• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

晋西黄土区退耕年限对土壤物理性质的影响

张恒硕, 查同刚, 张晓霞

张恒硕, 查同刚, 张晓霞. 晋西黄土区退耕年限对土壤物理性质的影响[J]. 北京林业大学学报, 2020, 42(6): 123-133. DOI: 10.12171/j.1000-1522.20190087
引用本文: 张恒硕, 查同刚, 张晓霞. 晋西黄土区退耕年限对土壤物理性质的影响[J]. 北京林业大学学报, 2020, 42(6): 123-133. DOI: 10.12171/j.1000-1522.20190087
Zhang Hengshuo, Zha Tonggang, Zhang Xiaoxia. Effects of converting years from farmland to forestland on soil physical properties in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 123-133. DOI: 10.12171/j.1000-1522.20190087
Citation: Zhang Hengshuo, Zha Tonggang, Zhang Xiaoxia. Effects of converting years from farmland to forestland on soil physical properties in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 123-133. DOI: 10.12171/j.1000-1522.20190087

晋西黄土区退耕年限对土壤物理性质的影响

基金项目: 国家“十二五”科技支撑计划课题(2015BAD07B03)
详细信息
    作者简介:

    张恒硕。主要研究方向:土壤退化与生态修复。Email:zhs418473740@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    查同刚,博士,副教授。主要研究方向:土壤退化与生态修复。Email:zhtg73@bjfu.edu.cn 地址:同上

Effects of converting years from farmland to forestland on soil physical properties in the loess area of western Shanxi Province, northern China

  • 摘要:
    目的为评价晋西黄土区退耕年限对土壤物理性质的影响,并为该地区水土保持林构建提供依据。
    方法以山西吉县蔡家川小流域的农地为对照,对晋西黄土区5种典型退耕还林林分(包括自然恢复山杨林、刺槐×侧柏人工混交林、油松×刺槐人工混交林、刺槐人工纯林和油松人工纯林)的土壤物理性质进行了连续23年的定位观测。
    结果(1)所有人工林土壤密度随退耕年限呈现先上升(退耕后前1 ~ 4年)后下降(退耕后4 ~ 23年间)的趋势,在10 ~ 15年下降至一个比初始值更低的值后逐渐趋于平稳;自然恢复林随退耕年限土壤密度呈不断下降趋势,最高下降幅度为11.21%(0 ~ 20 cm土层)。(2)人工林土壤总孔隙度在前10 ~ 15年呈先下降后上升的趋势,自然恢复林土壤总孔隙度随恢复年限上升趋势越来越缓慢,0 ~ 20 cm土层和20 ~ 40 cm土层累积变化率为1.4%和0.6%。(3)5种典型林分的毛管孔隙度均随退耕年限增加呈上升趋势,其中人工林内20 ~ 40 cm土壤层的毛管孔隙度变化大于0 ~ 20 cm土层,自然恢复林0 ~ 20 cm土层和20 ~ 40 cm土层的累积变化率分别为2.5%和1.5%左右。
    结论退耕年限对土壤物理性质影响显著(P < 0.05),4种人工林中土壤物理性质的变化主要发生在退耕后的前10 ~ 15年内,其中刺槐×侧柏混交林对土壤物理性质的改良效果更明显,建议该地区人工林恢复类型应以刺槐×侧柏混交林为主。
    Abstract:
    ObjectiveThis paper aims to evaluate the effects of converting time from cropland to forestland on soil physical properties, and provide a basis for the construction of soil and water conservation forests in the region.
    MethodThe 23 years positioning continuous monitoring was taken on soil physical properties under five typical forests, including one natural restoration Populus davidiana plantation, two mixed plantations of Platycladus orientalis and Robinia pseudoacacia, Pinus tabuliformis and Robinia pseudoacacia, two pure plantations of Robinia pseudoacacia and Pinus tabuliform, and taking the corn farmland as control.
    Result(1) With the increase of converted years, the soil bulk density (BD) under the four plantations increased first and then decreased to a stable value, which was lower than initial value at about 10−15 years. In the natural restoration forest (NF), BD showed a downward tendency with the highest decreasing range of 11.21% at 0−20 cm soil depth. (2) The soil total porosity (TP) under the 4 plantations decreased first and then increased to a stable value, which was higher than initial value at about 10−15 years. The cumulative changing rates of TP at the soil depths of 0−20 cm and 20−40 cm were 1.4% and 0.6%, respectively under NF. (3) The capillary porosity (CP) under the five typical forests all showed an increasing trend with the increase of converting time. The CP at 0−20 cm changed more than at 20−40 cm in the plantations; the cumulative changing rates of CP at 0−20 cm and 20−40 cm were 2.5% and 1.5%, respectively under NF.
    Conclution The converted years showed a significant effects on soil physical properties (P < 0.05) under the typical forests, while for the plantations, the change of BD and TP mostly occurred in the first 10−15 years. The mixed forests of Pinus tabuliformis and Robinia pseudoacacia should be the prioritized for the artificial vegetation restoration in the research area based on its remarkable improvement effects on soil physical properties.
  • 图  1   恢复年限对土壤密度的影响

    Figure  1.   Effects of recovery time on soil bulk density

    图  2   恢复年限对土壤总孔隙度的影响

    Figure  2.   Effects of recovery time on soil total porosity

    图  3   恢复年限对土壤毛管孔隙度的影响

    Figure  3.   Effects of recovery time on soil capillary porosity

    图  4   不同植被类型下土壤有机质变化幅度

    Figure  4.   Changing range of soil organic matter under different vegetation types

    表  1   林地基本信息

    Table  1   Basic information of the research sites

    序号 No.植被类型 Vegetation type海拔
    Altitude/m
    坡度 Slope degree/(°)坡向 Slope aspect/(°)密度/(株·hm−2) Density/(plant·ha−1胸径
    DBH/cm
    树高
    Tree height/m
    郁闭度
    Canopy density
    1RP1 19518NE321 38612.88.50.84
    2PP1 23413NE371 6509.46.50.78
    3PRP1 12615NE151 100 × 6007.9 × 8.86.60.87
    4RPP1 23212NE20830 × 75010.1 × 6.25.20.82
    5NP1 15819NE451 5308.77.30.92
    6CK1 15410NE2273 5803.42.40.84
    注:RP.刺槐人工林; PP.油松人工林; PRP.油松×刺槐混交林; RPP.刺槐×侧柏混交林; NP.自然恢复的山杨林; CK.耕地。NE.东北方向。下同。树高和胸径为平均值,耕地的郁闭度为玉米农作物的冠层覆盖度。Notes: RP, Robinia pseudoacacia plantation; PP, Pinus tabuliformis plantation; PRP, Pinus tabuliformis and Robinia pseudoacacia plantation; RPP, Robinia pseudoacacia and Platycladus orientalis plantation; NP, natural recovery Populus davidiana; CK, cultivated lands. NE, northeast aspect. The same below. Tree height and DBH are the average values, and the canopy density of cultivated land is the canopy coverage of corn crops.
    下载: 导出CSV

    表  2   不同植被下0 ~ 20 cm与20 ~ 40 cm层土壤机械组成变化

    Table  2   Changes of soil mechanical composition in 0−20 cm and 20−40 cm soil layers under different vegetations %

    组成
    Composition
    土层深度
    Soil depth/cm
    项目
    Item
    RPPPPRPRPPNPCK
    黏粒
    Clay
    0 ~ 20 1993年 Year 1993 16.16 13.85 16.05 15.92 17.48 16.12
    2006年 Year 2006 15.75 14.25 16.15 16.04 19.73 15.97
    变化幅度
    Range of change
    − 2.54 2.89 0.62 0.75 12.87 − 0.93
    20 ~ 40 1993年 Year 1993 15.87 13.56 15.89 15.45 17.43 15.98
    2006年 Year 2006 15.72 13.79 15.94 15.62 18.13 16.04
    变化幅度
    Range of change
    − 0.95 1.70 0.31 1.10 4.02 0.38
    粉粒
    Silk
    0 ~ 20 1993年 Year 1993 52.54 53.25 51.17 51.87 51.98 49.32
    2006年 Year 2006 53.02 53.51 51.80 52.27 52.02 49.49
    变化幅度
    Range of change
    0.91 0.49 1.23 0.77 0.08 0.34
    20 ~ 40 1993年 Year 1993 52.33 53.04 51.12 52.01 51.53 49.01
    2006年 Year 2006 52.51 53.08 51.47 52.32 52.35 49.00
    变化幅度
    Range of change
    0.34 0.08 0.68 0.60 1.59 − 0.02
    砂粒
    Sand
    0 ~ 20 1993年 Year 1993 31.30 32.90 32.78 32.21 30.54 34.56
    2006年 Year 2006 31.23 32.24 32.05 31.69 28.25 34.54
    变化幅度
    Range of change
    − 0.22 − 2.01 − 2.23 − 1.61 − 7.50 − 0.06
    20 ~ 40 1993年 Year 1993 31.80 33.40 32.99 32.54 31.04 35.01
    2006年 Year 2006 31.77 33.13 32.59 32.06 29.52 34.96
    变化幅度
    Range of change
    −0.09 −0.81 − 1.21 − 1.48 − 4.90 − 0.14
    下载: 导出CSV

    表  3   不同植被类型与恢复年限对土壤物理性质影响的方差分析

    Table  3   Variance analysis on the effects of different vegetation types and recovery years on soil physical properties

    土壤物理性质
    Soil physical property
    土层深度
    Soil depth/cm
    项目 Item平方和
    Sum of squares
    自由度
    df
    均方
    Mean squares
    F显著性
    Sig.
    土壤密度
    Soil bulk density/
    (g·cm−3
    0 ~ 20 恢复年限 Recovery time 0.158 22 0.007 12.589 0.000
    林分种类 Stand species 0.292 4 0.073 127.755 0.000
    总计 Total 44.103 114
    20 ~ 40 恢复年限 Recovery time 0.047 22 0.000 8.252 0.000
    林分种类 Stand species 0.155 4 0.039 148.384 0.000
    总计 Total 167.235 114
    土壤总孔隙度
    Soil total porosity/%
    0 ~ 20 恢复年限 Recovery time 17.992 22 0.818 31.457 0.000
    林分种类 Stand species 2 186.973 4 546.743 21 029.616 0.000
    总计 Total 374 820.670 113
    20 ~ 40 恢复年限 Recovery time 7.711 22 0.350 11.236 0.000
    林分种类 Stand species 1 980.467 4 495.117 15 872.489 0.000
    总计 Total 243 388.632 113
    土壤毛管孔隙度
    Soil capillary porosity/%
    0 ~ 20 恢复年限 Recovery time 2.834 22 0.129 2.624 0.001
    林分种类 Stand species 2 743.996 4 685.999 13 959.025 0.000
    总计 Total 173 816.589 84
    20 ~ 40 恢复年限 Recovery time 4.579 22 0.208 14.364 0.000
    林分种类 Stand species 2 864.019 4 716.005 49 417.602 0.000
    总计 Total 161 268.871 138
    下载: 导出CSV
  • [1] 蔺鹏飞, 张晓萍, 刘二佳, 等. 黄土高原典型流域水沙关系对退耕还林(草)的响应[J]. 水土保持学报, 2015, 29(1):1−6.

    Lin P F, Zhang X P, Liu E J, et al. Response of the water and sediment behavior to vegetation restoration in tipical catchments on Loess Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(1): 1−6.

    [2] 彭珂珊, 上官周平. 中国西部地区退耕还林的作用和战略对策[J]. 世界林业研究, 2003(3):41−46. doi: 10.3969/j.issn.1001-4241.2003.03.009

    Peng K S, Shangguan Z P. The role of closing cropland for forestry and the countermeasure in western China[J]. World Forestry Research, 2003(3): 41−46. doi: 10.3969/j.issn.1001-4241.2003.03.009

    [3] 宋同清, 彭晚霞, 曾馥平, 等. 喀斯特峰丛洼地退耕还林还草的土壤生态效应[J]. 土壤学报, 2011, 48(6):1219−1226. doi: 10.11766/trxb201005270211

    Song T Q, Peng W X, Zeng F P, et al. Soil ecological effects of converting cropland to forest and grassland in depressions betweens karst hills[J]. Acta Pedologica Sinica, 2011, 48(6): 1219−1226. doi: 10.11766/trxb201005270211

    [4] 杨亚辉. 黄土丘陵沟壑区植被恢复对土壤理化性质影响分析[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2017.

    Yang Y H. Impacts of vegetation restoration on soil physical and chemical properties in the loess hilly gully region of Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment Chinese Academy of Sciences and Ministry of Education), 2017.

    [5]

    Saini G R. Organic matter as a measure of bulk density of soil[J]. Nature, 1966, 210: 1295−1296. doi: 10.1038/2101295a0

    [6]

    Suuster E, Ritz C, Roostalu H, et al. Soil bulk density pedotransfer functions of the humus horizon in arable soils[J]. Geoderma, 2011, 163(1/2): 74−82.

    [7] 郑纪勇, 邵明安, 张兴昌. 黄土区坡面表层土壤容重和饱和导水率空间变异特征[J]. 水土保持学报, 2004, 18(3):53−56. doi: 10.3321/j.issn:1009-2242.2004.03.014

    Zheng J Y, Shao M A, Zhang X C. Spatial variability of surface soil's bulk density and saturated hydraulic conductivity on slope in loess region[J]. Journal of Soil and Water Conservation, 2004, 18(3): 53−56. doi: 10.3321/j.issn:1009-2242.2004.03.014

    [8] 李志洪, 王淑华. 土壤容重对土壤物理性状和小麦生长的影响[J]. 土壤通报, 2000, 31(2):55−57. doi: 10.3321/j.issn:0564-3945.2000.02.003

    Li Z H, Wang S H. Effects of soil bulk density on soil physical properties and wheat growth[J]. Soil Bulletin, 2000, 31(2): 55−57. doi: 10.3321/j.issn:0564-3945.2000.02.003

    [9] 李裕元, 邵明安, 陈洪松, 等. 水蚀风蚀交错带植被恢复对土壤物理性质的影响[J]. 生态学报, 2010, 30(16):4306−4316.

    Li Y Y, Shao M A, Chen H S, et al. Impacts of vegetation recovery on soil physical properties in the cross area of wind-water erosion[J]. Acta Ecologica Sinica, 2010, 30(16): 4306−4316.

    [10] 李茜. 黄土高原不同树种枯落叶混合分解对土壤性质的影响[D]. 杨凌: 西北农林科技大学, 2013.

    Li Q. Effects of mixed litter decomposition from different tree species on soil properties in the Loess Plateau[D]. Yangling: Northwest A&F University, 2013.

    [11] 安韶山, 黄懿梅, 李壁成, 等. 黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系[J]. 土壤通报, 2006, 37(1):45−50. doi: 10.3321/j.issn:0564-3945.2006.01.010

    An S S, Huang Y M, Li B C, et al. Characteristics of soil water stable aggregates and relationship with soil properties during vegetation rehabliation in loess hilly region [J]. Soil Bulletin, 2006, 37(1): 45−50. doi: 10.3321/j.issn:0564-3945.2006.01.010

    [12] 郑芳, 张建军. 晋西黄土区不同植被覆盖流域的水文响应[J]. 生态学报, 2010, 30(20):5475−5484.

    Zheng F, Zhang J J. Hydrological response to changes in vegetation covers at a watershed scale in western Shanxi, Loess Plateau, China[J]. Acta Ecologica Sinica, 2010, 30(20): 5475−5484.

    [13] 李东海, 杨小波, 邓运武, 等. 桉树人工林林下植被、地面覆盖物与土壤物理性质的关系[J]. 生态学杂志, 2006, 25(6):607−611. doi: 10.3321/j.issn:1000-4890.2006.06.003

    Li D H, Yang X B, Deng Y W, et al. Soil physical properties under effects of Eucalyptus understory vegetation and litter[J]. Chinese Journal of Ecology, 2006, 25(6): 607−611. doi: 10.3321/j.issn:1000-4890.2006.06.003

    [14]

    Peng S L, Chen A Q, Fang H D, et al. Effects of vegetation restoration types on soil quality in Yuanmou Dry-Hot Valley, China[J]. Soil Science and Plant Nutrition, 2013, 59(3): 347−360. doi: 10.1080/00380768.2013.785918

    [15] 李永涛, 李宗泰, 王振猛, 等. 滨海盐碱区不同林龄柽柳人工林土壤水分物理性质差异性[J]. 东北林业大学报, 2018,46(9):75−79.

    Li Y T, Li Z T, Wang Z M, et al. Soil water-physical properties of Tamarix chinensis plantations with different ages in coastal saline-alkali region[J]. Journal of Northeast Forestry University, 2018,46(9): 75−79.

    [16] 罗海波, 钱晓刚, 刘方, 等. 喀斯特山区退耕还林(草)保持水土生态效益研究[J]. 水土保持学报, 2003,17(4):31−34, 41. doi: 10.3321/j.issn:1009-2242.2003.04.008

    Luo H B, Qian X G, Liu F, et al. Ecological benefit of soil and water conservation in hilly areas by de farming and reafforestation[J]. Journal of Soil and Water Conservation, 2003,17(4): 31−34, 41. doi: 10.3321/j.issn:1009-2242.2003.04.008

    [17] 何艳, 孙保平, 肖恩邦, 等. 重庆合川区退耕还林地土壤改良效应研究[J]. 土壤通报, 2015, 46(6):1392−1398.

    He Y, Sun B P, Xiao E B, et al. Soil improvement effect of returning farmland to forest in Hechuan District, Chongqing[J]. Chinese Journal of Soil Science, 2015, 46(6): 1392−1398.

    [18] 李建军, 吴斌, 佐藤俊, 等. 晋西黄土残塬沟壑区不同林地土壤水分动态研究[J]. 北京林业大学学报, 1994, 16(增刊 4):36−43.

    Li J J, Wu B, Zuo T J, et al. Study on soil moisture dynamics of different forest lands in the loess gully area of western Shanxi Province[J]. Journal of Beijing Forestry University, 1994, 16(Suppl. 4): 36−43.

    [19] 朱金兆, 张建军, 魏天兴, 等. 中国生态系统定位观测与研究数据集·森林生态系统卷: 山西吉县站(1978—2006)[M].北京: 中国农业出版社, 2010: 141−154.

    Zhu J Z, Zhang J J, Wei T X, et al. China ecosystem positioning observation and research dataset·forest ecosystem volume: Shanxi Jixian Station (1978−2006)[M]. Beijing: China Agriculture Press, 2010: 141−154.

    [20] 张建军, 吴斌, 朱金兆, 等. 晋西黄土残塬沟壑区水土保持林地土壤水分有效性的研究[J]. 北京林业大学学报, 1994, 16(增刊 4):59−65.

    Zhang J J, Wu B, Zhu J Z, et al. Study on soil water availability of soil and water conservation forest land in the loess gully area of western Shanxi Province[J]. Journal of Beijing Forestry University, 1994, 16(Suppl. 4): 59−65.

    [21] 国家林业局. 中华人民共和国林业行业标准LY/T 1215—1999森林土壤分析方法[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. People’s Republic of China Forestry Industry Standard LY/T 1215−1999 forest soil analysis method[S]. Beijing: China Standard Press, 1999.

    [22] 张万儒. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999: 22−24.

    Zhang W R. Forest soil analysis method[M]. Beijing: China Standard Press, 1999: 22−24.

    [23] 林业部科技司. 森林生态系统定位研究方法[S]. 北京: 中国科学技术出版社, 1994.

    Department of Science and Technology of the Ministry of Forestry. Forest ecosystem positioning research method[S]. Beijing: China Science and Technology Press, 1994.

    [24] 王昭艳, 左长清, 曹文洪, 等. 红壤丘陵区不同植被恢复模式土壤理化性质相关分析[J]. 土壤学报, 2011, 48(4):715−724. doi: 10.11766/trxb201011090467

    Wang Z Y, Zuo C Q, Cao W H, et al. Physical and chemical properties of soils under different vegetation restoration models in red soil hilly region[J]. Acta Pedologica Sinica, 2011, 48(4): 715−724. doi: 10.11766/trxb201011090467

    [25] 张希彪, 上官周平. 人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J]. 生态学报, 2006, 26(11):3685−3695. doi: 10.3321/j.issn:1000-0933.2006.11.022

    Zhang X B, Shangguan Z P. Effects of human-induced disturbance on physical properties of soil in artificial Pinus tabulaeformis Carr. forests of Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(11): 3685−3695. doi: 10.3321/j.issn:1000-0933.2006.11.022

    [26] 刘月秀, 李银, 曹福亮. 广东桉树林土壤物理性质及其影响因子分析[J]. 林业科技开发, 2012, 26(4):13−18. doi: 10.3969/j.issn.1000-8101.2012.04.004

    Liu Y X, Li Y, Cao F L. Soil physical properties their influencing factors under Eucalyptus forest in Guangdong Probince[J]. Forestry Science & Technology Development, 2012, 26(4): 13−18. doi: 10.3969/j.issn.1000-8101.2012.04.004

    [27] 赵筱青, 和春兰, 易琦. 大面积桉树引种区土壤水分及水源涵养性能研究[J]. 水土保持学报, 2012, 26(3):205−210.

    Zhao X Q, He C L, Yi Q. Soil moisture and water conservation in Eucalyptus uraphylla spp. introduction area[J]. Journal of Soil and Water Conservation, 2012, 26(3): 205−210.

    [28]

    Gimenez D, Perfect E, Rawls W J, et al. Fractal models for predicting soil hydraulic properties: a review[J]. Engineering Geology, 1997, 48(3−4): 161−183. doi: 10.1016/S0013-7952(97)00038-0

    [29]

    Huang G, Zhang R. Evaluation of soil water retention curve with the pore-solid fractal model[J]. Geoderma, 2005, 127(1): 52−61.

    [30]

    Montero E. Rényi dimensions analysis of soil particle-size distributions[J]. Ecological Modelling, 2005, 182(3): 305−315.

    [31] 唐炎林, 邓晓保, 李玉武, 等. 西双版纳不同林分土壤机械组成及其肥力比较[J]. 中南林业科技大学学报, 2007, 27(1):70−75. doi: 10.3969/j.issn.1673-923X.2007.01.013

    Tang Y L, Deng X B, Li Y W, et al. Comparison of the mechanical composition and soil fertility between tropical seasonal rain forest soil and rubber forest soil in Xishuangbanna[J]. Journal of Central South University of Forestry and Technology, 2007, 27(1): 70−75. doi: 10.3969/j.issn.1673-923X.2007.01.013

    [32] 彭文英, 张科利, 陈瑶, 等. 黄土坡耕地退耕还林后土壤性质变化研究[J]. 自然资源学报, 2005, 20(2):272−278. doi: 10.3321/j.issn:1000-3037.2005.02.016

    Peng W Y, Zhang K L, Chen Y, et al. Study on the improving soil properties of forest vegetation in different land where returning farmland to forest in Loess Plateau[J]. Journal of Natural Resources, 2005, 20(2): 272−278. doi: 10.3321/j.issn:1000-3037.2005.02.016

    [33] 杨光, 丁国栋, 常国梁, 等. 黄土高原不同退耕还林地森林植被改良土壤特性研究[J]. 水土保持研究, 2006, 13(3):204−207, 210. doi: 10.3969/j.issn.1005-3409.2006.03.068

    Yang G, Ding G D, Chang G L, et al. Study on improving soil properties of forest vegetation in different land where returning farmland to forests in Loess Plateau[J]. Research of Soil and Water Conservation, 2006, 13(3): 204−207, 210. doi: 10.3969/j.issn.1005-3409.2006.03.068

    [34] 郭雨华. 中国西北地区退耕还林工程效益监测与评价[D]. 北京: 北京林业大学, 2009.

    Guo Y H. Effective monitoring and evaluation of the land conversion program Chinese northwest region[D]. Beijing: Beijing Forestry University, 2009.

    [35] 罗国占. 陕西省吴旗县退耕还林(草)生态恢复效果研究[D].北京: 北京林业大学, 2007.

    Luo G Z. Study on the ecology restoration effect of consersion cropland to forest and grassland in Wuqi County, Shaanxi Province[D]. Beijing: Beijing Forestry University, 2007.

    [36] 田宁宁, 张建军, 李玉婷, 等. 晋西黄土区退耕还林地涵养水源和保育土壤功能评价[J]. 水土保持学报, 2015, 29(5):124−129.

    Tian N N, Zhang J J, Li Y T, et al. Functional assessment of soil and water conservation under conservation of cropland to forest in the Loess Plateau of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2015, 29(5): 124−129.

    [37] 丁康. 长武塬边坡不同植被对土壤物理性质的影响研究[D]. 杨凌: 西北农林科技大学, 2018.

    Ding K. Influence of different vegetation types on soil physical properties in Changwu tableland slope [D]. Yangling: Northwest A&F University, 2018.

    [38] 张晓霞, 杨宗儒, 查同刚, 等. 晋西黄土区退耕还林22年后林地土壤物理性质的变化[J]. 生态学报, 2017, 37(2):416−424.

    Zhang X X, Yang Z R, Zha T G, et al. Changes in the physical properties of soil in forestlands 22 years under the influence of the conversion of cropland into farmland project in Loess Region, western Shanxi Province[J]. Acta Ecologica Sinica, 2017, 37(2): 416−424.

    [39] 贾立志, 张建辉, 王勇, 等. 耕作侵蚀对紫色土坡耕地土壤容重和有机质二维分布的影响[J]. 土壤通报, 2016, 47(6):1461−1467.

    Jia L Z, Zhang J H, Wang Y, et al. Effects of tillage erosion on the two dimensional distribution of soil bulk density and organic matter on a steep hillslope[J]. Chinese Journal of Soil Science, 2016, 47(6): 1461−1467.

    [40]

    Li X G, Li F M, Zed R, et al. Soil physical properties and their relations to organic carbon pools as affected by landuse in an alpine pastureland[J]. Geoderma, 2007, 139(1/2): 98−105.

    [41]

    Zhao H L, Guo Y R, Zhou R L, et al. The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China[J]. Geoderma, 2011, 160(3/4): 367−372.

    [42]

    Bowman R A, Vigil M F, Nielsen D C, et al. Soil organic matter changes in intensively cropped dryland systems[J]. Soil Science Society of America Journal, 1999, 63(1): 186−191. doi: 10.2136/sssaj1999.03615995006300010026x

  • 期刊类型引用(0)

    其他类型引用(4)

图(4)  /  表(3)
计量
  • 文章访问数:  1795
  • HTML全文浏览量:  623
  • PDF下载量:  52
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-02-24
  • 修回日期:  2019-08-06
  • 网络出版日期:  2020-05-10
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回