• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

阔叶树对红皮云杉人工林土壤营养状况的改善作用

周磊, 王树力

周磊, 王树力. 阔叶树对红皮云杉人工林土壤营养状况的改善作用[J]. 北京林业大学学报, 2020, 42(3): 46-53. DOI: 10.12171/j.1000-1522.20190113
引用本文: 周磊, 王树力. 阔叶树对红皮云杉人工林土壤营养状况的改善作用[J]. 北京林业大学学报, 2020, 42(3): 46-53. DOI: 10.12171/j.1000-1522.20190113
Zhou Lei, Wang Shuli. Improvement of broadleaved tree species to soil nutrient conditions of Picea koraiensis plantations[J]. Journal of Beijing Forestry University, 2020, 42(3): 46-53. DOI: 10.12171/j.1000-1522.20190113
Citation: Zhou Lei, Wang Shuli. Improvement of broadleaved tree species to soil nutrient conditions of Picea koraiensis plantations[J]. Journal of Beijing Forestry University, 2020, 42(3): 46-53. DOI: 10.12171/j.1000-1522.20190113

阔叶树对红皮云杉人工林土壤营养状况的改善作用

基金项目: 国家重点研发计划(2017YFD0601103),黑龙江省省级财政林业科研专项(201522)
详细信息
    作者简介:

    周磊。主要研究方向:水土保持与林业生态工程。Email:leizhou93@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    王树力,教授。主要研究方向:生态学、水土保持及荒漠化防治。Email:shuliwang@163.com 地址:同上

Improvement of broadleaved tree species to soil nutrient conditions of Picea koraiensis plantations

  • 摘要:
    目的研究红皮云杉人工林培育过程中林分地力的变化状况以及阔叶树对红皮云杉人工林土壤营养的改善作用,为红皮云杉人工林的培育筛选适宜的混交树种和施肥营养元素。
    方法在红皮云杉人工林和天然林中采集树叶、凋落物和土壤样品,实验室内使用碳氮分析仪测定样品C含量,凯氏定氮仪测定叶片和凋落物的N含量,连续流动分析仪测定土壤的N含量,硫酸−高氯酸消化−钼锑抗比色法测定样品P含量。
    结果(1)4种红皮云杉人工林间土壤的C、N、P含量差异显著,3种混交林均大于纯林,其中红皮云杉胡桃楸混交林C、N、P含量最大;(2)4种红皮云杉人工林间土壤的C∶N、C∶P差异显著,3种混交林均小于纯林,其中,红皮云杉胡桃楸混交林C∶N、C∶P最小;(3)混交树种叶片及其凋落物的N、P含量差异显著,以黄檗为最低,胡桃楸为最高,但均高于红皮云杉;(4)混交树种叶片及其凋落物的C∶N、C∶P以黄檗为最高,胡桃楸为最低,但均显著低于红皮云杉;(5)混交林中混交树种叶片及其凋落物与土壤之间C、N、P含量及C∶N、C∶P的相关性皆高于同林型中红皮云杉叶片及其凋落物与土壤之间C、N、P含量及C∶N、C∶P的相关性。
    结论依据树种叶片、凋落物及土壤部分的C含量、N含量、P含量、C∶N、C∶P和N: P,胡桃楸和水曲柳可做为红皮云杉人工林的适宜混交树种,培育过程中应注意解决N素和P素含量的不足。
    Abstract:
    ObjectiveExploring the changes of soil nutrient conditions and the improvement role of broadleaved tree species to the soil nutrients of Picea koraiensis plantations aims to select the suitable mixed species and fertilization elements for the cultivation of Picea koraiensis plantations.
    MethodWe collected the sample of leaf, litter and soil from Picea koraiensis plantations and natural forest in the sample plots, and used carbon nitrogen analyzer to determine the C content of the samples, used Kjeldahl instrument to determine the N content of leaves and litter samples, used the continuous flow analyzer to determine the N content of the soil samples, and used sulfuric acid-perchloric acid digestion-molybdenum antimony colorimetry to determine the P content of the samples.
    Result(1) The difference of C content, N content and P content in the soil of four plantation types was significant, pure Picea koraiensis plantation was lower than three mixed plantations, and highest in Picea koraiensis-Juglans mandshurica mixed plantations. (2) The difference of C:N and C:P in the soil of four plantation types was significant, pure Picea koraiensis plantation was higher than three mixed plantations, and lowest in Picea koraiensis-Juglans mandshurica mixed plantations. (3) The difference of N content and P content in the leaf and litter of three mixed species was significant, lowest in Phellodendron amurense, and highest in Juglans mandshurica, but all of them were higher than that of Picea koraiensis. (4) The C:N and C:P in the leaf and litter of mixed tree species were highest in Phellodendron amurense and lowest in Juglans mandshurica, but all of them were obvious lower than that of Picea koraiensis. (5) The correlations of C content, N content, P content, C:N and C:P between leaf and soil as well as between litter and soil were higher in the mixed species than that in Picea koraiensis.
    ConclusionAccording to the C contents, N contents, P contents, C:N, C:P and N:P in the leaf, litter and soil parts of Picea koraiensis plantations, Juglans mandshurica and Fraxinus mandshurica should be prefer as the mixed tree species, more attention should be paid to the lack of N content and P content during the cultivation of Picea koraiensis plantations.
  • 图  1   红皮云杉人工林和天然林树种叶片−凋落物−土壤的C含量、N含量和P含量

    不同小写字母表示不同林型间差异显著;不同大写字母表示不同组分间差异显著(P < 0.05)。下同。Different lowercase letters mean the difference is significant between varied plantation types; different capital letters mean the difference is significant between varied components (P < 0.05). The same below.

    Figure  1.   C content, N content and P content in the species leaf-litter-soil of Picea koraiensis plantations and natural forest

    图  2   红皮云杉人工林和天然林树种叶片、凋落物和土壤的生态化学计量特征

    Figure  2.   Ecological stoichiometric characteristics in the species leaf-litter-soil of Picea koraiensis plantations and natural forests

    表  1   研究林分状况

    Table  1   General information of the study plantations

    林分类型
    Plantation type
    树种
    Species
    平均树高
    Average tree height/m
    平均胸径
    Average DBH/cm
    现存密度/(株·hm− 2
    Present density/
    (tree·ha− 1)
    郁闭度
    Canopy density/%
    红皮云杉纯林
    Pure Picea koraiensis plantation (PP)
    红皮云杉 Picea koraiensis 15.28 12.82 2 333 95
    红皮云杉黄檗混交林
    Picea koraiensis-Phellodendron amurens mixed plantations (PPheM)
    黄檗 Phellodendron amurens 16.44 11.45 833 95
    红皮云杉 Picea koraiensis 15.67 12.90 1 967
    红皮云杉水曲柳混交林
    Picea koraiensis-Fraxinus mandshurica mixed plantations (PFM)
    水曲柳 Fraxinus mandshurica 18.22 13.19 769 95
    红皮云杉 Picea koraiensis 16.83 13.56 1 346
    红皮云杉胡桃楸混交林
    Picea koraiensis-Juglans mandshurica mixed plantations (PJM)
    胡桃楸 Juglans mandshurica 19.78 14.08 722 95
    红皮云杉 Picea koraiensis 17.89 13.79 1 430
    天然林
    Natural forest (NF)
    水曲柳 Fraxinus mandshurica 17.75 14.86 950 90
    胡桃楸 Juglans mandshurica 18.23 13.25
    下载: 导出CSV

    表  2   红皮云杉人工林树种C含量、N含量、P含量在叶片、凋落物和土壤间的相关性

    Table  2   Correlations of C content, N content, P content among species leaf, litter and soil of Picea koraiensis plantations

    元素
    Element
    相关组分
    Relative component
    红皮云杉纯林 PP红皮云杉黄檗混交林 PPheM红皮云杉水曲柳混交林 PFM红皮云杉胡桃楸混交林 PJM
    红皮云杉
    Picea
    koraiensis
    黄檗
    Phellodendron
    amurense
    红皮云杉
    Picea
    koraiensis
    水曲柳
    Fraxinus
    mandshurica
    红皮云杉
    Picea
    koraiensis
    胡桃楸
    Juglans
    mandshurica
    红皮云杉
    Picea
    koraiensis
    C 叶片与凋落物
    Leaf and litter
    0.82** 0.548* 0.653* 0.507* 0.605* 0.410* 0.639*
    叶片与土壤
    Leaf and soil
    0.481* 0.701** 0.576* 0.745** 0.692** 0.791** 0.645*
    凋落物与土壤
    Litter and soil
    0.716** 0.814** 0.642* 0.674* 0.562* 0.860** 0.676*
    N 叶片与凋落物
    Leaf and litter
    0.840** 0.693* 0.736** 0.723** 0.645* 0.641* 0.608*
    叶片与土壤
    Leaf and soil
    0.503* 0.646* 0.513* 0.804** 0.672* 0.748** 0.573*
    凋落物与土壤
    Litter and soil
    0.695* 0.765** 0.607* 0.704** 0.691** 0.820** 0.610*
    P 叶片与凋落物
    Leaf and litter
    0.724** 0.696** 0.638* 0.512* 0.658* 0.607* 0.792**
    叶片与土壤
    Leaf and soil
    0.578* 0.529* 0.402* 0.612* 0.559* 0.694** 0.588*
    凋落物与土壤
    Litter and soil
    0.638* 0.754** 0.518* 0.733** 0.630* 0.784** 0.607*
    注:**表示极显著相关(P < 0.01),*表示显著相关(P < 0.05)。Notes: ** means extremely significant correlation at P < 0.01 level, * means significant correlation at P < 0.05 level.
    下载: 导出CSV

    表  3   红皮云杉人工林树叶凋落物土壤系统的养分下降状况

    Table  3   Decrease situation of nutrient in the leaf-litter-soil system of Picea koraiensis plantations

    指标 Index树叶 Leaf凋落物 Litter土壤 Soil
    C含量
    C content
    N含量
    N content
    P含量
    P content
    C含量
    C content
    N含量
    N content
    P含量
    P content
    C含量
    C content
    N含量
    N content
    P含量
    P content
    红皮云杉人工混交林平均降低值
    Average decrease value of PM/(g·kg− 1)
    10.170.620.1327.054.770.338.602.080.30
    红皮云杉人工纯林平均降低值
    Average decrease value of PP/(g·kg− 1)
    36.706.970.6426.6710.380.9019.625.170.77
    红皮云杉人工混交林平均降低率
    Average decrease rate of pure PM/%
    2.102.187.036.5617.7918.5410.5816.9815.87
    红皮云杉人工纯林平均降低率
    Average decrease rate of pure PP/%
    7.5824.4634.816.4638.7250.5624.1342.2040.74
    下载: 导出CSV

    表  4   红皮云杉人工混交林树叶凋落物土壤系统的养分改善状况

    Table  4   Improvement of nutrient in the leaf-litter-soil system of Picea koraiensis mixed plantations

    指标 Index树叶 Leaf凋落物 Litter土壤 Soil
    C含量
    C content
    N含量
    N content
    P含量
    P content
    C含量
    C content
    N含量
    N content
    P含量
    P content
    C含量
    C content
    N含量
    N content
    P含量
    P content
    红皮云杉胡桃楸混交林平均提高值
    Average increase value of PJM/(g·kg− 1)
    30.29 7.67 0.61 12.50 7.61 0.76 17.42 4.65 0.66
    红皮云杉水曲柳混交林平均提高值
    Average increase value of PFM/(g·kg− 1)
    33.72 7.25 0.50 − 4.20 5.99 0.61 11.92 3.20 0.49
    红皮云杉黄檗混交林平均提高值
    Average increase value of PPheM/(g·kg− 1)
    15.59 4.16 0.42 − 9.43 3.24 0.34 3.70 1.41 0.24
    红皮云杉混交林平均提高值
    Average increase value of PM/(g·kg− 1)
    26.53 6.35 0.51 − 0.38 5.61 0.57 11.02 3.09 0.47
    红皮云杉胡桃楸混交林平均提高率
    Average increase rate of PJM/%
    6.77 35.65 50.58 3.24 46.29 86.36 28.24 65.65 59.29
    红皮云杉水曲柳混交林平均提高率
    Average increase rate of PFM/%
    7.53 33.67 41.63 − 1.09 36.43 69.09 19.32 45.14 44.11
    红皮云杉黄檗混交林平均提高率
    Average increase rate of PPheM/%
    3.48 19.32 35.16 − 2.44 19.73 38.64 6.00 19.94 21.61
    红皮云杉混交林平均提高率
    Average increase rate of PM/%
    5.93 29.51 42.62 − 0.10 34.14 64.77 17.86 43.64 41.96
    下载: 导出CSV
  • [1]

    Wang H, Huang Y, Feng Z, et al. C and N stocks under three plantation forest ecosystems of Chinese fir, Michelia macclurei and their mixture[J]. Frontiers of Forestry in China, 2007, 2(3): 251−259. doi: 10.1007/s11461-007-0041-0

    [2] 庞学勇, 刘庆, 刘世全, 等. 川西亚高山云杉人工林土壤质量性状演变[J]. 生态学报, 2004, 24(2):261−267. doi: 10.3321/j.issn:1000-0933.2004.02.014

    Pang X Y, Liu Q, Liu S Q, et al. Changes of soil fertility quality properties under subalpine spruce plantation in western Sichuan[J]. Acta Ecologica Sinica, 2004, 24(2): 261−267. doi: 10.3321/j.issn:1000-0933.2004.02.014

    [3]

    Hartemink A E. Soil fertility decline in the tropics with case studies on plantations[J]. Soil Science, 2003, 170(2): 149−151.

    [4] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1−14.

    Sheng W T. On the maintenance of long-term productivity of plantation in China[J]. Forest Research, 2018, 31(1): 1−14.

    [5] 马祥庆, 黄宝龙. 人工林地力衰退研究综述[J]. 南京林业大学学报, 1997, 21(2):77−82.

    Ma X Q, Huang B L. Advance in research on site productivity decline of timber plantations[J]. Journal of Nanjing Forestry University, 1997, 21(2): 77−82.

    [6] 杨承栋. 杉木人工林地力衰退的原因机制及其防治措施[J]. 世界林业研究, 1997(4):34−39.

    Yang C D. The reason and control of site productivity of Chinese fir plantations[J]. World Forestry Research, 1997(4): 34−39.

    [7] 王勤, 徐小牛, 平田永二. 琉球松−琉球木荷混交林生长及其土壤特性的研究[J]. 林业科学, 2004, 40(5):39−44. doi: 10.3321/j.issn:1001-7488.2004.05.006

    Wang Q, Xu X N, Eiji H. Characteristics of growth and soil properties in a mixed stand of Pinus luchuensis and Schima wallichii Kort. ssp. liukiuensis Bloenb. in subtropical zone[J]. Scientia Silvae Sinicae, 2004, 40(5): 39−44. doi: 10.3321/j.issn:1001-7488.2004.05.006

    [8] 秦娟, 唐心红, 杨雪梅. 马尾松不同林型对土壤理化性质的影响[J]. 生态环境学报, 2013, 22(4):598−604. doi: 10.3969/j.issn.1674-5906.2013.04.009

    Qin J, Tang X H, Yang X M. Effects of soil physical and chemical properties on different forest types of Pinus massoniana[J]. Ecology and Environmental Sciences, 2013, 22(4): 598−604. doi: 10.3969/j.issn.1674-5906.2013.04.009

    [9] 朱媛君, 杨劼, 万俊华, 等. 毛乌素沙地丘间低地主要植物叶片性状及其相互关系[J]. 中国沙漠, 2015, 35(6):1496−1504. doi: 10.7522/j.issn.1000-694X.2015.00145

    Zhu Y J, Yang J, Wan J H, et al. Leaf traits and their interrelationships of main plant species in inter-dune lowland in the Mu Us Sandy Land[J]. Journal of Desert Research, 2015, 35(6): 1496−1504. doi: 10.7522/j.issn.1000-694X.2015.00145

    [10] 杨佳佳, 张向茹, 马露莎, 等. 黄土高原刺槐林不同组分生态化学计量关系研究[J]. 土壤学报, 2014, 51(1):133−142. doi: 10.11766/trxb201211280492

    Yang J J, Zhang X R, Ma L S, et al. Ecological stoichiometric relationships between components of Robinia pseudoacacia forest in Loess Plateau[J]. Acat Pedologica Sinica, 2014, 51(1): 133−142. doi: 10.11766/trxb201211280492

    [11] 章广琦, 张萍, 陈云明, 等. 黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征[J]. 生态学报, 2018, 38(4):1328−1336.

    Zhang G Q, Zhang P, Chen Y M, et al. Stoichiometric characteristics of Robinia pseudoacacia and Pinus tabuliformis plantation ecosystems in the loess hilly-gully region, China[J]. Acta Ecologica Sinica, 2018, 38(4): 1328−1336.

    [12] 徐化成. 关于人工林的地力下降问题[J]. 世界林业研究, 1992(1):66−73.

    Xu H C. On the decrease of soil fertility in plantations[J]. World Forestry Research, 1992(1): 66−73.

    [13] 周磊, 王树力. 树种混交对红皮云杉人工林土壤养分的影响[J]. 东北林业大学学报, 2019, 47(2):37−41. doi: 10.3969/j.issn.1000-5382.2019.02.009

    Zhou L, Wang S L. Effects of mixed tree species to soil nutrients in Picea koraiensis plantations[J]. Journal of Northeast Forestry University, 2019, 47(2): 37−41. doi: 10.3969/j.issn.1000-5382.2019.02.009

    [14] 郝玉琢, 周磊, 吴慧, 等. 4种类型水曲柳人工林叶片−凋落物−土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019, 43(4):101−108.

    Hao Y Z, Zhou L, Wu H, et al. Comparison of ecological stoichiometric characteristics of leaf-litter-soi in four types of Fraxinus mandshurica plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(4): 101−108.

    [15] 周磊. 红皮云杉人工林C、N、P元素生态化学计量特征[D].哈尔滨: 东北林业大学, 2019.

    Zhou L. Ecological stoichiometric characteristics of C, N and P elements in Picea koraiensis plantations[D]. Harbin: Northeast Forestry University, 2019.

    [16] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis(3rd ed.)[M]. Beijing: China Agriculture Press, 2000.

    [17] 杨玉盛, 杨伦增, 俞新妥. 杉木林取代杂木林后土壤腐殖质组成及特性变化的研究[J]. 福建林学院学报, 1996, 16(2):97−100.

    Yang Y S, Yang L Z, Yu X T. Changes in composition and propoties of soil humus following replacement of brood-leaved forest by Chinese fir plantation[J]. Journal of Fujian College of Forestry, 1996, 16(2): 97−100.

    [18]

    Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis[J]. Global Change Biology, 2002, 8: 345−360. doi: 10.1046/j.1354-1013.2002.00486.x

    [19] 龚珊珊, 廖善刚. 桉树人工林与天然林土壤养分的对比研究[J]. 江苏林业科技, 2009, 36(3):1−4. doi: 10.3969/j.issn.1001-7380.2009.03.001

    Gong S S, Liao S G. Soil nutrient characteristics in eucalypt plantation and natural forest[J]. Journal of Jiangsu Forestry Science & Technology, 2009, 36(3): 1−4. doi: 10.3969/j.issn.1001-7380.2009.03.001

    [20]

    Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164: 243−266. doi: 10.1111/j.1469-8137.2004.01192.x

    [21]

    Redfield A. The biological control of chemical factors in the environment[J]. Science, 1958, 46: 205−221.

    [22] 宗宁, 石培礼, 耿守保, 等. 北方山区主要森林类型树木叶片氮、磷回收效率研究[J]. 中国生态农业学报, 2017, 25(4):520−529.

    Zong N, Shi P L, Geng S B, et al. Nitrogen and phosphorus resorption efficiency of forests in North China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 520−529.

    [23] 许晓静, 张凯, 刘波, 等. 森林凋落物分解研究进展[J]. 中国水土保持科学, 2007, 5(4):93−100.

    Xu X J, Zhang K, Liu B, et al. Review on litter decomposition in forest ecosystems[J]. Science of Soil and Water Conservation, 2007, 5(4): 93−100.

    [24] 何丹, 李栎, 周国新, 等. 马尾松凋落物C∶N∶P化学计量特征对分解速率的影响[J]. 湖南林业科技, 2015(3):24−27. doi: 10.3969/j.issn.1003-5710.2015.03.006

    He D, Li L, Zhou G X, et al. Influence of C∶N∶P stoichiometry for decomposition rate in Pinus massoniana litterfall[J]. Hunan Forestry Science & Technology, 2015(3): 24−27. doi: 10.3969/j.issn.1003-5710.2015.03.006

    [25]

    Wang W, Wang C, Zeng C, et al. Soil carbon, nitrogen and phosphorus ecological stoichiometry of Phragmites australis wetlands in different reaches in Minjiang River estuary[J]. Acta Ecologica Sinica, 2012, 32(13): 4087−4093. doi: 10.5846/stxb201106160817

    [26]

    Agren G I. Stoichiometry and nutrition of plant growth in nature communities[J]. Annu Rev Ecol Syst, 2008, 39: 153−170. doi: 10.1146/annurev.ecolsys.39.110707.173515

    [27] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054

    Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus element[J]. Acta Ecologica Sinica, 2008, 28(8): 3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054

    [28]

    Aerts R, Chapin F S I. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 2000, 30: 1−67.

    [29] 郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片C、N、P化学计量和养分重吸收特征的影响[J]. 应用生态学报, 2013, 24(4):893−899.

    Guo Z W, Chen S L, Yang Q P, et al. Effects of stand density on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 893−899.

  • 期刊类型引用(6)

    1. 赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 . 百度学术
    2. 朱旭,吴新凤,郝景新,徐大鹏. 无框瓦楞夹芯板极限抗拔力及家具角部结合性能的研究. 林产工业. 2024(11): 20-25 . 百度学术
    3. 马青原,王华. 板式家具五金件的发展与应用. 家具. 2023(04): 7-10+6 . 百度学术
    4. 陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 . 百度学术
    5. 胡强利,纪佳俊,冉雪蕾,王梦蕾. 杨木和辐射松树脂浸渍材金属空套螺母抗拔力研究. 中国人造板. 2022(06): 16-20 . 百度学术
    6. 胡文刚,白珏,关惠元. 一种速生材榫接合节点增强方法. 北京林业大学学报. 2017(04): 101-107 . 本站查看

    其他类型引用(10)

图(2)  /  表(4)
计量
  • 文章访问数:  1681
  • HTML全文浏览量:  484
  • PDF下载量:  64
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-03-03
  • 修回日期:  2019-04-22
  • 网络出版日期:  2020-03-06
  • 发布日期:  2020-03-30

目录

    /

    返回文章
    返回