高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水文模型的北京浅山区雨洪管理措施探究

林俏 刘喆 吕英烁 余曦璇 郑曦

林俏, 刘喆, 吕英烁, 余曦璇, 郑曦. 基于水文模型的北京浅山区雨洪管理措施探究————以夹括河上游为例[J]. 北京林业大学学报, 2020, 42(5): 132-142. doi: 10.12171/j.1000-1522.20190116
引用本文: 林俏, 刘喆, 吕英烁, 余曦璇, 郑曦. 基于水文模型的北京浅山区雨洪管理措施探究————以夹括河上游为例[J]. 北京林业大学学报, 2020, 42(5): 132-142. doi: 10.12171/j.1000-1522.20190116
Lin Qiao, Liu Zhe, Lü Yingshuo, Yu Xixuan, Zheng Xi. Stormwater management measures in Beijing suburban hilly area based on hydrological model: taking the upper reaches of Jiakuohe River as an example[J]. Journal of Beijing Forestry University, 2020, 42(5): 132-142. doi: 10.12171/j.1000-1522.20190116
Citation: Lin Qiao, Liu Zhe, Lü Yingshuo, Yu Xixuan, Zheng Xi. Stormwater management measures in Beijing suburban hilly area based on hydrological model: taking the upper reaches of Jiakuohe River as an example[J]. Journal of Beijing Forestry University, 2020, 42(5): 132-142. doi: 10.12171/j.1000-1522.20190116

基于水文模型的北京浅山区雨洪管理措施探究

————以夹括河上游为例

doi: 10.12171/j.1000-1522.20190116
基金项目: 北京市科技计划项目“北京景观空间数据采集及景观绩效评价研究”(D171100000217003)
详细信息
    作者简介:

    林俏。主要研究方向:风景园林规划设计与理论。Email:linqiaomails@163.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    郑曦,教授,博士生导师。主要研究方向:风景园林规划设计与理论。Email:zhengxi@bjfu.edu.cn 地址:同上

  • 中图分类号: S715.1;S715.3

Stormwater management measures in Beijing suburban hilly area based on hydrological model: taking the upper reaches of Jiakuohe River as an example

  • 摘要: 目的浅山区是城市的生态屏障,由于浅山区的地形坡降较大,且洪峰汇流时间较短,极易形成季节性洪水,导致雨洪灾害。本文旨在探究合理的浅山区雨洪管理方式,研究不同雨洪管理情景在山地中的适用性。方法研究以北京市浅山区夹括河上游区域为例,基于HEC-HMS和HEC-RAS等水文模型模拟10年一遇设计降雨下的雨洪径流过程,对比分析3种不同的雨洪管理情景(传统管理情景、低影响开发情景和自然情景)在雨洪调控效果、生态环境影响和景观效果3个方面的综合调控效果,从而探究不同浅山区雨洪管理措施的有效性。结果(1)在雨洪调控效果方面,传统管理情景、低影响开发情景的蓄水容量分别是自然情景下的3.8倍、5.0倍,最大淹没范围较自然情景增大了2.0%、1.2%,传统管理情景、低影响开发情景对峰值流量的削减率分别为18.3%、31.5%,峰现时间分别推迟35 min、45 min。(2)在生态环境影响方面,低影响开发模式对于河道植被环境和水文连通性的积极效应大于传统管理模式和自然模式。(3)在景观效果方面,低影响开发情景在水体范围和环境契合度方面都具有较大优势。结论(1)相比于传统雨洪管理模式,低影响开发模式具有良好的雨洪调蓄作用,能增大雨水存蓄容量、削减峰值流量、推迟峰现时间,此外低影响开发模式能改善河道生态环境,并且具有良好的景观效果。因此通过综合判断,低影响开发情景更适用于本文的研究流域中。(2)低影响开发模式能发挥浅山区的地形优势,通过在地形平缓处设计雨水蓄水池来收集上游汇水。同时低影响开发模式按照海绵城市的设计规范制定雨洪目标,实现河道上游汇水区域年径流总量控制率大于85%,兼顾了河道生态和景观的需求。(3)研究发现HEC-RAS水文模型可以量化并可视化不同雨洪管理情景,为浅山区雨洪管理建设提供技术支持。(4)研究强调每个区域的特殊性,浅山区雨洪管理措施从另一层面扩展了低影响开发情景的应用,表明传统水利设施也同样适用于低影响开发的雨洪管理理念。

     

  • 图  1  研究区域卫星图

    Figure  1.  Satellite map of the study area

    图  2  小流域土地利用类型图

    Figure  2.  Land use type diagram of the small watershed

    图  3  小流域CN网格数据图

    Figure  3.  CN grid data graph of the small watershed

    图  4  HEC-HMS流域概化模型

    Figure  4.  HEC-HMS watershed generalization model

    图  5  10年一遇降雨强度下以5 min为单位时段的1 440 min降雨时程分布

    Figure  5.  Distribution of 1 440 minutes rainfall process taking5 minutes as time period under rainfall intensity of once in 10 years

    图  6  流域内各汇水区10年一遇“时间−流量”曲线

    Figure  6.  “Time-flow” curves of each catchment area in the basin under rainfall intensity of once in 10 years

    图  7  雨洪管理模拟情景

    Figure  7.  Simulation scenarios for stormwater management

    图  8  暴雨淹没边界和蓄水范围

    Figure  8.  Heavy rain inundating boundary and water storage area

    图  9  研究区域降雨出口瞬时流量径流曲线

    Figure  9.  Runoff curves of instantaneous discharge atrainfall outlet in study area

    图  10  暴雨过程最大水流速度

    Figure  10.  Maximum water flow velocity during rainstorm

    图  11  暴雨过程最大水流压力

    Figure  11.  Maximum water flow pressure during rainstorm

    表  1  3种雨洪管理情景综合效益对比

    Table  1.   Comparison in comprehensive benefits of the three stormwater management models

    项目
    Item
    雨洪调控效果
    Stormwater control effect
    生态环境影响
    Ecological environment impact
    景观效果
    Landscape effect
    蓄水容量
    Water storage capacity/m3
    最大淹
    没范围
    Maximum submerged range/m2
    峰值流量
    (削减率)
    Peak flow (reduction rate)/(m3·s− 1)
    峰现推
    迟时间
    Delay time of peak/min
    水流速度
    Water flow velocity/
    (m·s− 1)
    水流压力
    Water flow pressure
    水体连接度
    Water body connection degree
    水体范围
    Water body range
    环境契合度
    Environmental fit
    传统管理情景(情景Ⅰ)
    Traditional management scenario (scenario Ⅰ)
    243 597721 4801 750 (18.3%)3514.8剧烈
    Dramatic
    部分断连
    Partial disconnection

    Medium
    一般
    General
    低影响开发情景(情景Ⅱ)
    Low impact development scenario (scenario Ⅱ)
    374 922716 4601 467 (31.5%)4510.6平缓
    Gentle
    全部连接
    All connected

    Large

    Good
    自然情景
    (情景Ⅲ)
    Natural scenario (scenario Ⅲ)
    53 516707 6222 14119.8一般
    General
    几乎断连
    Almost disconnected

    Small

    No
    下载: 导出CSV
  • [1] 俞孔坚, 袁弘, 李迪华, 等. 北京市浅山区土地可持续利用的困境与出路[J]. 中国土地科学, 2009, 23(11):3−8, 20.

    Yu K J, Yuan H, Li D H, et al. Difficulties and solutions of the sustainable land use strategy in suburban hilly area in Beijing[J]. China Land Science, 2009, 23(11): 3−8, 20.
    [2] 冯艺佳. 风景园林视角下的北京市浅山区绿色空间理想格局构建策略研究[D]. 北京: 北京林业大学, 2016.

    Feng Y J. Study on the ideal pattern construction strategy of green space in shallow mountain area of Beijing through the view of landscape architecture[D]. Beijing: Beijing Forestry University, 2016.
    [3] 马梦超. 北京市山区小流域生态环境质量评价[D]. 北京: 北京林业大学, 2015.

    Ma M C. Ecological environment quality evaluation of the watershed in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2015.
    [4] 余新晓, 牛健植, 徐军亮. 山区小流域生态修复研究[J]. 中国水土保持科学, 2004, 2(1):4−10. doi: 10.3969/j.issn.1672-3007.2004.01.002

    Yu X X, Niu J Z, Xu J L. Research on the ecological restoration in mountain watershed[J]. Science of Soil and Water Conservation, 2004, 2(1): 4−10. doi: 10.3969/j.issn.1672-3007.2004.01.002
    [5] 洪敏, 李迪华, 袁弘, 等. 基于地理设计的北京市浅山区土地利用战略规划[J]. 中国园林, 2014, 30(10):22−25.

    Hong M, Li D H, Yuan H, et al. Land use strategy planning in Beijing suburban hilly area based on geodesign[J]. Chinese Landscape Architecture, 2014, 30(10): 22−25.
    [6] 郑时权, 龙仕红. 湖南凤凰县石灰岩山区河流治理适宜模式探讨[J]. 中国防汛抗旱, 2013, 23(1):74−75. doi: 10.3969/j.issn.1673-9264.2013.01.032

    Zheng S Q, Long S H. Discussion on the appropriate mode of river governance in the limestone mountainous area of Fenghuang County, Hunan Province[J]. China Flood & Drought Management, 2013, 23(1): 74−75. doi: 10.3969/j.issn.1673-9264.2013.01.032
    [7] 张红萍. 山区小流域洪水风险评估与预警技术研究[D]. 北京: 中国水利水电科学研究院, 2013.

    Zhang H P. Study on the flood risk management and technology of the small mountain watershed[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2013.
    [8] Campion B B, Venzke J F. Rainfall variability, floods and adaptations of the urban poor to flooding in Kumasi, Ghana[J]. Natural Hazards, 2013, 65(3): 1895−1911. doi: 10.1007/s11069-012-0452-6
    [9] Menzie C A, Deardorff T, Booth P, et al. Refocusing on nature: holistic assessment of ecosystem services[J]. Integrated Environmental Assessment and Management, 2012, 8(3): 401−411. doi: 10.1002/ieam.1279
    [10] 肖建红, 施国庆, 毛春梅, 等. 水坝对河流生态系统服务功能影响评价[J]. 生态学报, 2007, 27(2):526−537. doi: 10.3321/j.issn:1000-0933.2007.02.014

    Xiao J H, Shi G Q, Mao C M, et al. Evaluation of effects of dams on river ecosystem service functions in China[J]. Acta Ecologica Sinica, 2007, 27(2): 526−537. doi: 10.3321/j.issn:1000-0933.2007.02.014
    [11] Tullos D, Byron E, Galloway G, et al. Review of challenges of and practices for sustainable management of mountain flood hazards[J]. Natural Hazards, 2016, 83(3): 1763−1797.
    [12] Wyżga B, Radecki-Pawlik A, Zawiejska J. Flood risk management in the upper vistula basin in perspective: traditional versus alternative measures[M]//Kundzewicz Z W, Stoffel M, Niedźwiedź T, et al. Flood risk in the upper vistula basin. Cham: Springer, 2016.
    [13] 殷洁, 裴志远, 陈曦炜, 等. 基于GIS的武陵山区洪水灾害风险评估[J]. 农业工程学报, 2013, 29(24):110−117. doi: 10.3969/j.issn.1002-6819.2013.24.015

    Yin J, Pei Z Y, Chen X W, et al. GIS-based flood disaster risk assessment in Wuling Mountain Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 110−117. doi: 10.3969/j.issn.1002-6819.2013.24.015
    [14] 中华人民共和国住房城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[Z]. 2014−10−15.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical guide for sponge city construction: construction of low impact development rainwater system (Trial)[Z]. 2014−10−15.
    [15] 林辰松, 邵明, 葛韵宇, 等. 基于SWMM情境模拟的外源雨水型公园绿地雨洪调控效果研究[J]. 北京林业大学学报, 2016, 38(12):92−103.

    Lin C S, Shao M, Ge Y Y, et al. Research of storm flood regulation efficiency of the low impact development of exogenous-rainwater park based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2016, 38(12): 92−103.
    [16] 时薏, 李运远, 戈晓宇, 等. 华北地区城市浅山区海绵绿道设计方法研究:以石家庄鹿泉区山前大道为例[J]. 北京林业大学学报, 2017, 39(11):82−91.

    Shi Y, Li Y Y, Ge X Y, et al. Design methods of sponge greenway in urban shallow mountainous area in northern China: taking the greenway of luquan district in Shijiazhuang as an example[J]. Journal of Beijing Forestry University, 2017, 39(11): 82−91.
    [17] 于淼, 戈晓宇. 基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究[J]. 北京林业大学学报, 2018, 40(12):97−109.

    Yu M, Ge X Y. Effects of rain flood control about low impact development system in West 10 Plot of Shougang based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2018, 40(12): 97−109.
    [18] 焦胜, 韩静艳, 周敏, 等. 基于雨洪安全格局的城市低影响开发模式研究[J]. 地理研究, 2018, 37(9):1704−1713.

    Jiao S, Han J Y, Zhou M, et al. Low-impact urban development mode based on waterlogging security pattern[J]. Geographical Research, 2018, 37(9): 1704−1713.
    [19] 徐煜辉, 韩浩. 基于低影响开发的山地生态住区规划策略研究[J]. 华中建筑, 2015, 33(12):126−130. doi: 10.3969/j.issn.1003-739X.2015.12.027

    Xu Y H, Han H. Research on planning strategy of mountain ecological residence based on low-impact development[J]. Huazhong Architecture, 2015, 33(12): 126−130. doi: 10.3969/j.issn.1003-739X.2015.12.027
    [20] Gironás J, Roesner L A, Davis J. Storm water management model applications manual[R]. Cincinnati: National Risk Management Research Laboratory, 2009.
    [21] 李玥, 俞快, 程娘珠, 等. 低影响开发的7种城市雨洪管理模型[J]. 广东园林, 2016, 38(4):9−13. doi: 10.3969/j.issn.1671-2641.2016.04.002

    Li Y, Yu K, Cheng N Z, et al. Seven stormwater management models in low impact development[J]. Guangdong Landscape Architecture, 2016, 38(4): 9−13. doi: 10.3969/j.issn.1671-2641.2016.04.002
    [22] 边易达. 基于HEC-HMS和SWMM的城市雨洪模拟[D].济南: 山东大学, 2014.

    Bian Y D. Urban stormwater simulation based on HEC-HMS and SWMM[D]. Jinan: Shandong University, 2014.
    [23] Scharffenberg W A, Fleming M J. Hydrologic modeling system HEC-HMS user’s manual vol version 3[R]. Davis: Hydrologic Engineering Center, 2005.
    [24] Hydrologic Engineering Center of the United States Army Corps of Engineers. HEC-RAS user’s manual version3.0[Z]. Davis: Hydrologic Engineering Center of the United States Army Corps of Engineers, 2001.
    [25] Mandal S P, Chakrabarty A. Flash flood risk assessment for upper Teesta River Basin: using the hydrological modeling system (HEC-HMS) software[J/OL]. Modeling Earth Systems and Environment, 2016 [2019−01−06]. https://link.springer.com/article/10.1007/s40808-016-0110-1.
    [26] Lee W H, Kim S J, Kim P S. Flood effects analysis of reservoir basin through the linkage of HEC-HMS and HEC-RAS models[J]. Journal of the Korean Society of Agricultural Engineers, 2004, 46(2): 15−25. doi: 10.5389/KSAE.2004.46.2.015
    [27] Wan Y, Sun D, Labadie J. Modeling evaluation of dam removal in the context of river ecosystem restoration[J]. River Research and Applications, 2015, 31(9): 1119−1130. doi: 10.1002/rra.2805
    [28] 廖如婷, 胡珊珊, 杜龙刚, 等. 基于HEC-HMS模型的温榆河流域水文模拟[J]. 南水北调与水利科技, 2018, 16(6):15−20.

    Liao R T, Hu S S, Du L G, et al. Hydrological simulation of Wenyu River Basin based on HEC-HMS model[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(6): 15−20.
    [29] 王璐, 叶磊, 吴剑, 等. 山丘区小流域水文模型适用性研究[J]. 中国农村水利水电, 2018(2):78−84, 90. doi: 10.3969/j.issn.1007-2284.2018.02.018

    Wang L, Ye L, Wu J, et al. Research on muilt-hydrological models applicability of flash flood simulation in hilly areas[J]. China Rural Water and Hydropower, 2018(2): 78−84, 90. doi: 10.3969/j.issn.1007-2284.2018.02.018
    [30] 黄鹏. 震区山洪灾害水文预报技术: 以震中牛圈沟为例[D]. 湘潭: 湖南科技大学, 2013.

    Huang P. Hydraulic forecasting of flash floods in the earthquake-afflicted area: a case study in Niujuangou, Wenchuan County[D]. Xiangtan: Hunan University of Science and Technology, 2013.
    [31] 赵爱军. 小流域综合治理模式研究[D]. 武汉: 华中农业大学, 2005.

    Zhao A J. The research on comprehensive control model in small watershed[D]. Wuhan: Huazhong Agricultural University, 2005.
    [32] 卢剑波, 王兆骞. GIS支持下的青石山小流域农业生态信息系统(QWAEIS)及其应用研究[J]. 应用生态学报, 2000, 11(5):703−706. doi: 10.3321/j.issn:1001-9332.2000.05.014

    Lu J B, Wang Z Q. Qingshishan Watershed agro-ecology information system and its application with the support of geographic information system (GIS)[J]. Chinese Journal of applied ecology, 2000, 11(5): 703−706. doi: 10.3321/j.issn:1001-9332.2000.05.014
    [33] 牟金磊. 北京市设计暴雨雨型分析[D]. 兰州: 兰州交通大学, 2011.

    Mou J L. Design storm pattern analysis in the city of Beijing[D]. Lanzhou: Lanzhou Jiaotong University, 2011.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  347
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-09-04
  • 网络出版日期:  2020-05-04
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回