高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛乌素沙地油蒿枯落物分解对增温的响应

牟钰 贾昕 郑甲佳 黄松宇 原媛 白宇轩 秦树高

牟钰, 贾昕, 郑甲佳, 黄松宇, 原媛, 白宇轩, 秦树高. 毛乌素沙地油蒿枯落物分解对增温的响应[J]. 北京林业大学学报, 2020, 42(6): 134-141. doi: 10.12171/j.1000-1522.20190092
引用本文: 牟钰, 贾昕, 郑甲佳, 黄松宇, 原媛, 白宇轩, 秦树高. 毛乌素沙地油蒿枯落物分解对增温的响应[J]. 北京林业大学学报, 2020, 42(6): 134-141. doi: 10.12171/j.1000-1522.20190092
Mu Yu, Jia Xin, Zheng Jiajia, Huang Songyu, Yuan Yuan, Bai Yuxuan, Qin Shugao. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 134-141. doi: 10.12171/j.1000-1522.20190092
Citation: Mu Yu, Jia Xin, Zheng Jiajia, Huang Songyu, Yuan Yuan, Bai Yuxuan, Qin Shugao. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 134-141. doi: 10.12171/j.1000-1522.20190092

毛乌素沙地油蒿枯落物分解对增温的响应

doi: 10.12171/j.1000-1522.20190092
基金项目: 国家自然科学基金项目(31670708、31670710),中央高校基本科研业务费专项(2015ZCQ-SB-02)
详细信息
    作者简介:

    牟钰。主要研究方向:干旱半干旱生态系统枯落物分解。Email:muyucathy@126.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    贾昕,博士,博士生导师。主要研究方向:干旱半干旱生态系统碳水循环。Email:xinjia@bjfu.edu.cn  地址:同上

Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China

  • 摘要: 目的明确油蒿枯落物分解速率对增温的响应,有助于理解和预测气候变化背景下毛乌素沙地典型灌丛生态系统的碳循环和养分循环。方法应用开顶箱模拟增温,以自然状态为对照,结合分解袋法,研究增温对毛乌素沙地油蒿枯落物分解的影响。结果模拟增温降低了枯落物分解速率。(1)自2017年5月起至2017年10月实验结束时,增温处理下,油蒿枝条和叶片枯落物质量残余率分别为91.07%和71.73%,而对照处理下,分别为86.08%和60.74%;(2)不同时段不同处理条件下不同种类的枯落物分解速率不同,各影响因子之间存在交互作用;(3)Olson负指数模型结果表明,在模拟增温条件下,油蒿枝、叶枯落物的分解系数k均显著低于对照处理;(4)增温对枯落物细菌多样性和群落结构没有影响。结论增温可能减缓干旱半干旱区植物枯落物分解,并且温度对枯落物分解的抑制作用与分解时间和枯落物类型有关。

     

  • 图  1  实验布设图

    红色圆点表示增温组;黄色圆点表示对照组。Red points represent warming treatment; yellow points represent control.

    Figure  1.  Experimental layout

    图  2  研究区试验期间增温组和对照组地表温度、土壤温度和土壤体积含水量的日变化

    Figure  2.  Daily changes of soil surface temperature, soil temperature at 5 cm depth and soil volume water content at differentsample plots of warming treatment and control from May to October in 2017 in the study area

    图  3  各种类型枯落物的含水率

    *表示P < 0.05,**表示0.01 < P < 0.05,***表示P < 0.01。下同。* represents P < 0.05, ** represents 0.01 < P < 0.05, *** represents P < 0.01. The same below.

    Figure  3.  Water content of various types of litter

    图  4  各种类型枯落物在不同处理条件下质量残余率的变换过程

    Figure  4.  Dynamic changing process of mass residual rates of various types of litter under different treatments

    图  5  细菌群落丰富度和多样性

    Figure  5.  Richness and diversity of bacterial community

    表  1  实验期表层土壤平均温度(T0)、土壤5 cm深处平均温度(T5)及土壤体积含水量(SWC)

    Table  1.   Average temperature of surface soil (T0), average soil temperature at 5 cm depth (T5) and average soil volume water content (SWC) during the experimental period

    处理 TreatmentT0/℃T5/℃SWC/(m3·m− 3)
    增温 Warming21.99 ± 0.51a20.16 ± 0.41a0.098 ± 0.003a
    对照 Control20.16 ± 0.53b18.99 ± 0.41b0.088 ± 0.003b
    注:同列不同小写字母表示在0.05水平上差异显著。下同。Notes: different lowercase letters in the same column indicate significant differences at 0.05 level. The same below.
    下载: 导出CSV

    表  2  枯落物质量残余率的ANOVA分析结果

    Table  2.   ANOVA analysis results of mass residual rates of litter

    影响因素
    Influencing factor
    dfFP
    分解时间
    Decomposition time
    3 136.82 < 0.01
    枯落物种类 Litter type 1 520.43 < 0.01
    处理 Treatment 1 52.78 < 0.01
    分解时间 × 枯落物种类
    Decomposition time × litter type
    3 42.25 < 0.01
    分解时间 × 处理
    Decomposition time × treatment
    3 3.96 < 0.01
    处理 × 枯落物种类
    Treatment × litter type
    1 9.24 < 0.01
    分解时间 × 枯落物种类 × 处理
    Decomposition time × litter type × treatment
    3 0.39 0.76
    注:P < 0.01表示极显著相关;P < 0.05表示显著相关;P > 0.05表示不相关。Notes: P < 0.01 indicates extremely significant correlation; P < 0.05 indicates significant correlation; P > 0.05 indicates no correlation.
    下载: 导出CSV

    表  3  不同种类枯落物质量残余率(Y)随时间(t)的负指数回归方程

    Table  3.   Negative exponential regression equations of mass residual rates with time (t) for different types of litter

    枯落物种类
    Litter type
    处理
    Treatment
    模型
    Model
    kR2
    叶Leaf对照 ControlY = 0.997e−1.176t1.1760.987
    增温 WarmingY = 0.999e− 0.824t0.8240.949
    枝Twig对照 ControlY = 0.992e− 0.313t0.3130.918
    增温 WarmingY = 0.989e− 0.181t0.1810.865
    下载: 导出CSV

    表  4  对照和增温条件下不同类型枯落物细菌群落结构的单因子相似性分析(one-way ANOSIM)

    Table  4.   Results of one-way ANOSIM tests for differences in bacterial communities of different litter types under control and warming treatment

    组别 GroupRP
    对照组叶vs增温组叶
    Leaf of control vs leaf of warming
    0.07 0.3
    对照组枝vs增温组枝
    Twig of control vs twig of warming
    − 0.30 0.9
    下载: 导出CSV

    表  5  不同枯落物种类C、N含量及C/N的比较

    Table  5.   Comparison of carbon, nitrogen content and the C/N ratio of different litter types

    枯落物种类
    Litter type
    全氮
    Total nitrogen (N)/%
    有机碳
    Oganic carbon (C)/%
    C/N
    叶 Leaf1.42 ± 0.08a42.73 ± 0.75a30.41 ± 1.56a
    枝 Twig1.09 ± 0.08b43.96 ± 0.69a41.41 ± 3.51b
    下载: 导出CSV
  • [1] 刘瑞鹏, 毛子军, 李兴欢, 等. 模拟增温和不同凋落物基质质量对凋落物分解速率的影响[J]. 生态学报, 2013, 33(18):5661−5667. doi: 10.5846/stxb201304140704

    Liu R P, Mao Z J. Effects of simulated temperature increase and vary little quality on litter decomposition[J]. Acta Ecologica Sinica, 2013, 33(18): 5661−5667. doi: 10.5846/stxb201304140704
    [2] Intergovernmental Panel on Climate Change (IPCC). Climate change in 2007: the physical science basis[R]. Cambridge: Cambridge University Press, 2007.
    [3] Li L J, Zeng D H, Yu Z Y, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of northeast China[J]. Journal of Arid Environments, 2011, 75(9): 787−792. doi: 10.1016/j.jaridenv.2011.04.009
    [4] Austin A T, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442: 555−558. doi: 10.1038/nature05038
    [5] Zhao Q Q, Bai J H, Liu P P, et al. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands[J]. CLEAN: Soil Air Water, 2015, 43: 441−445. doi: 10.1002/clen.201300823
    [6] 宋飘, 张乃莉, 马克平, 等. 全球气候变暖对凋落物分解的影响[J]. 生态学报, 2014, 34(6):1327−1339.

    Song P, Zhang N L, Ma K P, et al. Impacts of global warming on litter decomposition[J]. Acta Ecologica Sinica, 2014, 34(6): 1327−1339.
    [7] 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000, 24(6):674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006

    Wang Q B, Li L H, Bai Y F, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communitles[J]. Acta Phytoecologica Sinica, 2000, 24(6): 674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006
    [8] 葛晓改, 曾立雄, 黄志霖, 等. 土壤温度和水分含量对三峡库区马尾松凋落物叶分解的影响[J]. 林业科学, 2013, 49(9):153−157.

    Ge X G, Zeng L X, Huang Z L, et al. Effects of soil temperature and soil water content to needle litter leaf decomposition of Pinus massoniana plantations in Three Gorges Reservoir Area[J]. Scientia Silvae Science, 2013, 49(9): 153−157.
    [9] Fierer N, Craine J M, Schimel M L P. Litter quality and the temperature sensitivity of decomposition[J]. Ecology, 2005, 86(2): 320−326. doi: 10.1890/04-1254
    [10] Kang H, Freeman C. Soil enzyme analysis for leaf litter decomposition in global wetlands[J]. Communications in Soil Science and Plant Analysis, 2009, 40(21/22): 3323−3334.
    [11] Cheng X, Luo Y, Su B, et al. Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie[J]. Agriculture Ecosystems & Environment, 2010, 138(3): 206−213.
    [12] Sjögersten S, Wookey P A. Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian Muntains in relation to climate and soil conditions[J]. Plant and Soil, 2004, 262(1/2): 215−227. doi: 10.1023/B:PLSO.0000037044.63113.fe
    [13] 淡沐春, 杨劼, 侯虹, 等. 模拟增温增水对克氏针茅草原主要物种及群落凋落物分解的影响[J]. 中国农业气象, 2015, 36(6):746−754. doi: 10.3969/j.issn.1000-6362.2015.06.012

    Dan M C, Yang J, Hou H, et al. Effects of simulated warming and precipitation enhancement on litter decomposition of Stipa krylovii steppe[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 746−754. doi: 10.3969/j.issn.1000-6362.2015.06.012
    [14] 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11):3300−3310.

    Wang X Y, Zhao X Y, Li Y L, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review[J]. China Journal of Applied Ecology, 2013, 24(11): 3300−3310.
    [15] 关阅章, 刘安田, 仲启钺, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2013(5):27−34.

    Guan Y Z, Liu A T, Zhong Q Y, et al. Responses of decomposition of Phragmites australis litters to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University (Natural Science), 2013(5): 27−34.
    [16] 李学斌, 马林, 陈林, 等. 草地枯落物分解研究进展及展望[J]. 生态环境学报, 2010, 19(9):2260−2264. doi: 10.3969/j.issn.1674-5906.2010.09.041

    Li X B, Ma L, Chen L, et al. Research progress and the prospect of grassland litters decomposition[J]. Ecology and Environmental Sciences, 2010, 19(9): 2260−2264. doi: 10.3969/j.issn.1674-5906.2010.09.041
    [17] 王军, 王冠钦, 李飞, 等. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1):116−125. doi: 10.17521/cjpe.2017.0297

    Wang J, Wang G Q, Li F, et al. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chinese Journal of Plant Ecology, 2018, 42(1): 116−125. doi: 10.17521/cjpe.2017.0297
    [18] 郑海峰, 陈亚梅, 杨林, 等. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 2017, 28(9):2840−2848.

    Zheng H F, Chen Y M, Yang L, et al. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. China Journal of Applied Ecology, 2017, 28(9): 2840−2848.
    [19] Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Enviromental Microbiology, 2010, 76: 999−1007. doi: 10.1128/AEM.02874-09
    [20] Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11: 4679−4693. doi: 10.5194/bg-11-4679-2014
    [21] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322−331. doi: 10.2307/1932179
    [22] Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global Change Biology, 2007, 13(10): 2193−2205. doi: 10.1111/j.1365-2486.2007.01428.x
    [23] Boyero L, Pearson R G, Gessner M O, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration[J]. Ecology Letter, 2011, 14(3): 289−294. doi: 10.1111/j.1461-0248.2010.01578.x
    [24] Ferreira V, Chauvet E. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams[J]. Oecologia, 2011, 167(1): 279−291. doi: 10.1007/s00442-011-1976-2
    [25] Song C L, Yang D, Song G, et al. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China[J]. Ecological Engineering, 2011, 37(10): 1578−1582. doi: 10.1016/j.ecoleng.2011.03.036
    [26] Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes[J]. Journal of Ecology, 2006, 94(4): 713−724. doi: 10.1111/j.1365-2745.2006.01142.x
    [27] Epstein H E, Burke I C, Lauenroth W K. Regional patterns of decomposition and primary production rates in the U.S.Great Plains[J]. Ecology, 2002, 83(2): 320−327.
    [28] Butenschoen O, Scheu S, Eisenhauer N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[J]. Soil Biology and Biochemistry, 2011, 43(9): 1902−1907. doi: 10.1016/j.soilbio.2011.05.011
    [29] Weedon J T, Kowalchuk G A, Aerts R, et al. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change Biology, 2012, 18: 138−150. doi: 10.1111/j.1365-2486.2011.02548.x
    [30] Xu Z F, Yin H J, Zhao C Z, et al. A review of responses of litter decomposition in terrestrial ecosystems to global warming[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1208−1219.
    [31] Berg B, Johansson M B, Meentemeyer V. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control[J]. Canadian Journal of Forest Research, 2000, 30(7): 1136−1147. doi: 10.1139/x00-044
    [32] Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: a laboratory study[J]. Soil Biology and Biochemistry, 2003, 35(3): 391−399. doi: 10.1016/S0038-0717(02)00290-0
    [33] Yang W Q, Deng R J, Zhang J. Forest litter decomposition and its responses to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889−2895.
    [34] Day T A, Ruhland C T, Xiong F S. Warming increases aboveground plant biomass and C stocks in vascular plant dominated Antarctic tundra[J]. Global Change Biology, 2008, 14(8): 1827−1843. doi: 10.1111/j.1365-2486.2008.01623.x
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  1301
  • HTML全文浏览量:  283
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-05-17
  • 网络出版日期:  2020-05-13
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回