• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

气候变化背景下北京浅山区社会−生态系统脆弱性评估——生态系统脆弱性评估

施瑶, 李嘉艺, 高娜, 郑曦

施瑶, 李嘉艺, 高娜, 郑曦. 气候变化背景下北京浅山区社会−生态系统脆弱性评估————生态系统脆弱性评估[J]. 北京林业大学学报, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091
引用本文: 施瑶, 李嘉艺, 高娜, 郑曦. 气候变化背景下北京浅山区社会−生态系统脆弱性评估————生态系统脆弱性评估[J]. 北京林业大学学报, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091
Shi Yao, Li Jiayi, Gao Na, Zheng Xi. Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background[J]. Journal of Beijing Forestry University, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091
Citation: Shi Yao, Li Jiayi, Gao Na, Zheng Xi. Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background[J]. Journal of Beijing Forestry University, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091

气候变化背景下北京浅山区社会−生态系统脆弱性评估————生态系统脆弱性评估

基金项目: 北京市科技计划项目“北京景观空间数据采集及景观绩效评价研究”(D171100000217003)
详细信息
    作者简介:

    施瑶。主要研究方向:风景园林规划设计与理论。Email:bjfushiyao@sina.com 地址:100083 北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    郑曦,教授,博士生导师。主要研究方向:风景园林规划设计与理论。Email:zhengxi@bjfu.edu.cn 地址:同上

  • 中图分类号: S731.1;X826;TU982

Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background

  • 摘要:
    目的在气候变化的背景下,社会−生态系统视角下的区域脆弱性评估可以较为全面地识别区域气候风险。在城市中,浅山区具有其特有的气候调节的重要性和气候适应的脆弱性,且社会与生态系统的耦合特征更为明显。作为气候适应的重要环节,气候变化背景下的北京浅山区社会−生态系统脆弱性评估有助于为气候适应策略提供空间上的定量参考。
    方法本研究采用“危险性−暴露度−敏感性−适应能力”评估框架,构建包含44个指标的指标集,并通过主成分分析法对指标进行降维筛选及权重确定,形成社会−生态系统脆弱性评价指标体系,进而评估北京市浅山区社会−生态系统在当前和未来气候条件下的脆弱性空间分布。
    结果当前和未来的气候脆弱性均呈现出由中心城区向深山区逐渐降低的趋势,脆弱性程度以中度、重度为主,未来脆弱性整体呈上升趋势。在行政分区上,昌平、顺义、海淀区气候脆弱性较低,房山、丰台、门头沟区较为严重。
    结论本研究通过评估北京市浅山区社会−生态系统在当前和未来气候条件下的脆弱性空间分布,得到北京浅山区气候适应的重点区域,为浅山区气候适应决策提供依据,并为气候变化背景下区域脆弱性评估提供方法及指标作为参考。
    Abstract:
    ObjectiveUnder the background of climate change, regional vulnerability assessment under the perspective of socio-ecosystem can identify regional climate risks more comprehensively. In urban areas, shallow mountain area has their uniqueness because of the importance of climate regulation and the vulnerability of climate adaptation, and the coupling between social system and ecosystem is more obvious. As an important link of climate adaptation, the socio-ecosystem vulnerability assessment under climate change background in Beijing shallow mountain area is helpful to provide quantitative reference for climate adaptation strategies in spatial planning.
    MethodIn this study, the assessment framework of “risk-exposure-sensitivity-adaptability” was adopted to construct an index set containing 44 indicators. Through the principal component analysis method, dimensionality reduction screening and weight determination of indicators were carried out to form the index system of social-ecosystem vulnerability assessment. Then the spatial distribution of the vulnerability of socio-ecosystem in the shallow mountainous areas of Beijing was evaluated under the present and future climatic conditions.
    ResultThe current and future climate vulnerability showed a trend of gradually decreasing from the central urban area to the deep mountains, and the degree of vulnerability was mainly moderate and severe, while the overall future vulnerability showed an upward trend. Among administrative zones, the vulnerability of Changping, Shunyi and Haidian districts was at a lower level, and the vulnerability of Fangshan, Fengtai and Mentougou districts was more serious.
    ConclusionBy evaluating the spatial distribution of the vulnerability of socio-ecological system in the shallow mountainous area of Beijing under current and future climatic conditions, the key areas of the climate adaptation in the shallow mountainous area of Beijing were obtained, which provide the basis for the climate adaptation policy in the shallow mountainous area, and provide the method or index reference for the regional vulnerability assessment under climate change background.
  • 图  1   北京市浅山区区位图

    Figure  1.   Location map of shallow mountain area of Beijing

    图  2   研究框架

    Figure  2.   Research framework

    图  3   当前浅山区社会生态系统各要素脆弱性分布

    Figure  3.   Vulnerability distribution of four elements of socio-ecosystem in shallow mountain area

    图  4   浅山区社会生态系统脆弱性分布时空变化

    Figure  4.   Temporal and spatial changes of vulnerability distribution of socio-ecosystem in shallow mountain area

    图  5   各行政区社会生态系统脆弱性等级面积堆栈图

    Figure  5.   Area stack diagram of socio-ecosystem vulnerability grade in each administrative region

    表  1   浅山区社会−生态系统气候脆弱性评价指标库

    Table  1   Assessment index set of socio-ecosystem climate vulnerability

    准则层
    Criteria layer
    指标层
    Index layer
    准则层
    Criteria layer
    指标层
    Index layer
    危险性
    Hazard
    年平均气温 Annual mean temperature暴露度
    Exposure degree
    土地利用强度 Land use intensity
    年平均降雨 Annual mean precipitation道路密度 Road density
    年温度差 Annual range of temperature耕地比例 Proportion of cultivated land area
    气温变化率 Temperature change rate旅游人口比例 Proportion of tourist population
    风速 Wind velocity人口密度 Population density
    热舒适度 Thermal comfort流动人口比例 Proportion of floating population
    空气质量指数 Air quality index距负面因素距离 Distance from negative factor
    极端高温(> 30 ℃) Extreme heat(> 30 ℃)适应能力
    Adaptability
    医疗站点分布 Distribution of medical site
    城市热岛强度 Heat island intensity科研教育机构分布
    Distribution of scientific research and education institution
    湿度 Humidity政府机构分布 Distribution of government agency
    霜冻 Frost frequency保护区分布 Distribution of nature reserve
    敏感性
    Sensitivity
    坡度 Slope degree卫生支出比例 Proportion of health expenditure
    海拔 Altitude千人拥有医师数 Doctors owned by thousand people
    坡向 Slope aspect卫生机构床位数 Number of beds in health institution
    景区分布 Scenic spot distribution绿化覆盖率 Green coverage
    老年人口比例 Elderly population ratio可达性 Accessibility
    儿童人口比例 Children ratio人均 GDP GDP per capita
    妇女人口比例 Women population ratio旅游收入水平 Tourism income level
    农业人口比例 Agricultural population ratio垃圾清运量 Amount of garbage clean-up
    群落结构 Community structure污水处理能力 Sewage treatment capacity
    物种丰富度 Species richness
    森林覆盖率 Forest coverage
    就诊人数 Number of patient
    死亡率 Mortality
    下载: 导出CSV

    表  2   脆弱性评价指标主成分分析结果

    Table  2   Results of principal component analysis of vulnerability assessment index

    项目
    Item
    主成分
    Principal component (PC)
    特征值
    Eigenvalue
    贡献率
    Contribution rate
    累计贡献率
    Accumulative of contribution rate
    标准化权重
    Normalized weight
    危险性
    Hazard
    10.9938.4538.450.46
    20.9837.9676.410.45
    30.187.1083.510.08
    暴露度
    Exposure degree
    10.5237.8937.890.47
    20.3223.4261.320.29
    30.2618.9380.250.24
    敏感性
    Sensitivity
    10.6825.5225.520.30
    20.6122.8748.380.27
    30.4316.2464.620.19
    40.228.4273.030.10
    50.176.4379.460.08
    60.134.7784.230.06
    适应能力
    Adaptability
    10.9129.0829.080.35
    20.6420.5849.670.24
    30.4414.0763.740.17
    40.319.8573.580.12
    50.185.6079.180.07
    60.165.0984.280.06
    下载: 导出CSV

    表  3   浅山区社会−生态系统气候脆弱性面积及占比

    Table  3   Area and proportion of socio-ecosystem climate vulnerability in shallow mountain area

    脆弱性等级
    Vulnerability level
    1970—2020年
    Year 1970−2020
    2040—2060年
    Year 2040−2060
    变化比例
    Proportion change/%
    面积/hm2
    Area/ha
    占比
    Proportion/%
    面积/hm2
    Area/ha
    占比
    Proportion/%
    微度脆弱 Negligible 16 173 4.63 6 891 1.93 − 2.71
    轻度脆弱 Light 75 724 21.69 54 941 15.36 − 6.33
    中度脆弱 Medium 138 614 39.70 127 327 35.60 − 4.10
    重度脆弱 Strong 97 433 27.91 121 913 34.08 6.18
    极度脆弱 Extreme 21 215 6.08 46 612 13.03 6.96
    下载: 导出CSV
  • [1] 杨飞, 马超, 方华军. 脆弱性研究进展: 从理论研究到综合实践[J]. 生态学报, 2019, 39(2):441−453.

    Yang F, Ma C, Fang H J. Research progress on vulnerability: from theoretical research to comprehensive practice[J]. Acta Ecologica Sinica, 2019, 39(2): 441−453.

    [2]

    IPCC. Climate change 2014: impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014.

    [3] 袁潇晨. 气候变化风险评估方法及其应用研究[D]. 北京: 北京理工大学, 2016.

    Yuan X C. Climate change risk assessment: modeling and applications[D]. Beijing: Beijing Institute of Technology, 2016.

    [4] 赵东升, 吴绍洪. 气候变化情景下中国自然生态系统脆弱性研究[J]. 地理学报, 2013, 68(5):602−610.

    Zhao D S, Wu S H. Responses of vulnerability for natural ecosystem to climate change in China[J]. Acta Geographica Sinica, 2013, 68(5): 602−610.

    [5] 俞孔坚, 袁弘, 李迪华, 等. 北京市浅山区土地可持续利用的困境与出路[J]. 中国土地科学, 2009, 23(11):3−8, 20.

    Yu K J, Yuan H, Li D H, et al. Difficulties and solutions of the sustainable land use strategy in suburban hilly area in Beijing[J]. China Land Science, 2009, 23(11): 3−8, 20.

    [6] 柯敏. 北京浅山区土地利用潜力与利用模式研究[D]. 北京: 清华大学, 2010.

    Ke M. Study on the land potential and use pattern in shallow mountain area of Beijing[D]. Beijing: Tsinghua University, 2010.

    [7]

    Ruiz-Labourdette D, Schmitz M F, Pineda F D. Changes in tree species composition in Mediterranean mountains under climate change: indicators for conservation planning[J]. Ecological Indicators, 2013, 24: 310−323. doi: 10.1016/j.ecolind.2012.06.021

    [8] 冯艺佳. 风景园林视角下的北京市浅山区绿色空间理想格局构建策略研究[D]. 北京: 北京林业大学, 2016.

    Feng Y J. Study on the ideal pattern construction strategy of green space in shallow mountain area of Beijing though the view of landscape architecture[D]. Beijing: Beijing Forestry University, 2016.

    [9] 高占平. 北京山区生态退化与生态修复规划研究[D]. 北京: 首都师范大学, 2009.

    Gao Z P. Study on ecological degradation and ecological restoration planning of Beijing mountain area by Beijing Institute of Technology[D]. Beijing: Capital Normal University, 2009.

    [10] 郭佳蕾. 平潭岛社会−生态系统脆弱性评价[D]. 福州: 福建师范大学, 2017.

    Guo J L. Assessment on the vulnerability of social-ecological systems in Pingtan Island[D]. Fuzhou: Fujian Normal University, 2017.

    [11] 王林峰, 张平宇, 李鹤, 等. 东北西部农牧交错带社会生态系统脆弱性[J]. 中国科学院大学学报, 2018, 35(3):345−352.

    Wang L F, Zhang P Y, Li H, et al. Vulnerability of social-ecosystem in agro-pastoral ecotone in western Northeast China[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(3): 345−352.

    [12] 杨新军, 张慧, 王子侨. 基于情景分析的西北农村社会−生态系统脆弱性研究: 以榆中县中连川乡为例[J]. 地理科学, 2015, 35(8):952−959.

    Yang X J, Zhang H, Wang Z Q. Vulnerability assessment of rural social-ecological system based on scenario analysis: a case study of Zhonglianchuan Town in Yuzhong County[J]. Scientia Geographica Sinica, 2015, 35(8): 952−959.

    [13] 温晓金. 恢复力视角下山区社会−生态系统脆弱性及其适应[D]. 西安: 西北大学, 2017.

    Wen X J. The social-ecological vulnerability and adaption in mountainous areas under the perspective of resilience thinking[D]. Xi’an: Northwest University, 2017.

    [14] 陈佳, 杨新军, 尹莎, 等. 基于VSD框架的半干旱地区社会−生态系统脆弱性演化与模拟[J]. 地理学报, 2016, 71(7):1172−1188.

    Chen J, Yang X J, Yin S, et al. The vulnerability evolution and simulation of the social-ecological systems in the semi-arid area based on the VSD framework[J]. Acta Geographica Sinica, 2016, 71(7): 1172−1188.

    [15]

    Ippolito A, Sala S, Faber J H, et al. Ecological vulnerability analysis: a river basin case study[J]. Science of the Total Environment, 2010, 408(18): 3880−3890. doi: 10.1016/j.scitotenv.2009.10.002

    [16] 谢作轮, 李秀珍, 姜德刚, 等. 基于海岛生态脆弱性模拟的朱家尖岛空间管控对策[J]. 应用生态学报, 2019, 30(8):2783−2792.

    Xie Z L, Li X Z, Jiang D G, et al. Spatial management strategy of Zhujiajian Island based on island ecological vulnerability simulation[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2783−2792.

    [17]

    Huang P H, Tsai J S, Lin W T. Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: a case study on the Chi-Jia-Wan Stream Watershed, Taiwan[J]. Environmental Monitoring and Assessment, 2010, 168(1/4): 141−158.

    [18] 朱琪, 周旺明, 贾翔, 等. 长白山国家自然保护区及其周边地区生态脆弱性评估[J]. 应用生态学报, 2019, 30(5):1633−1641.

    Zhu Q, Zhou W M, Jia X, et al. Ecological vulnerability assessment on Changbai Mountain National Nature Reserve and its surrounding areas, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1633−1641.

    [19]

    Sam K, Chakma N. Vulnerability profiles of forested landscape to climate change in Bengal Duars Region, India[J]. Environmental Earth Sciences, 2018, 77(12): 459. doi: 10.1007/s12665-018-7649-2

    [20]

    García-López J M, Allué C. A phytoclimatic-based indicator for assessing the inherent responsitivity of the European forests to climate change[J]. Ecological Indicators, 2012, 18: 73−81. doi: 10.1016/j.ecolind.2011.10.004

    [21] 王义臣. 气候变化视角下城市高温热浪脆弱性评价研究[D]. 北京: 北京建筑大学, 2015.

    Wang Y C. Research on urban heat wave vulnerability assessment under climate change[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015.

    [22] 刘利. 北京典型山地森林生态脆弱性的研究[D]. 北京: 北京林业大学, 2011.

    Liu L. Study on ecological vulnerability of typical mountain forest in Beijing[D]. Beijing: Beijing Forestry University, 2011.

    [23]

    Phung D, Rutherford S, Dwirahmadi F, et al. The spatial distribution of vulnerability to the health impacts of flooding in the Mekong Delta, Vietnam[J]. International Journal of Biometeorology, 2016, 60(6): 857−865. doi: 10.1007/s00484-015-1078-7

    [24]

    Gigović L, Pamučar D, Lukić D, et al. GIS-Fuzzy DEMATEL MCDA model for the evaluation of the sites for ecotourism development: a case study of “Dunavski ključ” region, Serbia[J]. Land Use Policy, 2016, 58: 348−365. doi: 10.1016/j.landusepol.2016.07.030

    [25]

    Yang J, Zhang Z C, Li X M, et al. Spatial differentiation of China’s summer tourist destinations based on climatic suitability using the universal thermal climate index[J]. Theoretical and Applied Climatology, 2017, 134(3/4): 859−874.

    [26] 郭兵, 姜琳, 罗巍, 等. 极端气候胁迫下西南喀斯特山区生态系统脆弱性遥感评价[J]. 生态学报, 2017, 37(21):7219−7231.

    Guo B, Jiang L, Luo W, et al. Study of an evaluation method of ecosystem vulnerability based on remote sensing in a southwestern karst mountain area under extreme climatic conditions[J]. Acta Ecologica Sinica, 2017, 37(21): 7219−7231.

    [27]

    Kim H G, Lee D K, Jung H, et al. Finding key vulnerable areas by a climate change vulnerability assessment[J]. Natural Hazards, 2016, 81(3): 1683−1732. doi: 10.1007/s11069-016-2151-1

    [28] 何彦龙, 袁一鸣, 王腾, 等. 基于GIS的长江口海域生态系统脆弱性综合评价[J]. 生态学报, 2019, 39(11):3918−3925.

    He Y L, Yuan Y M, Wang T, et al. Integrated assessment of marine ecological vulnerability in the Yangtze River Estuary using GIS[J]. Acta Ecologica Sinica, 2019, 39(11): 3918−3925.

    [29]

    Hagenlocher M, Renaud F G, Haas S, et al. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards[J]. Science of the Total Environment, 2018, 631−632: 71−80. doi: 10.1016/j.scitotenv.2018.03.013

  • 期刊类型引用(23)

    1. 谢倩,赵晴晴,江来,陈清西. 橄榄果实表型性状分级及挥发性化合物鉴定与特征香气分析. 食品科学. 2024(10): 175-185 . 百度学术
    2. 闵筱筱,高佳音,岳建华,王志勇,李佩玲. 不同品种传统菊花对盐胁迫的生理响应及耐盐性评价. 山东农业科学. 2024(08): 62-73 . 百度学术
    3. 雒宏佳,田果,郭小梅,张兴莹,刘洋辛,李建红. 甘肃省实生核桃单株数量性状的概率分级. 现代农业科技. 2024(19): 50-54 . 百度学术
    4. 赵志慧,张玉鸽,高康,田园凯,张秋玲,方志军,王朔,刘昊,季玉山,戴思兰. 大菊品种花期和主要观赏性状的变异及相关性分析. 植物科学学报. 2023(02): 214-223 . 百度学术
    5. 朱莹,刘恒星,邓莲,闫帅,王东军,全晗,宋华. 有髯鸢尾数量性状的变异及分级研究. 种子. 2023(06): 136-145 . 百度学术
    6. 张永超,解德宏,张翠仙,陈于福,柏天琦,易怀锋,尼章光,章勇,王美存. 红河流域杧果种质资源主要数量性状变异与概率分级. 中国农学通报. 2022(16): 68-73 . 百度学术
    7. 郭春晓,孔德元,马海燕,郑成淑. 菊花杂交一代叶片形态数量性状分析. 山东林业科技. 2022(03): 1-6+24 . 百度学术
    8. 陈永忠,许彦明,张震,马力,王湘南,陈隆升,彭邵锋,王瑞,彭映赫,李志钢,唐炜,李美群. 油茶果实主要数量性状分析及育种指标体系筛选. 中南林业科技大学学报. 2021(03): 1-9 . 百度学术
    9. 钟声远,罗宇婷,赵勇,王振兴,管志勇,房伟民,陈发棣,王海滨. 切花菊品种资源表型多样性分析. 植物资源与环境学报. 2021(05): 22-33 . 百度学术
    10. 郭晓亮,王红娟,段媛媛,阮芝艳. 重齿当归形态数量性状的分级研究. 热带亚热带植物学报. 2021(06): 688-693 . 百度学术
    11. 钟海丰,钟声远,陈剑锋,陈宇华,刘中华,张荟,钟淮钦,林兵,邱思鑫,黄敏玲. 建兰种质资源主要数量性状变异与概率分级研究. 东南园艺. 2021(05): 8-16 . 百度学术
    12. 方超,唐轩,胡桂兵,刘洪,马强,陈孟强,饶得花,徐振江. 荔枝DUS测试数量性状分级研究. 果树学报. 2020(05): 635-644 . 百度学术
    13. 刘娜,成仿云. 紫斑牡丹果实性状变异及其产量分级标准研究. 植物科学学报. 2020(03): 378-389 . 百度学术
    14. 梁乃鹏,吕曼芳,廖维建,郝丙青. 来宾地区岑溪软枝油茶果实数量性状概率分级. 广西林业科学. 2020(02): 181-185 . 百度学术
    15. 郭方其,吕萍,吴超,彭娟,秦德辉,黎侠,丁晓瑜. 基于表型性状的切花多头菊种质资源遗传多样性分析. 分子植物育种. 2020(18): 6205-6215 . 百度学术
    16. 傅巧娟,李春楠,张晓莹,赵福康. 基于表型性状的春兰种质遗传多样性分析. 农学学报. 2020(11): 65-71 . 百度学术
    17. 杜庆鑫,庆军,王璐,刘攀峰,何凤,朱利利,杜红岩. 杜仲种质资源果实主要数量性状变异及概率分级. 植物研究. 2019(03): 387-394 . 百度学术
    18. 杨玲娟,杨国辉,杨金凤,罗世雄,徐爱兰,李一婧,呼丽萍. 天水花牛苹果品质评价指标研究. 中国果树. 2019(05): 29-34 . 百度学术
    19. 于树涛,王传堂,于国庆,崔雪艳,孙泓希,王虹,任亮. 花生荚果与种仁主要数量性状变异及概率分级. 花生学报. 2019(03): 19-24 . 百度学术
    20. 陆国泉,彭琳. 基于数量分类的植物鉴别算法研究. 江苏农业科学. 2018(01): 157-160 . 百度学术
    21. 陈影,唐杰,彭卫红,甘炳成,黄忠乾,王勇,刘天海,刘理旭. 梯棱羊肚菌种质资源数量性状变异及概率分级. 食用菌学报. 2017(01): 27-32 . 百度学术
    22. 杜庆鑫,刘攀峰,庆军,魏艳秀,杜红岩. 杜仲种质资源雄花主要数量性状变异及概率分级. 北京林业大学学报. 2016(11): 42-49 . 本站查看
    23. 王小国. 河南茶藨子属植物表型性状的数量分类. 黑龙江农业科学. 2016(07): 92-96 . 百度学术

    其他类型引用(14)

图(5)  /  表(3)
计量
  • 文章访问数:  1858
  • HTML全文浏览量:  677
  • PDF下载量:  80
  • 被引次数: 37
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-09-10
  • 网络出版日期:  2020-03-25
  • 发布日期:  2020-04-26

目录

    /

    返回文章
    返回