高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同幅度景观格局与水分利用效率耦合研究

温永斌 韩海荣 程小琴 李祖政

温永斌, 韩海荣, 程小琴, 李祖政. 不同幅度景观格局与水分利用效率耦合研究————以千烟洲为例[J]. 北京林业大学学报, 2019, 41(12): 88-95. doi: 10.12171/j.1000-1522.20190081
引用本文: 温永斌, 韩海荣, 程小琴, 李祖政. 不同幅度景观格局与水分利用效率耦合研究————以千烟洲为例[J]. 北京林业大学学报, 2019, 41(12): 88-95. doi: 10.12171/j.1000-1522.20190081
Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Coupling of landscape pattern and water use efficiency with different amplitudes: a case study of Qianyanzhou in eastern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 88-95. doi: 10.12171/j.1000-1522.20190081
Citation: Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Coupling of landscape pattern and water use efficiency with different amplitudes: a case study of Qianyanzhou in eastern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 88-95. doi: 10.12171/j.1000-1522.20190081

不同幅度景观格局与水分利用效率耦合研究

————以千烟洲为例

doi: 10.12171/j.1000-1522.20190081
基金项目: 国家重点研发计划项目(2016YFD0600205),国家自然科学基金项目(31700372)
详细信息
    作者简介:

    温永斌。主要研究方向:森林生态学。Email:1744215892@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    韩海荣,教授,博士生导师。主要研究方向:森林生态学。Email:hanhr@bifu.edu.cn 地址:同上

  • 中图分类号: S718.51+2.3

Coupling of landscape pattern and water use efficiency with different amplitudes: a case study of Qianyanzhou in eastern China

  • 摘要: 景观格局是生态过程在一定时空尺度上综合作用的产物,它对生态系统内的碳水分配以及碳、水循环过程中的耦合作用有极其重要的影响。目的为了探讨多尺度下景观格局与水分利用效率的相互作用规律,为景观格局与生态过程耦合关系的研究以及区域生态规划提供一定的理论基础。方法本研究采用PEST模型参数优化后的Biome-BGC模型模拟了千烟洲森林生态系统2000—2014年的水分利用效率,并分析了多尺度下景观格局指数和水分利用效率,年总初级生产力的相关性及其变化趋势。结果(1) 景观破碎化指数(斑块数量、斑块密度)与水分利用效率在缓冲区为10 ~ 80范围内呈显著负相关关系,平均斑块面积和水分利用效率在缓冲区为10 ~ 80范围内呈显著正相关关系。(2) 景观形状指数(景观形状指数、分维度指数)与水分利用效率在缓冲区为50 ~ 100范围内呈显著正相关。(3) 景观聚合度指数(相似邻接百分比、聚集度指数)与水分利用效率间的相关性在缓冲区为10~50范围内呈显著正相关。(4) 景观多样性和均匀性指数与水分利用效率间的相关性在缓冲区为10 ~ 20时呈显著负相关,70 ~ 100时变为显著正相关。(5) 景观格局指数和水分利用效率的相关性表现出明显的尺度效应。(6) 总初级生产力和景观格局指数相关性的变化规律同水分利用效率和景观格局指数相关性的变化规律一致。结论景观格局与生态过程的耦合受到尺度效应的影响,建议区域生态规划要充分考虑尺度效应,使景观格局与生态过程发挥最大的耦合效用。

     

  • 图  1  研究区位和缓冲区示意图

    Figure  1.  Schematic diagram of study area and station buffer

    图  2  PEST模型参数优化流程图

    Figure  2.  Optimization flowchart of PEST parameter

    图  3  千烟洲2000—2014水分利用效率

    Figure  3.  Water use efficiency of Qianyanzhou from 2000 to 2014

    表  1  不同尺度景观格局与水分利用效率相关性分析

    Table  1.   Correlation analysis between landscape pattern and water use efficiency at different scales

    缓冲区
    Buffer/km
    斑块数量
    NP
    斑块密度
    PD
    平均斑块面积
    AREA-MN
    斑块形状指数
    SHAPE
    分维度指数
    FRAC
    相似邻接百分比
    PLADJ
    聚集度指数
    AI
    辛普森多样性指数
    SIDI
    辛普森均匀性指数
    SIEI
    10 − 0.606* − 0.596* 0.607* − 0.434 − 0.383 0.613* 0.604* − 0.584* − 0.639*
    20 − 0.703** − 0.711** 0.728** − 0.135 − 0.200 0.707** 0.708** − 0.605* − 0.606*
    30 − 0.683** − 0.676** 0.700** − 0.211 0.178 0.682** 0.683** 0.276 0.173
    40 − 0.673** − 0.668** 0.686** 0.172 0.221 0.662** 0.663** 0.450 0.317
    50 − 0.619* − 0.616* 0.626* 0.544* 0.590* 0.606* 0.607* 0.531 0.502
    60 − 0.572* − 0.568* 0.587* 0.722** 0.714** 0.452 0.454 0.490 0.441
    70 − 0.571* − 0.566* 0.585* 0.712** 0.696** 0.253 0.258 0.558* 0.526
    80 − 0.576* − 0.549* 0.593* 0.724** 0.717** 0.167 0.172 0.565* 0.565*
    90 − 0.519 − 0.510 0.529 0.651* 0.682** 0.080 0.083 0.556* 0.556*
    100 − 0.434 − 0.421 0.439 0.619* 0.660* − 0.099 − 0.097 0.575* 0.576*
    注:*表示相关性显著(P < 0.05),**表示相关性极显著(P < 0.01)。下同。Notes: * means significant correlation at P < 0.05 level, ** means extremely significant correlation at P < 0.01 level. Same as below.
    下载: 导出CSV

    表  2  不同尺度景观格局和总初级生产力相关性分析

    Table  2.   Correlation analysis of landscape pattern and total primary productivity at different scales

    缓冲区Buffer/km斑块数量NP斑块密度PD平均斑块面积AREA-MN斑块形状指数SHAPE分维度指数FRAC相似邻接百分比PLADJ聚集度指数AI辛普森多样性指数SIDI辛普森均匀性指数SIEI
    10 − 0.626* − 0.641* 0.623* − 0.199 − 0.029 0.572* 0.562* − 0.498 − 0.537*
    20 − 0.675** − 0.664** 0.685** − 0.109 − 0.159 0.673** 0.670** − 0.518 − 0.519
    30 − 0.651* − 0.649* 0.662** − 0.139 − 0.302 0.655* 0.658* 0.307 0.248
    40 − 0.628* − 0.618* 0.640* 0.428 0.080 0.615* 0.611* 0.474 0.381
    50 − 0.625* − 0.604* 0.640* 0.585* 0.305 0.574* 0.566* 0.516 0.503
    60 − 0.480 − 0.479 0.492 0.585* 0.611* 0.399 0.402 0.503 0.468
    70 − 0.482 − 0.468 0.493 0.586* 0.642* 0.249 0.254 0.561* 0.539*
    80 − 0.498 − 0.466 0.515 0.616* 0.638* 0.155 0.159 0.569* 0.570*
    90 − 0.487 − 0.453 0.502 0.674** 0.662** 0.076 0.078 0.558* 0.559*
    100 − 0.416 − 0.427 0.428 0.688** 0.714** − 0.100 − 0.098 0.571* 0.571*
    下载: 导出CSV
  • [1] Lawler J J. Landscape pattern and ecological process: an important update of a classic textbook[J]. Ecology, 2017, 98(8): 2231−2232. doi: 10.1002/ecy.1868
    [2] Dorner B, Lertzman K, Fall J. Landscape pattern in topographically complex landscapes: issues and techniques for analysis[J]. Landscape Ecology, 2002, 17(8): 729−743. doi: 10.1023/A:1022944019665
    [3] 傅伯杰, 陈利顶, 王军, 等. 土地利用结构与生态过程[J]. 第四纪研究, 2003, 23(3):247−255. doi: 10.3321/j.issn:1001-7410.2003.03.002

    Fu B J, Chen L D, Wang J, et al. Land use structure and ecological processes[J]. Quaternary Sciences, 2003, 23(3): 247−255. doi: 10.3321/j.issn:1001-7410.2003.03.002
    [4] 胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048

    Hu Z M, Yu G R, Wang Q F, et al. Ecosystem level water use efficiency: a review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
    [5] Fu B, Liang D, Lu N. Landscape ecology: coupling of pattern, process, and scale[J]. Chinese Geographical Science, 2011, 21(4): 385−391. doi: 10.1007/s11769-011-0480-2
    [6] 梁友嘉, 刘丽珺. 生态系统服务与景观格局集成研究综述[J]. 生态学报, 2018, 38(20):7159−7167.

    Liang Y J, Liu L J. Integration of ecosystem services and landscape pattern: a review[J]. Acta Ecologica Sinica, 2018, 38(20): 7159−7167.
    [7] Hassett E M, Stehman S V, Wickham J D. Estimating landscape pattern metrics from a sample of land cover[J]. Landscape Ecology, 2012, 27(1): 133−149. doi: 10.1007/s10980-011-9657-4
    [8] Su S, Xiao R, Jiang Z, et al. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale[J]. Applied Geography, 2012, 34: 295−305. doi: 10.1016/j.apgeog.2011.12.001
    [9] 吕一河, 陈利顶, 傅伯杰. 景观格局与生态过程的耦合途径分析[J]. 地理科学进展, 2007, 26(3):1−10. doi: 10.3969/j.issn.1007-6301.2007.03.001

    Lü Y H, Chen L D, Fu B J. Analysis of the integrating approach on landscape pattern and ecological processes[J]. Progress in Geography, 2007, 26(3): 1−10. doi: 10.3969/j.issn.1007-6301.2007.03.001
    [10] 于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1):1−13.

    Yu G R, Gao Y, Wang Q F, et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1−13.
    [11] 王让会. 景观尺度、过程及格局(LSPP)研究的内涵及特点[J]. 热带地理, 2018, 38(4):458−464.

    Wang R H. Connotation and characteristics of landscape scale, process and pattern (LSPP) research[J]. Tropical Geography, 2018, 38(4): 458−464.
    [12] 于贵瑞, 何洪林, 周玉科. 大数据背景下的生态系统观测与研究[J]. 中国科学院院刊, 2018, 33(8):832−837.

    Yu G R, He H B, Zhou Y K. Ecosystem observation and research under background of big data[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 832−837.
    [13] 徐延达, 傅伯杰, 吕一河. 基于模型的景观格局与生态过程研究[J]. 生态学报, 2010, 30(1):212−220.

    Xu Y D, Fu B J, Lü Y H. Research on landscape patternand ecological processes based on landscape models[J]. Acta Ecologica Sinica, 2010, 30(1): 212−220.
    [14] 邬建国. 景观生态学: 格局、过程尺度与等级[M]. 北京: 高等教育出版社, 2000.

    Wu J G. Landscape ecology: pattern, process, scale and hierarchy[M]. Beijing: Higher Education Press, 2000.
    [15] 傅伯杰. 地理学综合研究的途径与方法:格局与过程耦合[J]. 地理学报, 2014, 69(8):1052−1059. doi: 10.11821/dlxb201408002

    Fu B J. The integrated studies of geography: coupling of patterns and processes[J]. Acta Geographica Sinica, 2014, 69(8): 1052−1059. doi: 10.11821/dlxb201408002
    [16] 于贵瑞, 王秋凤, 方华军. 陆地生态系统碳−氮−水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究, 2014, 34(4):683−698. doi: 10.3969/j.issn.1001-7410.2014.04.01

    Yu G R, Wang Q F, Fang H J. Fundamental scientific issues, theoretical framework and relative research methods of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J]. Quaternary Science, 2014, 34(4): 683−698. doi: 10.3969/j.issn.1001-7410.2014.04.01
    [17] 陈利顶, 吕一河, 傅伯杰, 等. 基于模式识别的景观格局分析与尺度转换研究框架[J]. 生态学报, 2006, 26(3):663−670. doi: 10.3321/j.issn:1000-0933.2006.03.005

    Chen L D, Lü Y H, Fu B J, et al. A framework on landscape pattern analysis and scale change by using pattern recognition approach[J]. Acta Ecologica Sinica, 2006, 26(3): 663−670. doi: 10.3321/j.issn:1000-0933.2006.03.005
    [18] 谢馨瑶, 李爱农, 靳华安. 大尺度森林碳循环过程模拟模型综述[J]. 生态学报, 2018, 38(1):41−54. doi: 10.3969/j.issn.1673-1182.2018.01.009

    Xie X Y, Li A N, Jin H A. The simulation models of the forest carbon cycle on a large scale: a review[J]. Acta Ecologica Sinica, 2018, 38(1): 41−54. doi: 10.3969/j.issn.1673-1182.2018.01.009
    [19] Ueyama M, Ichii K, Hirata R, et al. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with Asia Flux data[J]. Biogeosciences, 2010, 7(3): 959−977. doi: 10.5194/bg-7-959-2010
    [20] 李书恒, 侯丽, 史阿荣, 等. 基于Biome-BGC模型及树木年轮的太白红杉林生态系统对气候变化的响应[J]. 生态学报, 2018, 38(20):1−11.

    Li S H, Hou L, Shi A R, et al. Response of Larix chinensis forest ecosystem to climate change based on Biome-BGC model and tree rings[J]. Acta Ecologica Sinica, 2018, 38(20): 1−11.
    [21] 李一哲, 张廷龙, 刘秋雨, 等. 生态过程模型敏感参数最优取值的时空异质性分析:以BIOME-BGC模型为例[J]. 应用生态学报, 2018, 29(1):84−92.

    Li Y Z, Zhang Y L, Liu Q Y, et al. Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: the BIOME-BGC model as an example[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 84−92.
    [22] Watson T A, Doherty J E, Christensen S. Parameter and predictive outcomes of model simplification[J]. Water Resources Research, 2013, 49(7): 3952−3977. doi: 10.1002/wrcr.20145
    [23] 董艳辉, 李国敏, 郭永海, 等. 应用并行PEST算法优化地下水模型参数[J]. 工程地质学报, 2010, 18(1):140−144. doi: 10.3969/j.issn.1004-9665.2010.01.021

    Dong Y H, Li G M, Guo Y H, et al. Optimization of model parameters for ground water flow using parallelized PEST method[J]. Journal of Engineering Geology, 2010, 18(1): 140−144. doi: 10.3969/j.issn.1004-9665.2010.01.021
    [24] 梁浩, 胡克林, 李保国. 基于PEST的土壤−作物系统模型参数优化及灵敏度分析[J]. 农业工程学报, 2016, 32(3):78−85. doi: 10.11975/j.issn.1002-6819.2016.03.012

    Liang H, Hu K L, Li B G. Parameter optimization and sensitivity analysis of soil-crop system model using PEST[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 78−85. doi: 10.11975/j.issn.1002-6819.2016.03.012
    [25] 王礼恒, 董艳辉, 李国敏, 等. 基于PEST的地下水数值模拟参数优化的应用[J]. 工程勘察, 2014, 42(3):38−42. doi: 10.3969/j.issn.1000-1433.2014.03.009

    Wang L H, Dong Y H, Li G M, et al. Application of groundwater numerical simulation for parameter optimization based on PEST[J]. Geotechnical Investigation & Surveying, 2014, 42(3): 38−42. doi: 10.3969/j.issn.1000-1433.2014.03.009
    [26] Nolan B T, Malone R W, Doherty J E, et al. Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States[J]. Pest Management Science, 2015, 71(7): 972−985. doi: 10.1002/ps.3875
    [27] 李祖政, 尤海梅, 王梓懿. 徐州城市景观格局对绿地植物多样性的多尺度影响[J]. 应用生态学报, 2018, 29(6):1813−1821.

    Li Z Z, You H M, Wang Z Y. Multi-scale effects of urban landscape pattern on plant diversity in Xuzhou City, Jiangsu Province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1813−1821.
    [28] O'Neill R V, Krummel J R, Gardner R H, et al. Indices of landscape pattern[J]. Landscape Ecology, 1988, 1(3): 153−162. doi: 10.1007/BF00162741
    [29] Li S J, Sui Y Z, Sun Z H, et al. Landscape pattern and fragmentation of natural secondary forests in the eastern mountainous region, northeast China: a case study of Mao'ershan forests in Heilongjiang Province[J]. Journal of Forestry Research, 2005, 16(1): 35−38. doi: 10.1007/BF02856851
    [30] Mariano M D L H, Saco P M, Willgoose G R, et al. Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions[J]. Ecological Applications, 2011, 21(7): 2793−2805. doi: 10.1890/10-2113.1
    [31] Wu J. Effects of changing scale on landscape pattern analysis: scaling relations[J]. Landscape Ecology, 2004, 19(2): 125−138. doi: 10.1023/B:LAND.0000021711.40074.ae
    [32] 傅伯杰, 徐延达, 吕一河. 景观格局与水土流失的尺度特征与耦合方法[J]. 地球科学进展, 2010, 25(7):673−681.

    Fu B J, Xu Y D, Lü Y H. Scale characteristics and coupled research of landscape pattern and soil and water loss[J]. Advances in Earth Science, 2010, 25(7): 673−681.
    [33] 陈利顶, 徐建英, 傅伯杰, 等. 斑块边缘效应的定量评价及其生态学意义[J]. 生态学报, 2004, 24(9):1827−1832. doi: 10.3321/j.issn:1000-0933.2004.09.001

    Chen L D, Xu J Y, Fu B J, et al. Quantitative assessment of patch edge effects and its ecological implications[J]. Acta Ecologica Sinica, 2004, 24(9): 1827−1832. doi: 10.3321/j.issn:1000-0933.2004.09.001
    [34] 田超, 杨新兵, 刘阳. 边缘效应及其对森林生态系统影响的研究进展[J]. 应用生态学报, 2011, 22(8):2184−2192.

    Tian C, Yang X B, Liu Y. Edge effect and its impacts on forest ecosystem: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(8): 2184−2192.
    [35] 陈雅如. 三峡库区森林生产力与碳储量对景观格局变化的响应[D]. 北京: 中国林业科学研究院, 2017.

    Chen Y R. The response of forest productivity and carbon storage to landscape pattern change in Three Gorges Reservoir Area[D]. Beijing: Chinese Academy of Forestry, 2017.
    [36] Wang F, Jiang H, Zhang X M. Spatial-temporal dynamics of gross primary productivity, evapotranspiration, and water-use efficiency in the terrestrial ecosystems of the Yangtze River Delta Region and their relations to climatic variables[J]. International Journal of Remote Sensing, 2015, 36(10): 2645−2673.
    [37] 陈利顶, 傅伯杰. 景观连接度的生态学意义及其应用[J]. 生态学杂志, 1996, 15(4):37−42. doi: 10.3321/j.issn:1000-4890.1996.04.010

    Chen L D, Fu B J. The ecological significance and application of landscape connectivity[J]. Chinese Journal of Ecology, 1996, 15(4): 37−42. doi: 10.3321/j.issn:1000-4890.1996.04.010
    [38] 胡艳, 杨瑞. 宽阔水自然保护区景观格局特征分析[J]. 生态科学, 2018, 37(3):184−188.

    Hu Y, Yang R. Analysis of landscape pattern characteristics of Kuankuoshui Natural Reserve[J]. Ecological Science, 2018, 37(3): 184−188.
    [39] Wang H, Hall C A S, Scatena F N, et al. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico[J]. Forest Ecology & Management, 2003, 179(1): 69−94.
    [40] 陈文波, 肖笃宁, 李秀珍. 景观指数分类、应用及构建研究[J]. 应用生态学报, 2002, 13(1):121−125. doi: 10.3321/j.issn:1001-9332.2002.01.027

    Chen W B, Xiao D N, Li X Z. Classification, application, and creation of landscape indices[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 121−125. doi: 10.3321/j.issn:1001-9332.2002.01.027
    [41] 肖笃宁, 布仁仓, 李秀珍. 生态空间理论与景观异质性[J]. 生态学报, 1997, 17(5):3−11.

    Xiao D N, Bu R C, Li X Z. Spatial ecology and landscape heterogeneity[J]. Acta Ecological Sinica, 1997, 17(5): 3−11.
    [42] 孙拥康. 森林景观格局与环境关系的尺度效应研究[D]. 长沙: 中南林业科技大学, 2013.

    Sun Y K. Study on relationship and scale effect between forest landscape pattern and environment: case on west Dongting Lake Region[D]. Changsha: Central South University of Forestry and Technology, 2013.
    [43] 郭建军. 流域生态承载力空间尺度效应与优化研究[D]. 兰州: 兰州大学, 2014.

    Guo J J. Spatial scale effect and optimization of basin’s biocapacity: case studies of Shiyang River Basin and Jinghe River Watershed[D]. Lanzhou: Lanzhou University, 2014.
    [44] 仇宽彪. 中国植被总初级生产力、蒸散发及水分利用效率的估算及时空变化[D]. 北京: 北京林业大学, 2015.

    Qiu K B. Estimating regional vegetation gross primary productivity (GPP), evapotranspiration (ET), water use efficiency (WUE) and their spatial and temporal distribution across China[D]. Beijing: Beijing Forestry University, 2015.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  3596
  • HTML全文浏览量:  460
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-10
  • 修回日期:  2019-05-15
  • 网络出版日期:  2019-10-08
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回