Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China
-
摘要:目的气候变暖引起冻土退化将会增加冻土之上湿地的温室气体排放,但有关采伐干扰对冻土湿地温室气体排放有何影响仍不清楚。方法运用静态箱−气相色谱,相对生长方程等方法,测定寒温带大兴安岭冻土生境毛赤杨沼泽林4种不同采伐处理(对照(D)、轻度择伐15%(Qz)、重度择伐45%(Zz)及皆伐(J))的土壤呼吸年碳排放量(ACE)(CO2和CH4),植被净初级生产力(NPP)与年净固碳量(VNCS)及相关环境因子(土壤温度、水位、化冻深度、土壤碳氮含量、雪被厚度等),依据生态系统净碳收支平衡,揭示采伐干扰对冻土生境毛赤杨沼泽林生态系统碳源/汇的影响规律及其机制。结果(1) Zz和J显著降低土壤CH4年均通量(0.008 ~ 0.019 mg/(m2·h))52.6% ~ 57.9%,而Qz与对照相近(− 10.5%,P > 0.05),且其季节动态趋势存在2种类型(D、Qz双峰型−低排放及Zz和J双峰型−低吸收)。(2) Qz、Zz和J显著降低土壤CO2年均通量(103.69 ~ 133.65 mg/(m2·h))14.4% ~ 22.4%(P < 0.05),且其季节动态趋势存在2种类型(D、Qz单峰型−峰值于夏末及Zz和J单峰型−峰值提前于盛夏)。(3) 其土壤CH4通量受土壤温度、水位、雪被厚度综合控制,土壤CO2通量受土壤温度、土壤有机碳含量、化冻深度综合控制。(4) NPP(5.07 ~ 8.83 t/(hm2·a))和VNCS(2.10 ~ 3.83 t/(hm2·a))呈现随采伐强度增大而递减趋势,Qz与D相近(P > 0.05),Zz和J显著低于D 13.7% ~ 36.9%和14.2% ~ 43.5%(P < 0.05),J又显著低于Zz 26.9%和34.2%(P < 0.05)。(5) 净生态系统碳收支(− 0.42 ~ 1.30 t/(hm2·a))存在显著差异性,D、Qz、Zz均表现为碳的吸收汇,且Qz的汇强显著高于D和Zz 1.6和1.2倍(P < 0.05),但J已转化为碳的排放源(− 0.42 t/(hm2·a),P < 0.05)。结论择伐干扰8年后寒温带冻土区毛赤杨沼泽林的碳汇功能已恢复,而皆伐后仍维持碳源,故在湿地碳汇管理中适宜采取择伐而应避免皆伐。Abstract:ObjectiveDegradation of permafrost caused by climate warming will increase greenhouse gas emissions from wetlands above it, yet it is still unclear that how harvest disturbance affects greenhouse gas emissions from wetlands on frozen soil.MethodAnnual carbon emission fluxes (ACE) (CO2 and CH4), the net primary productivity (NPP) and annual net carbon sequestration of vegetation (VNCS) of four different harvest treatments (control-D, low intensity selective cutting 15%-Qz, high intensity selective cutting 45%-Zz and clear cutting-J) of Alnus sibirica var. hirsuta swamp were measured synchronously using the static chamber gas chromatography method and the relative growth equation, as well as related environmental factors (soil temperature, water level, thawing depth, soil carbon and nitrogen content, etc.) at Nanwenghe in Daxing’anling discontinuous permafrost region of northeastern China, in order to reveal the influence of harvesting disturbance on the carbon source/sink of the cold temperate forested wetlands according to the balance of net carbon budget of the ecosystem.Result(1) Zz and J made the mean annual fluxes of CH4 (0.008−0.019 mg/(m2·h)) significantly lower than D by 52.6%−57.9% (P < 0.05), Qz is close to the D (− 10.5%, P > 0.05), and their seasonal dynamic trends took on two types (D, Qz bimodal-low emission; Zz and J bimodal-low absorption); (2) Qz, Zz and J all made the mean annual fluxes of CO2 (103.69−133.65 mg/(m2·h)) significantly decreased by 14.4%−22.4% (P < 0.05) compared with control, their seasonal dynamic trends also existed two types (D, Qz unimodal type-peak at late summer; Zz and J unimodal type-peak advance to midsummer); (3) The soil CH4 flux was controlled by soil temperature, water level and snow thickness; soil CO2 flux was controlled by soil temperature, soil organic carbon content and freezing depth synthetically; (4) Both NPP (5.07−8.83 t/(ha·year)) and VNCS (2.10−3.83 t/(ha·year)) showed a declining trend with increasing harvesting intensity, among them, NPP and VNCS of Qz were similar to those of D, Zz and J, made NPP and VNCS significantly decreased by13.7%−36.9% and 14.2%−43.5% compared with control (P < 0.05), respectively, and those of J were significantly lower than that of Zz by 26.9% and 34.2% (P < 0.05); (5) Net ecosystem carbon budget (− 0.42−1.30 t/(ha·year)) of four treatments existed significant differences. D, Qz and Zz were all carbon sinks, and the sink strength of Qz was significantly higher than that of D and Zz by 1.6 and 1.2 times (P < 0.05), but J had been converted into carbon source (− 0.42 t/(ha·year), P < 0.05).ConclusionTherefore, after eight years of harvesting, Alnus sibirica var
. hirsuta swamp had restored the carbon sink function at selective cutting site, while it still maintained the carbon source at clear cutting site in the cold temperate discontinuous permafrost region, so selective cutting should be adopted in the management of wetland carbon sinks and to avoid clear cutting. -
-
图 2 不同采伐处理森林湿地环境因子与土壤CH4(a~d)和CO2(e~h)排放的最优结构方程模型
*P < 0.05; **P < 0.01; ***P < 0.001. 粗线表示作用显著,细线表示作用不显著。Thick lines indicate significant effects and the thin lines indicate insignificant effects.
Figure 2. The best fitted structural equation models of methane (a−d) and carbon dioxide (e−h) emission fluxes to environmental factors at different harvest treatments forested wetland
表 1 大兴安岭森林沼泽群落建群种毛赤杨相对生长方程
Table 1 Relative growth equations for Alnus sibirica var. hirsuta of forested swamps in Daxing’anling Mountains of northeastern China
树种
Species组分
Component生物量方程
Growth equation for biomassR2 显著性
Significance标准误
Standard error毛赤杨 Alnus sibirica var. hirsuta 干 Trunk W = 0.107 7D2.035 7 0.990 1 0.000 0 0.451 7 枝 Branch W = 0.008 2D2.594 8 0.952 0 0.000 4 0.110 2 叶 Leaf W = 0.002 5D2.900 9 0.977 2 0.000 1 0.212 1 皮 Bark W = 0.000 6D2.946 1 0.992 2 0.000 0 0.311 4 根 Root W = 0.210 3D1.405 0 0.974 9 0.000 3 0.215 8 单木 Single tree W = 0.239 3D1.996 7 0.992 8 0.000 4 0.151 0 注:W为生物量(kg);D为胸径(cm)。Notes: W, biomass (kg); D, DBH (cm). 表 2 寒温带大兴安岭非连续冻土区不同采伐处理森林湿地环境因子状况
Table 2 Environmental factors of different harvesting treatments forested wetland at discontinuous permafrost region in the cold temperate Daxing’anling Mountains of northeastern China
环境因子
Environmental factor处理 Treatment D Qz Zz J 生长季水位
Water level in growing season/cm− 8.32 ± 0.46c − 8.54 ± 0.06c − 11.05 ± 0.21b − 14.70 ± 0.44a 非生长季水位
Water level in non-growing season/cm− 32.33 ± 6.13a − 30.59 ± 6.07a − 30.69 ± 1.11a − 27.04 ± 0.86a 化冻深度
Freezing depth/cm68.34 ± 2.52a 68.67 ± 5.51a 73.33 ± 3.79a 75.38 ± 6.08a 雪被厚度
Snow cover thickness/cm19.23 ± 3.54b 18.13 ± 3.57b 14.30 ± 2.15a 15.07 ± 2.33a 0 ~ 40 cm土壤温度
Soil temperature in 0−40 cm/℃− 2.57 ± 0.16a − 2.42 ± 0.13a − 2.04 ± 0.12b − 1.98 ± 0.19b 0 ~ 50 cm土壤有机碳
Soil organic carbon content in 0−50 cm/(mg·g− 1)138.08 ± 8.47c 129.40 ± 12.47bc 121.30 ± 5.53ab 110.42 ± 1.21a 0 ~ 50 cm碳氮比
C/N ratio in 0−50 cm soil12.61 ± 0.34b 10.78 ± 0.34a 11.41 ± 0.45a 11.08 ± 0.07a 0 ~ 50 cm含水率
Soil water content in 0−50 cm/%80.68 ± 2.55b 71.45 ± 4.68a 69.10 ± 3.54a 64.50 ± 4.17a 注:D为对照;Qz为轻度择伐;Zz为重度择伐;J为皆伐。下同。Notes: D, control; Qz, low intensity selective cutting; Zz, high intensity selective cutting; J, clear cutting. The same below. 表 3 结构方程模型各项检验指标及拟合结果
Table 3 Various test indices and fitting results of structural equation model
指数
Index参数名称
Parameter name评价标准
Evaluation criteria standardCH4 CO2 D Qz Zz J D Qz Zz J 绝对拟合指数
Absolute fitting indexχ2/df < 3 2.506 0.613 0.156 2.726 1.753 2.821 0.017 0.461 GFI > 0.9 0.973 0.983 0.998 0.971 0.955 0.951 0.995 0.991 P > 0.05 0.113 0.434 0.693 0.099 0.154 0.160 0.895 0.231 相对拟合指数
Relative fitting indexNFI > 0.9 0.980 0.988 0.999 0.983 0.974 0.971 0.996 0.995 TLI 0.908 0.957 0.978 0.985 0.939 0.946 0.999 0.979 CFI 0.987 0.996 1.000 0.988 0.988 0.980 1.000 0.996 信息指数
Information indexIFI > 0.9 0.988 0.996 0.997 0.989 0.989 0.981 0.987 0.988 ECVI 越小越好
The smaller, the better0.872 0.818 0.804 0.878 1.179 1.247 1.143 1.112 注:χ2/df为卡方自由度比;GFI为适配度指数;P为显著性概率值;NFI为规准适配指数;TLI为非规准适配指数;CFI为比较适配指数;IFI为增值适配指数;ECVI为信息标准指数。Notes: χ2/df, chi-square degrees of freedom; GFI, goodness of fitting index; P, significance probability value; NFI, normed fitting index; TLI, tucker-Lewis index; CFI, comparative fitting index; IFI, incremental fitting index; ECVI, expected cross validation index. 表 4 寒温带大兴安岭非连续冻土区不同采伐处理森林湿地土壤CH4、CO2年通量及季节通量
Table 4 Methane and carbon emission flux from soil of forested wetland under different harvest treatments at discontinuous permafrost region in the cold temperate Daxing’anling Mountains of northeastern China
气体
Gas季节
Season处理 Treatment D Qz Zz J 甲烷通量
CH4 flux/
(mg·m− 2·h− 1)春季 Spring 0.023 ± 0.003Cb 0.018 ± 0.002Bab 0.023 ± 0.001Cc 0.013 ± 0.002Ab 夏季 Summer 0.051 ± 0.009Ac 0.036 ± 0.010Ac 0.036 ± 0.001Ad 0.035 ± 0.009Ac 秋季 Autumn 0.024 ± 0.004Bb 0.026 ± 0.005Bb 0.015 ± 0.003Ab 0.016 ± 0.002Ab 冬季 Winter 0.012 ± 0.001Ba 0.011 ± 0.001Ba − 0.001 ± 0.001Aa − 0.000 2 ± 0.001Aa 生长季 Growing season 0.029 ± 0.004Cb 0.022 ± 0.003ABb 0.024 ± 0.002BCb 0.018 ± 0.001Ab 非生长季 Non-growing season 0.013 ± 0.000 4Ba 0.012 ± 0.001Ba − 0.001 ± 0.001Aa 0.001 ± 0.001Aa 年均值 Annual average 0.019 ± 0.001B 0.017 ± 0.002B 0.009 ± 0.001A 0.008 ± 0.001A CO2通量
CO2 flux/
(mg·m− 2·h− 1)春季 Spring 178.06 ± 27.78Bb 130.49 ± 10.78Ab 163.31 ± 9.31Bb 114.77 ± 13.48Ab 夏季 Summer 318.61 ± 41.73Bc 216.38 ± 8.09Ac 257.54 ± 29.76ABd 302.24 ± 21.51ABd 秋季 Autumn 322.35 ± 51.55Bc 277.87 ± 28.08Bd 214.90 ± 19.95Ac 209.44 ± 10.23Ac 冬季 Winter 51.11 ± 9.02Aa 46.23 ± 5.76Aa 52.14 ± 2.93Aa 46.17 ± 2.57Aa 生长季 Growing season 241.51 ± 35.74Bb 180.18 ± 12.56Ab 194.74 ± 12.40Ab 183.77 ± 1.70Ab 非生长季 Non-growing season 62.04 ± 9.70Ba 56.46 ± 4.10ABa 58.11 ± 2.41ABa 49.19 ± 1.25Aa 年均值 Annual average 133.65 ± 14.86B 108.29 ± 10.09A 114.36 ± 9.49A 103.69 ± 5.96A 注:大写字母表示同季节不同类型间差异(P < 0.05),小写字母表示同类型不同季节比较(P < 0.05)。下同。Notes: different capital letters indicate significant difference between different treatments in the same season (P < 0.05), different lowercase letters indicate significant difference between different seasons in the same treatment (P < 0.05). The same below. 表 5 结构方程模型中不同采伐处理森林湿地环境因子对CH4、CO2排放量的标准化效应
Table 5 Standardized effects of environmental factors on methane and carbon dioxide emission fluxes at different harvest treatments forested wetland in the structural equation model
气体
Gas环境因子
Environmental factor处理 Treatment D Qz Zz J 对CH4的效应
Effect to CH4水位
Water level直接效应 Direct effect 0.51 0.48 0.15 0.02 间接效应 Indirect effect − 0.05 − 0.07 0.02 0.05 总效应 Total effect 0.46 0.41 0.17 0.06 雪被厚度
Snow cover thickness直接效应 Direct effect 0.10 0.06 − 0.35 − 0.40 间接效应 Indirect effect — — — — 总效应 Total effect 0.10 0.06 − 0.35 − 0.40 化冻深度
Freezing depth直接效应 Direct effect 0.43 0.39 0.30 0.16 间接效应 Indirect effect — — — — 总效应 Total effect 0.43 0.39 0.30 0.16 土壤温度
Soil temperature直接效应 Direct effect − 0.06 0.03 0.14 0.36 间接效应 Indirect effect 0.68 0.61 0.57 0.40 总效应 Total effect 0.63 0.64 0.71 0.76 对CO2的效应
Effect to CO2土壤含水率
Soil water content直接效应 Direct effect − 0.20 0.03 − 0.10 − 0.04 间接效应 Indirect effect − 0.11 − 0.09 − 0.02 0.03 总效应 Total effect − 0.30 − 0.06 − 0.12 − 0.01 土壤有机碳
Soil organic carbon直接效应 Direct effect − 0.69 − 0.66 − 0.45 − 0.49 间接效应 Indirect effect 0.22 0.22 0.15 0.14 总效应 Total effect − 0.47 − 0.44 − 0.30 − 0.35 土壤碳氮比
Soil C/N ratio直接效应 Direct effect 0.34 0.26 0.17 0.19 间接效应 Indirect effect — — — — 总效应 Total effect 0.34 0.26 0.17 0.19 化冻深度
Freezing depth直接效应 Direct effect 0.06 0.16 0.24 0.49 间接效应 Indirect effect 0.04 − 0.05 − 0.02 − 0.13 总效应 Total effect 0.09 0.11 0.22 0.37 土壤温度
Soil temperature直接效应 Direct effect 0.41 0.47 0.53 0.57 间接效应 Indirect effect 0.19 0.16 0.16 0.13 总效应 Total effect 0.60 0.62 0.68 0.70 表 6 寒温带大兴安岭非连续冻土区不同采伐处理森林湿地植被净初生产力与年净固碳量
Table 6 Net primary productivity and net carbon sequestration of forested wetland under different harvest treatments at discontinuous permafrost region in the cold temperate Daxing’anling Mountains of northeastern China
指标
Item层次
Layer处理 Treatment D Qz Zz J 净初级生产力/
(t·hm− 2·a− 1)
NPP/(t·ha −1·year− 1)乔木层 Tree layer 6.35 ± 0.24B 6.16 ± 0.27B 3.91 ± 0.43A 灌木层 Shrub layer 0.59 ± 0.08A 0.59 ± 0.04A 0.61 ± 0.08A 0.76 ± 0.13B 草本层 Herb layer 1.10 ± 0.29A 1.59 ± 0.50A 2.42 ± 0.49B 4.31 ± 1.17C 植被 Vegetation 8.04 ± 0.17C 8.83 ± 0.43C 6.94 ± 0.35B 5.07 ± 1.27A 植被年净固碳量/
(t·hm− 2·a− 1)
VNCS/(t·ha−1·year − 1)乔木层 Tree layer 3.00 ± 0.04B 2.89 ± 0.06B 1.89 ± 0.02A 灌木层 Shrub layer 0.26 ± 0.04A 0.27 ± 0.02A 0.27 ± 0.04A 0.35 ± 0.06B 草本层 Herb layer 0.46 ± 0.11A 0.66 ± 0.21AB 1.02 ± 0.21B 1.75 ± 0.54C 植被 Vegetation 3.72 ± 0.12C 3.83 ± 0.23C 3.19 ± 0.25B 2.10 ± 0.58A 注: NPP为净初级生产力,VNCS为植被年净固碳量。不同字母表示不同处理间差异显著(P < 0.05)。下同。Notes: NPP, net primary productivity; VNCS, annual net carbon sequestration. Different letters mean the difference is significant among varied treatments (P < 0.05). The same below. 表 7 寒温带大兴安岭非连续冻土区不同采伐处理森林湿地碳源/汇
Table 7 Source or sink of carbon from forested wetland under different cutting treatments at discontinuous permafrost region in the cold temperate Daxing’anling Mountains of northeastern China
指标
Index处理 Treatment D Qz Zz J 植被年净固碳量 /(t·hm− 2·a− 1) VNCS /(t·ha− 1·year− 1) 3.72 ± 0.12C 3.83 ± 0.23C 3.19 ± 0.25B 2.10 ± 0.58A 年碳排放量 /(t·hm− 2·a− 1) ACE/(t·ha− 1·year− 1) 3.22 ± 0.15B 2.53 ± 0.02A 2.59 ± 0.03A 2.52 ± 0.06A 碳源/汇 /(t·hm− 2·a− 1) CSS/(t·ha− 1·year− 1) 0.50 ± 0.17B 1.30 ± 0.21C 0.60 ± 0.28B − 0.42 ± 0.57A 注:VNCS为植被年净固碳量,ACE为年碳排放量,CSS为碳源/汇。Notes: VNCS, annual net carbon sequestration; ACE, annual carbon emission; CSS, carbon source/sink. -
[1] Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. AIBS Bulletin, 2008, 58(8): 701−714.
[2] Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): 1−11.
[3] Abbott B W, Jones J B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Global Change Biology, 2015, 21(12): 4570−4587. doi: 10.1111/gcb.13069
[4] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440: 165−173. doi: 10.1038/nature04514
[5] Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and Implications of recent climate change in northern Alaska and other Arctic regions[J]. Climatic Change, 2005, 72(3): 251−298. doi: 10.1007/s10584-005-5352-2
[6] Kurylyk B L, Hayashi M, Quinton W L, et al. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow[J]. Water Resources Research, 2016, 52(2): 1286−1305. doi: 10.1002/2015WR018057
[7] Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost:a review[J]. Vadose Zone Journal, 2016, 15(6): 14−15.
[8] Baltzer J L, Veness T, Chasmer L E, et al. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss[J]. Global Change Biology, 2014, 20(3): 824−834. doi: 10.1111/gcb.12349
[9] Jansson J K, Taş N. The microbial ecology of permafrost[J]. Nature Reviews Microbiology, 2014, 12(6): 414−425. doi: 10.1038/nrmicro3262
[10] Bockheim J, Vieira G, Ramos M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region[J]. Global and Planetary Change, 2013, 100: 215−223. doi: 10.1016/j.gloplacha.2012.10.018
[11] Lee H, Schuur E A G, Inglett K S, et al. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate[J]. Global Change Biology, 2012, 18(2): 515−527. doi: 10.1111/j.1365-2486.2011.02519.x
[12] Natali S M, Schuur E A G, Mauritz M, et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(3): 525−537. doi: 10.1002/2014JG002872
[13] Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171−179. doi: 10.1038/nature14338
[14] Voigt C, Marushchak M E, Mastepanov M, et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw[J]. Global Change Biology, 2019, 25: 1746−1764. doi: 10.1111/gcb.14574
[15] Turetsky M R, Wieder R K, Vitt D H, et al. The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes[J]. Global Change Biology, 2007, 13(9): 1922−1934. doi: 10.1111/j.1365-2486.2007.01381.x
[16] Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459: 556−559. doi: 10.1038/nature08031
[17] Abbott B W, Jones J B, Schuur E A G, et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment[J/OL]. Environmental Research Letters, 2016, 11(3): 034014 (2016−03−07) [2018−11−18]. https://doi.org/10.1088/1748-9326/11/3/034014.
[18] Vestin P, Mölder M, Sundqvist E, et al. Significant emissions of methane and nitrous oxide following clear-cutting of a boreal forest stand[C]. San Francisco: AGU Fall Meeting, 2011.
[19] Kubin E, Kemppainen L. Effect of clearcutting of boreal spruce forest on air and soil temperature conditions[J]. Acta Forestalia Fennica, 1991, 225(225): 1−41.
[20] Sun G, Riekerk H, Kornhak L V. Ground-water-table rise after forest harvesting on cypress-pine flatwoods in Florida[J]. Wetlands, 2000, 20(1): 101−112. doi: 10.1672/0277-5212(2000)020[0101:GWTRAF]2.0.CO;2
[21] Zerva A, Mencuccini M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation[J]. Soil Biology and Biochemistry, 2005, 37(11): 2025−2036. doi: 10.1016/j.soilbio.2005.03.004
[22] 郝利, 牟长城, 常怡慧, 等. 采伐对小兴安岭森林沼泽非生长季土壤温室气体排放的影响[J]. 应用生态学报, 2019, 30(5):1713−1725. Hao L, Mu C C, Chang Y H, et al. Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing’an Mountains of China[J]. Chinese Journal Applied Ecology, 2019, 30(5): 1713−1725.
[23] Iwahana G, Machimura T, Kobayashi Y, et al. Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia[J/OL]. Journal of Geophysical Research: Biogeosciences, 2005, 110: G02004 (2005−10−26) [2018−12−16]. https://doi.org/10.1029/2005JG000039.
[24] Fedorov A N, Iwahana G, Konstantinov P Y, et al. Variability of permafrost and landscape conditions following clear cutting of larch forest in Central Yakutia[J]. Permafrost & Periglacial Processes, 2016, 28(1): 331−338.
[25] 牟长城, 吴云霞, 李婉姝, 等. 采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J]. 应用生态学报, 2010, 21(2):287−293. Mu C C, Wu Y X, Li W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gmelini-sphagnum swamps in Lesser Xing’ an Mountains of Heilongjiang, China[J]. Chinese Journal Applied Ecology, 2010, 21(2): 287−293.
[26] 孙晓新, 牟长城, 宋长春, 等. 采伐对小兴安岭森林沼泽甲烷通量的影响[J]. 土壤通报, 2011, 42(1):190−194. Sun X X, Mu C C, Song C C, et al. Impact of harvesting on methane flux in Xiaoxing’an Mountains forest swamp[J]. Chinese Journal of Soil Science, 2011, 42(1): 190−194.
[27] 刘霞, 牟长城, 李婉姝, 等. 小兴安岭毛赤杨样地CH4、N2O排放规律及其对人为干扰的响应[J]. 环境科学学报, 2009, 29(12):2642−2650. doi: 10.3321/j.issn:0253-2468.2009.12.024 Liu X, Mu C C, Li W S, et al. Emission of CH4 and N2O from Alnus sibirica swamps and the response to human disturbance the Xiaoxing’an Mountains[J]. Acta Scientiae Circumtantiae, 2009, 29(12): 2642−2650. doi: 10.3321/j.issn:0253-2468.2009.12.024
[28] Huttunen J T, Nykänen H, Martikainen P J, et al. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland[J]. Plant & Soil, 2003, 255(2): 457−462.
[29] Gao S, Chen J, Tang Y, et al. Ecosystem carbon (CO2 and CH4) fluxes of a Populus dettoides plantation in subtropical China during and post clear-cutting[J]. Forest Ecology and Management, 2015, 357: 206−219. doi: 10.1016/j.foreco.2015.08.026
[30] Olchev A, Kurbatova J, Mukhartova J, et al. The effect of deforestation and land-use changes on CO2 and H2O exchange between land surface and the atmosphere in the Upper Volga Area in Russia[C]. Berlin: EGU General Assembly Conference Abstracts, 2016.
[31] Peckham S D, Gower S T. Simulated long-term effects of harvest and biomass residue removal on soil carbon and nitrogen content and productivity for two Upper Great Lakes forest ecosystems[J]. Global Change Biology Bioenergy, 2011, 3(2): 135−147. doi: 10.1111/j.1757-1707.2010.01067.x
[32] Powers R F, Scott D A, Sanchez F G, et al. The North American long-term soil productivity experiment: findings from the first decade of research[J]. Forest Ecology and Management, 2005, 220(1−3): 31−50. doi: 10.1016/j.foreco.2005.08.003
[33] Dawnm B, Kena E, Stephenb H, et al. The effects of partial harvest on the understory vegetation of southern Ontario woodlands[J]. Forest Ecology & Management, 2008, 255(7): 2204−2212.
[34] Mu C, Lu H, Wang B, et al. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii: Carex schmidtii forested wetlands in Daxing’anling, northeast China[J]. Forest Ecology and Management, 2013, 293: 140−148. doi: 10.1016/j.foreco.2012.12.031
[35] Connell M J, Raison R J, Jenkins P. Effects of thinning and coppice control on stand productivity and structure in a silvertop ash (Eucalyptus sieberi L. Johnson) forest[J]. Australian Forestry, 2004, 67(1): 30−38. doi: 10.1080/00049158.2004.10676203
[36] Scott N A, Hollinger D, Davidson E A, et al. Changes in the net carbon balance following a shelterwood harvest at Howland Forest in central Maine seven years after harvest[C]. San Francisco, California, United States: AGU Fall Meeting Abstracts, 2009.
[37] Raymond C L, Healey S, Peduzzi A, et al. Representative regional models of post-disturbance forest carbon accumulation: integrating inventory data and a growth and yield model[J]. Forest Ecology and Management, 2015, 336: 21−34. doi: 10.1016/j.foreco.2014.09.038
[38] Amiro B D, Barr A G, Black T A, et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada[J]. Agricultural and forest meteorology, 2006, 136(3−4): 237−251. doi: 10.1016/j.agrformet.2004.11.012
[39] Zha T, Barr A G, Black T A, et al. Carbon sequestration in boreal jack pine stands following harvesting[J]. Global Change Biology, 2009, 15(6): 1475−1487. doi: 10.1111/j.1365-2486.2008.01817.x
[40] Fredeen A L, Waughtal J D, Pypker T G. When do replanted sub-boreal clearcuts become net sinks for CO2?[J]. Forest Ecology and Management, 2007, 239(1−3): 210−216. doi: 10.1016/j.foreco.2006.12.011
[41] Clark K L, Gholz H L, Castro M S. Carbon dynamics along a chronosequence of slash pine plantations in north Florida[J]. Ecological Applications, 2004, 14(4): 1154−1171. doi: 10.1890/02-5391
[42] Aguilos M, Takagi K, Liang N, et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest[J]. Agricultural and Forest Meteorology, 2014, 197: 26−39. doi: 10.1016/j.agrformet.2014.06.002
[43] Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada[J]. Global Change Biology, 2004, 10(8): 1267−1284. doi: 10.1111/j.1529-8817.2003.00804.x
[44] Goulden M L, McMillan A M S, Winston G C, et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession[J]. Global Change Biology, 2011, 17(2): 855−871. doi: 10.1111/j.1365-2486.2010.02274.x
[45] Humphreys E R, Black T A, Morgenstern K, et al. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting[J]. Agricultural and Forest Meteorology, 2006, 140(1−4): 6−22. doi: 10.1016/j.agrformet.2006.03.018
[46] 郭东信, 王绍令, 鲁国威, 等. 东北大小兴安岭多年冻土分区[J]. 冰川冻土, 1981, 3(3):1−9. Guo D X, Wang S L, Lu G W, et al. Zonation of permafrost in the Da-Xiao Xing anling Mountains in northeastern China[J]. Journal of Glaciology and Geocryology, 1981, 3(3): 1−9.
[47] Jin H, Yu Q, Lü L, et al. Degradation of permafrost in the Xing’anling Mountains, northeastern China[J]. Permafrost and Periglacial Processes, 2007, 18(3): 245−258. doi: 10.1002/ppp.589
[48] Liu X, Guo Y, Hu H, et al. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China[J]. Atmospheric Environment, 2015, 122: 454−462. doi: 10.1016/j.atmosenv.2015.10.007
[49] Miao Y, Song C, Sun L, et al. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation[J]. Biogeosciences, 2012, 9(11): 4455−4464. doi: 10.5194/bg-9-4455-2012
[50] 王娇月, 韩耀鹏, 宋长春, 等. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳矿化的影响研究[J]. 气候变化研究进展, 2018, 14(1):59−66. Wang J Y, Han Y P, Song C C, et al. Effects of freezing-thawing cycles on soil organic carbon mineralization in the peatland ecosystems from continuous permafrost zone, Great Hinggan Mountains[J]. Climate Change Reseach, 2018, 14(1): 59−66.
[51] 蒋磊, 宋艳宇, 宋长春, 等. 大兴安岭冻土区泥炭地土壤碳、氮含量和酶活性室内模拟研究[J]. 湿地科学, 2018, 16(3):294−302. Jiang L, Song Y Y, Song C C, et al. Indoor simulation study on carbon and nitrogen contents and enzyme activities of soils in permafrost region in Greater Khingan Mountains[J]. Wetland Science, 2018, 16(3): 294−302.
[52] 牟长城, 王彪, 卢慧翠, 等. 大兴安岭天然沼泽湿地生态系统碳储量[J]. 生态学报, 2013, 33(16):4956−4965. doi: 10.5846/stxb201212271884 Mu C C, Wang B, Lu H C, et al. Carbon storage of natural wetland ecosystem in Daxing’anling of China[J]. Acta Ecologica Sinica, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884
[53] Harden J W, Koven C D, Ping C L, et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 2012, 39(15): 1−6.
[54] Alm J, Schulman L, Walden J, et al. Carbon balance of a boreal bog during a year with an exceptionally dry summer[J]. Ecology, 1999, 80(1): 161−174. doi: 10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2
[55] Kelley C A, Martens C S, Ussler Ⅲ W. Methane dynamics across a tidally flooded riverbank margin[J]. Limnology and Oceanography, 1995, 40(6): 1112−1129. doi: 10.4319/lo.1995.40.6.1112
[56] 吴艺雪, 杨效东, 余广彬. 两种热带雨林土壤微生物生物量碳季节动态及其影响因素[J]. 生态环境学报, 2009, 18(2):658−663. doi: 10.3969/j.issn.1674-5906.2009.02.049 Wu Y X, Yang X D, Xu G B. Seasonal fluctuation of soil microbial biomass carbon and its influence factors in two types of tropical rainforests[J]. Ecology and Environmental Sciences, 2009, 18(2): 658−663. doi: 10.3969/j.issn.1674-5906.2009.02.049
[57] Ström L, Christensen T R. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland[J]. Soil Biology & Biochemistry, 2007, 39(7): 1689−1698.
[58] Albert M R, Hardy J P. Ventilation experiments in seasonal snow cover[J]. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 1995, 228: 41−50.
[59] Leon E, Vargas R, Bullock S, et al. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem[J]. Soil Biology and Biochemistry, 2014, 77: 12−21. doi: 10.1016/j.soilbio.2014.05.029
[60] Sollins P, Spycher G, Glassman C A. Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter[J]. Soil Biology and Biochemistry, 1984, 16(1): 31−37. doi: 10.1016/0038-0717(84)90122-6
[61] N.C. 布雷迪. 土壤的本质与性状[M]. 北京: 科学出版社, 1982. Brady N C. The nature and properties of soils[M]. Beijing: Science Press, 1982.
[62] Mallik A U, Newaz S, Mackereth R W, et al. Geomorphic changes of headwater systems 3-23 years after forest harvesting by clearcutting[J]. Ecosphere, 2011, 2(4): 1−14.
-
期刊类型引用(6)
1. 赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 . 百度学术
2. 朱旭,吴新凤,郝景新,徐大鹏. 无框瓦楞夹芯板极限抗拔力及家具角部结合性能的研究. 林产工业. 2024(11): 20-25 . 百度学术
3. 马青原,王华. 板式家具五金件的发展与应用. 家具. 2023(04): 7-10+6 . 百度学术
4. 陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 . 百度学术
5. 胡强利,纪佳俊,冉雪蕾,王梦蕾. 杨木和辐射松树脂浸渍材金属空套螺母抗拔力研究. 中国人造板. 2022(06): 16-20 . 百度学术
6. 胡文刚,白珏,关惠元. 一种速生材榫接合节点增强方法. 北京林业大学学报. 2017(04): 101-107 . 本站查看
其他类型引用(10)