高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山云冷杉针阔混交林幼苗幼树空间分布与关联性

石蒙蒙 杨华 王全军 杨超

石蒙蒙, 杨华, 王全军, 杨超. 长白山云冷杉针阔混交林幼苗幼树空间分布与关联性[J]. 北京林业大学学报, 2020, 42(4): 1-11. doi: 10.12171/j.1000-1522.20190071
引用本文: 石蒙蒙, 杨华, 王全军, 杨超. 长白山云冷杉针阔混交林幼苗幼树空间分布与关联性[J]. 北京林业大学学报, 2020, 42(4): 1-11. doi: 10.12171/j.1000-1522.20190071
Shi Mengmeng, Yang Hua, Wang Quanjun, Yang Chao. Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 1-11. doi: 10.12171/j.1000-1522.20190071
Citation: Shi Mengmeng, Yang Hua, Wang Quanjun, Yang Chao. Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 1-11. doi: 10.12171/j.1000-1522.20190071

长白山云冷杉针阔混交林幼苗幼树空间分布与关联性

doi: 10.12171/j.1000-1522.20190071
基金项目: 国家科技支撑计划课题“长白山次生林更新技术研究与示范”(2017YFC0504101)
详细信息
    作者简介:

    石蒙蒙。主要研究方向:森林资源监测与评价。Email:mengms_182@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    杨华,博士,副教授。主要研究方向:森林资源监测与评价。Email:huayang8747@163.com 地址:同上

  • 中图分类号: S758.5

Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China

  • 摘要: 目的幼苗幼树空间分布是影响森林群落动态变化的重要因素,对云冷杉不同苗高进行空间分布格局分析,并分别研究幼苗幼树与周围小径木和大径木的关联性,以探究云冷杉幼苗空间变化规律和空间结构对幼苗幼树的影响,提出促进云冷杉天然更新措施,为云冷杉林可持续经营提供理论依据。方法本研究于2017年8月在金沟岭林场设置长白山云冷杉针阔混交林标准地(0.36 hm2),应用SADIE空间分析方法,分析了林分不同苗高级云冷杉的分布规律。结果云冷杉林分总体直径分布呈反“J”型;色木槭与冷杉直径分布呈增长型,云杉和红松为多峰波动曲线。林分内小径木聚集指数Ia > 1,且随机化检验概率Pa < 0.025,总体呈聚集分布;大径木Pa值为0.025 ~ 0.975,呈随机分布;随林木生长发育,林分空间分布由聚集逐渐趋于随机。冷杉作为主要树种之一,其小径木与大径木空间分布与林分总体空间分布相似;云杉呈随机分布;冷杉幼苗与冷杉大径木具有明显的空间关联性,并与云杉呈正相关,其幼苗具有较好的耐荫性;云杉幼苗总体呈空间分离或空间不相关,仅与冷杉大径木呈空间正相关性,云杉与冷杉为良好的伴生树种。苗高Ⅰ、Ⅱ、Ⅲ级冷杉幼苗空间关联性相似,苗高Ⅳ、Ⅴ级的幼树空间关联性相似;苗高Ⅰ、Ⅱ级云杉幼苗空间关联性相似。结论林分内,冷杉幼苗株数较多,与大多林木呈空间正相关,有利于冷杉的林下更新。云杉木材质量较好,作为主要目的树种,其大径木及幼苗株数较少,且幼苗幼树与小径木及大径木均呈空间分离,林下云杉更新状况较差,因此,在云杉幼苗时期采取适当的遮蔽措施,幼树时期进行采伐等经营措施,促进云杉幼苗生长,并通过对冷杉株数的合理控制,调整林分空间结构,为其释放生长空间,以增加云杉母树株数,提高产种能力及产量,促进云杉更新。

     

  • 图  1  直径分布

    Figure  1.  Distribution of diameter

    图  2  云冷杉小径木与大径木的空间分布

    vi为流出单元i的聚类指数,其中vi > 1.5为显著聚集,即林木分布较多;vj为流入单元j的聚类指数,其中vj < − 1.5为空隙,即林木分布较少。下同。vi is clustering index of outflow unit i, vi > 1.5 means significant aggregation, i.e. more trees are distributed; vj is clustering index of inflow unit j, vj < − 1.5 means gap, i.e. less trees are distributed. The same below.

    Figure  2.  Spatial distribution of small diameter and large diameter trees for Picea jezoensis and Abies nephrolepis

    图  3  云冷杉幼苗幼树不同苗高级的空间分布

           Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅱ-Ⅲ-Ⅳ代表不同的苗高级。Ⅰ, Ⅱ, Ⅲ, Ⅳ,Ⅴ, Ⅱ-Ⅲ-Ⅳ represent different seedling height levels.

    Figure  3.  Spatial distribution of different seedling height levels for seedlings and saplings of Picea jezoensis and Abies nephrolepis

    图  4  不同苗高级云冷杉幼苗幼树分别与其小径木、大径木的空间关联性

    Figure  4.  Spatial associations between different height-level seedlings and saplings of Picea jezoensis and Abies nephrolepis and its small diameter trees as well as large diameter trees, respectively

    表  1  标准地林木数量特征

    Table  1.   Quantitative characteristics of trees in the sample plots

    树种
    Tree species
    断面积/(m2·hm− 2
    Basal area/(m2·ha− 1)
    断面积比例
    Ratio of basal area/%
    林分密度/(株·hm− 2
    Stand density/(tree·ha− 1)
    平均胸径
    Mean DBH/cm
    平均树高
    Mean tree height/m
    云杉 Picea jezoensis 2.333 7 8.17 78 19.55 12.91
    红松 Pinus koraiensis 3.128 1 10.95 103 19.69 12.80
    冷杉 Abies nephrolepis 5.745 9 20.11 289 15.91 11.96
    色木槭 Acer mono 1.172 4 4.10 142 10.26 8.36
    落叶松 Larix gmelinii 8.762 8 30.66 186 24.48 21.69
    白桦 Betula platyphylla 2.840 1 9.94 108 18.27 14.87
    硕桦 Betula costata 1.887 6 6.61 92 16.19 16.89
    暴马丁香 Syringa reticulata 0.506 7 1.77 97 8.15 8.49
    紫椴 Tilia amurensis 0.309 2 1.08 22 13.31 10.14
    花楷槭 Acer ukurunduense 0.041 8 0.15 8 7.99 5.13
    裂叶榆 Ulmus laciniata 0.040 0 0.14 6 9.57 8.75
    青楷槭 Acer tegmentosum 0.194 1 0.68 19 11.27 9.13
    水曲柳 Fraxinus mandschurica 0.833 9 2.93 31 18.64 13.61
    山杨 Populus davidiana 0.780 9 2.73 17 24.43 19.48
    合计 Total 28.577 1 100 1 197
    下载: 导出CSV

    表  2  标准地云冷杉幼苗幼树数量特征

    Table  2.   Quantitative characteristics of seedlings and saplings for Picea jezoensis and Abies nephrolepis ​​​​​​​ in the sample plots

    苗高级
    Seedling height level
    云杉 Picea jezoensis冷杉 Abies nephrolepis
    株数
    Tree number
    平均地径
    Mean ground diameter/mm
    平均苗高
    Mean seedling
    height/m
    株数
    Tree number
    平均地径
    Mean ground diameter/mm
    平均苗高
    Mean seedling
    height/m
    I (0.3 m ≤ Ⅰ < 1 m) 33 11.99 0.65 347 10.77 0.56
    II (1 m ≤ Ⅱ < 2 m) 27 25.15 1.41 164 20.66 1.36
    III (2 m ≤ Ⅲ < 3 m) 3 33.06 2.40 40 32.82 2.23
    IV (3 m ≤ Ⅳ < 4 m) 2 50.71 3.55 27 46.67 3.40
    V (4 m ≤ Ⅴ < 5 m) 0 8 60.89 4.18
    下载: 导出CSV

    表  3  云冷杉苗高分级的株数空间分布

    Table  3.   Tree number spatial distribution of seedling height grading for Picea jezoensis and Abies nephrolepis

    树种 Tree species苗高级 Seedling height levelPaIa$ {\bar{ v}_\rm {i}} $P($ {\bar{ v}_\rm {i}} $)
    冷杉 Abies nephrolepis0.000 21.7801.6530.001 3
    0.000 21.7771.7050.001 3
    0.018 41.4091.4680.008 0
    0.074 91.2481.2160.092 0
    0.062 31.2791.2280.094 4
    Ⅳ-Ⅴ0.003 71.5311.4700.009 6
    云杉 Picea jezoensis0.582 40.9460.9440.5839
    0.173 81.1401.1820.111 9
    0.159 41.1621.0810.255 9
    0.329 11.0480.9160.686 1
    Ⅱ-Ⅲ-Ⅳ0.107 81.2011.2310.080 4
    注:$ {\bar{ v}_\rm {i}} $为所有流出单元的聚类指数平均值,Ia为聚集指数,Pa为随机化检验概率,P($ {\bar{ v}_\rm {i}} $)为显著性。Notes: $ {\bar{ v}_\rm {i}} $ is the average clustering index of all outflow units, Ia is the index of aggregation, Pa is randomization test probability, and P($ {\bar{ v}_\rm {i}} $) is significance level.
    下载: 导出CSV

    表  4  标准地不同树种小径木与大径木的株数空间分布

    Table  4.   Tree number spatial distribution of small diameter and large diameter trees for different tree species in the sample plots

    树种 Tree species发育阶段 Developing stagePaIa$ {\bar{ v}_\rm {i} } $P($ {\bar{ v}_\rm {i} } $)
    冷杉 Abies nephrolepis小径木 Small diameter tree0.000 21.8321.5310.003 5
    大径木 Large diameter tree0.209 31.1161.1670.150 0
    云杉 Picea jezoensis小径木 Small diameter tree0.281 51.0661.0870.254 6
    大径木 Large diameter tree0.610 40.9330.9660.528 2
    其余树种 Other tree species小径木 Small diameter tree0.000 21.8551.7570.000 2
    大径木 Large diameter tree0.027 31.3291.1630.115 3
    所有树种 All tree species小径木 Small diameter tree0.000 22.1761.9450.000 0
    大径木 Large diameter tree0.119 01.1791.0530.296 0
    下载: 导出CSV

    表  5  不同苗高级冷杉幼苗分别与云冷杉小径木和大径木的空间关联显著性分析

    Table  5.   Significance analysis on spatial association between different height-level seedlings of Abies nephrolepis and small diameter as well as large diameter trees of Picea jezoensis and Abies nephrolepis, respectively

    树种 Tree species发育阶段 Developing stageⅣ-Ⅴ
    冷杉 Abies nephrolepis小径木 Small diameter tree 0.896 1*0.924 9*0.349 40.019 4** < 0.000 1**0.000 1**
    大径木 Large diameter tree < 0.000 1** < 0.000 1** < 0.000 1**0.314 40.927 0*0.624 1
    云杉 Picea jezoensis小径木 Small diameter tree0.008 4**0.007 6**0.000 9**0.109 9*0.033 6*0.034 3*
    大径木 Large diameter tree0.000 2**0.003 2**0.001 5**0.465 70.123 2*0.236 0
    注:*表示P > 0.875 或 P < 0.125;**表示P > 0.975 或 P < 0.025。下同。Notes: * means P > 0.875 or P < 0.125, ** means P > 0.975 or P < 0.025. The same below.
    下载: 导出CSV

    表  6  不同苗高级云杉幼苗幼树分别与云冷杉小径木和大径木的空间关联显著性分析

    Table  6.   Significance analysis on spatial association between different height-level seedlings of Picea jezoensis and small diameter as well as large diameter trees of Picea jezoensis and Abies nephrolepis, respectively

    树种 Tree species发育阶段 Developing stageⅡ-Ⅲ-Ⅳ
    冷杉 Abies nephrolepis 小径木 Small diameter tree0.997 9**0.998 5** > 0.999 9**0.703 70.999 3**
    大径木 Large diameter tree0.028 2*0.075 7*0.921 0*0.454 10.173 2
    云杉 Picea jezoensis 小径木 Small diameter tree0.718 00.775 00.999 5**0.578 90.955 8*
    大径木 Large diameter tree 0.467 50.615 10.936 6*0.172 90.734 7
    下载: 导出CSV
  • [1] Clark J S, Macklin E, Wood L. Stages and spatial scales of recruitment limitation in southern Appalachian forests[J]. Ecological Monographs, 1998, 68(2): 213−235. doi: 10.1890/0012-9615(1998)068[0213:SASSOR]2.0.CO;2
    [2] Kunstler G, Curt T, Lepart J. Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands[J]. European Journal of Forest Research, 2004, 123(4): 331−337. doi: 10.1007/s10342-004-0048-0
    [3] Snell R S, Huth A, Nabel J E M S, et al. Using dynamic vegetation models to simulate plant range shifts[J]. Ecography, 2015, 37(12): 1184−1197.
    [4] Szymura T H, Szymura M, Macioå A. The effect of ecological niche and spatial pattern on the diversity of oak forest vegetation[J]. Transactions of the Botanical Society of Edinburgh, 2015, 8(4): 505−518.
    [5] Rodríguez-Ramírez E C, Martínez-Falcón A P, Luna-Vega I. Spatial patterns of Mexican beech seedlings (Fagus grandifolia, subsp. mexicana, (Martínez) A.E. Murray): influence of canopy openness and conspecific trees on recruitment mechanisms[J/OL]. Annals of Forest Science, 2018[2018−10−16]. https://link.springer.com/article/10.1007/s13595-018-0698-6.
    [6] 刘慎谔. 关于大小兴安岭的森林更新问题[J]. 林业科学, 1957, 3(3):263−280.

    Liu S E. About the issue of forest regeneration in Da Hinggan and Xiao Hinggan Mountains[J]. Scientia Silvae Sinicae, 1957, 3(3): 263−280.
    [7] 侯治溥. 长白山林区森林立地条件及落叶松的更新[J]. 林业科学, 1959, 5(4):261−278.

    Hou Z P. Forest site conditions and regeneration of Larix olgensis in Changbai Mountain forest[J]. Scientia Silvae Sinicae, 1959, 5(4): 261−278.
    [8] 苏志尧, 吴大荣, 陈北光. 粤北天然林优势种群结构与空间格局动态[J]. 应用生态学报, 2000, 11(3):337−341. doi: 10.3321/j.issn:1001-9332.2000.03.004

    Su Z Y, Wu D R, Chen B G. Structure and spatial pattern dynamics of dominant populations in a natural forest in north Guangdong Province[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 337−341. doi: 10.3321/j.issn:1001-9332.2000.03.004
    [9] 杨华, 李艳丽, 沈林, 等. 长白山云冷杉针阔混交林主要树种空间分布及其关联性[J]. 生态学报, 2014, 34(16):4698−4706.

    Yang H, Li Y L, Shen L, et al. Spatial distributions and associations of main tree species in a spruce-fir forest in the Changbai Mountains area in northeastern China[J]. Acta Ecologica Sinica, 2014, 34(16): 4698−4706.
    [10] 刘云, 侯世全, 李明辉, 等. 两种不同干扰方式下的天山云杉更新格局[J]. 北京林业大学学报, 2005, 27(1):47−50. doi: 10.3321/j.issn:1000-1522.2005.01.010

    Liu Y, Hou S Q, Li M H, et al. Regeneration pattern of Picea schrenkiana var. tianschanica forest under two different disturbances[J]. Journal of Beijing Forestry University, 2005, 27(1): 47−50. doi: 10.3321/j.issn:1000-1522.2005.01.010
    [11] 贾炜玮, 解希涛, 姜生伟, 等. 大兴安岭新林林业局3种林分类型天然更新幼苗幼树的空间分布格局[J]. 应用生态学报, 2017, 28(9):2813−2822.

    Jia W W, Xie X T, Jiang S W, et al. Spatial distribution pattern of seedlings and saplings of three forest types by natural regeneration in Daxing ’an Mountains Xinlin Forestry Bureau, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2813−2822.
    [12] 李艳丽. 长白山云冷杉林天然更新及其种群结构研究[D]. 北京: 北京林业大学, 2014.

    Li Y L. Natural regeneration and population structures in a spruce-fir forest in Changbai Mountains area in northeastern China[D]. Beijing: Beijing Forestry University, 2014.
    [13] 李艳丽, 杨华, 亢新刚, 等. 长白山云冷杉针阔混交林天然更新空间分布格局及其异质性[J]. 应用生态学报, 2014, 25(2):311−317.

    Li Y L, Yang H, Kang X G, et al. Spatial heterogeneity of natural regeneration in a spruce-fir mixed broadleaf-conifer forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 311−317.
    [14] 陈科屹, 张会儒, 雷相东. 天然次生林蒙古栎种群空间格局[J]. 生态学报, 2018, 38(10):3462−3470.

    Chen K Y, Zhang H R, Lei X D. Spatial pattern of Quercus mongolica in natural secondary forest[J]. Acta Ecologica Sinica, 2018, 38(10): 3462−3470.
    [15] 郝珉辉, 张忠辉, 赵珊珊, 等. 吉林蛟河针阔混交林树木生长的空间关联格局[J]. 生态学报, 2017, 37(6):1922−1930.

    Hao M H, Zhang Z H, Zhao S S, et al. Spatial autocorrelation patterns of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe of Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(6): 1922−1930.
    [16] 韩有志, 王政权. 森林更新与空间异质性[J]. 应用生态学报, 2002, 13(5):615−619. doi: 10.3321/j.issn:1001-9332.2002.05.024

    Han Y Z, Wang Z Q. Spatial heterogeneity and forest regeneration[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 615−619. doi: 10.3321/j.issn:1001-9332.2002.05.024
    [17] 祝燕, 米湘成, 马克平. 植物群落物种共存机制:负密度制约假说[J]. 生物多样性, 2009, 17(6):594−604. doi: 10.3724/SP.J.1003.2009.09183

    Zhu Y, Mi X C, Ma K P. A mechanism of plant species coexistence: the negative density-dependent hypothesis[J]. Biodiversity Science, 2009, 17(6): 594−604. doi: 10.3724/SP.J.1003.2009.09183
    [18] 陈科屹. 云冷杉过伐林经营诊断及目标树抚育效果研究[D]. 北京: 中国林业科学研究院, 2018.

    Chen K Y. Studies on management diagnosis and effectiveness of thinning based on crop tree management for over-logged spruce-fir forest[D]. Beijing: Chinese Academy of Forestry, 2018
    [19] 陈亚南, 杨华, 马士友, 等. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 2015, 37(12):48−58.

    Chen Y N, Yang H, Ma S Y, et al. Spatial structure diversity of semi-natural and plantation stands of Larix gmelinii in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12): 48−58.
    [20] 龚直文, 顾丽, 亢新刚, 等. 长白山森林次生演替过程中林木空间格局研究[J]. 北京林业大学学报, 2010, 32(2):92−99.

    Gong Z W, Gu L, Kang X G, et al. Spatial pattern of forests during secondary succession in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2010, 32(2): 92−99.
    [21] 杨华, 李艳丽, 沈林, 等. 长白山云冷杉林幼苗幼树空间分布格局及其更新特征[J]. 生态学报, 2014, 34(24):7311−7319.

    Yang H, Li Y L, Shen L, et al. Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China[J]. Acta Ecologica Sinica, 2014, 34(24): 7311−7319.
    [22] 张春雨, 赵秀海, 夏富才. 长白山次生林树种空间分布及环境解释[J]. 林业科学, 2008, 44(8):1−8. doi: 10.3321/j.issn:1001-7488.2008.08.001

    Zhang C Y, Zhao X H, Xia F C. Spatial distribution of tree species and environmental interpretation of secondary forest in Changbai Mountains[J]. Scientia Silvae Sinicae, 2008, 44(8): 1−8. doi: 10.3321/j.issn:1001-7488.2008.08.001
    [23] Perry J N. Spatial analysis by distance indices[J]. Journal of Animal Ecology, 1995, 64(3): 303−314. doi: 10.2307/5892
    [24] Perry J N, Winder L, Holland J M, et al. Red-blue plots for detecting clusters in count data[J]. Ecology Letters, 1999, 2(2): 106−113. doi: 10.1046/j.1461-0248.1999.22057.x
    [25] Perry J N, Bell E D, Smith R H, et al. SADIE: software to measure and model spatial pattern[J]. Aspects of Applied Biology, 1996, 46: 95−102.
    [26] Perry J N, Dixon P M. A new method to measure spatial association for ecological count data[J]. Ãcoscience, 2002, 9(2): 133−141.
    [27] 刘足根, 朱教君, 袁小兰, 等. 辽东山区长白落叶松天然更新调查[J]. 林业科学, 2007, 43(1):42−49. doi: 10.3321/j.issn:1001-7488.2007.01.007

    Liu Z G, Zhu J J, Yuan X L, et al. Investigation and analysis of the natural regeneration of Larix olgensis in mountain regions of eastern Liaoning Province, China[J]. Scientia Silvae Sinicae, 2007, 43(1): 42−49. doi: 10.3321/j.issn:1001-7488.2007.01.007
    [28] Xiang W, Lei X, Zhang X. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies, forests in northeast China[J]. Forest Ecology & Management, 2016, 382: 100−109.
    [29] 赵浩彦. 长白山云冷杉林幼树结构和生长动态分析[D]. 北京: 北京林业大学, 2012.

    Zhao H Y. The analysis of structure and growth dynamic of saplings in spruce-fir forest in Changbai Mountain[D]. Beijing: Beijing Forestry University, 2012.
    [30] 徐振邦, 代力民, 陈吉泉, 等. 长白山红松阔叶混交林森林天然更新条件的研究[J]. 生态学报, 2001, 21(9):1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003

    Xu Z B, Dai L M, Chen J Q, et al. Natural regeneration condition in Pinus koraiensis broad-leaved mixed forest[J]. Acta Ecologica Sinica, 2001, 21(9): 1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003
    [31] 李盾, 黄楠, 王强, 等. 天然次生林林木空间格局及更新格局[J]. 东北林业大学学报, 2004, 32(5):4−6. doi: 10.3969/j.issn.1000-5382.2004.05.002

    Li D, Huang N, Wang Q, et al. The spatial pattern and renewal pattern in natural secondary forest[J]. Journal of Northeast Forestry University, 2004, 32(5): 4−6. doi: 10.3969/j.issn.1000-5382.2004.05.002
    [32] 周隽, 国庆喜. 林木竞争指数空间格局的地统计学分析[J]. 东北林业大学学报, 2007, 35(9):42−44. doi: 10.3969/j.issn.1000-5382.2007.09.016

    Zhou J, Guo Q X. Geostatistical analysis on spatial pattern of competition index[J]. Journal of Northeast Forestry University, 2007, 35(9): 42−44. doi: 10.3969/j.issn.1000-5382.2007.09.016
    [33] 陈科屹, 张会儒, 雷相东, 等. 云冷杉过伐林垂直结构特征分析[J]. 林业科学研究, 2017, 30(3):450−459.

    Chen K Y, Zhang H R, Lei X D, et al. Analysis of vertical structure characteristics for spruce-fir over-cutting forest[J]. Forest Research, 2017, 30(3): 450−459.
    [34] 宗国, 白雪娇, 张淑媛, 等. 辽东山区次生林乔木幼苗分布格局与种间空间关联性[J]. 应用生态学报, 2018, 29(1):18−24.

    Zong G, Bai X J, Zhang S Y, et al. Spatial pattern and interspecific spatial association of tree seedlings in a secondary forest in montane region of eastern Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 18−24.
    [35] 倪瑞强, 唐景毅, 程艳霞, 等. 长白山云冷杉林主要树种空间分布及其关联性[J]. 北京林业大学学报, 2013, 35(6):28−35.

    Ni R Q, Tang J Y, Cheng Y X, et al. Spatial distribution patterns and associations of main tree species in spruce-fir forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(6): 28−35.
    [36] 陈迪马. 天山云杉天然更新微生境及其幼苗格局与动态分析[D]. 乌鲁木齐: 新疆农业大学, 2006.

    Chen D M. Analysis on microsite of Picea schrenkiana natural regeneration and seedling spatial pattern and dynamic[D]. Urumqi: Xinjiang Agricultural University, 2006.
    [37] 杨玉坡, 叶兆庆, 钱国禧. 西南高山地区冷杉、云杉林冠下天然更新的初步观察[J]. 林业科学, 1956(4):55−72.

    Yang Y P, Ye Z Q, Qian G X. Preliminary observation on natural regeneration of Abies gergoei and Picea likiangensis under canopy in southwestern mountainous area[J]. Scientia Silvae Sinicae, 1956(4): 55−72.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  950
  • HTML全文浏览量:  466
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-03-29
  • 网络出版日期:  2020-04-08
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回