期:  2019-09-06
  • 网络出版日期:  2019-12-24
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回