• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

土壤大孔隙三维特征影响因素和测定方法研究进展

孟晨, 牛健植, 余海龙, 杜灵通, 尹正聪

孟晨, 牛健植, 余海龙, 杜灵通, 尹正聪. 土壤大孔隙三维特征影响因素和测定方法研究进展[J]. 北京林业大学学报, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
引用本文: 孟晨, 牛健植, 余海龙, 杜灵通, 尹正聪. 土壤大孔隙三维特征影响因素和测定方法研究进展[J]. 北京林业大学学报, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
Citation: Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158

土壤大孔隙三维特征影响因素和测定方法研究进展

基金项目: 宁夏自然科学基金项目(2019AAC03045),国家自然科学基金项目(41961001、41967027),宁夏重点研发计划项目(2019BFG02010)
详细信息
    作者简介:

    孟晨,助理研究员。主要研究方向:水土保持与土壤水文。Email:mengchen@nxu.edu.cn 地址:750021宁夏回族自治区银川市西夏区贺兰山西路489号

  • 中图分类号: 210.5010

Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores

  • 摘要: 土壤大孔隙是优先流的主要通道,对土壤水分、空气和化学物质及污染物的优先运移起着重要作用,土壤大孔隙三维形态特征的量化分析及影响因素研究是目前大孔隙的研究重点,研究成果可为理解土壤水分运动机理及评估地下水污染等提供科学支撑。本文从大孔隙三维形态特征参数的定义(大孔隙体积、表面积、长度、数量、迂曲度、倾斜角度、路径数量、孔径、节点、连接度、圆度等),各参数测定方法及软件(Avizo 9.0、VG Studio MAX 2.2、Arc/Info 10.0、ImageJ等),大孔隙特征影响因素(根系、土壤动物、干湿及冻融交替、人为因素等)3个方面,综合介绍了土壤大孔隙三维特征的研究现状及进展,并基于此预测了今后的研究趋势,以期为今后大孔隙三维特征的深入研究提供参考。
    Abstract: Macropore is the main channel for preferential flow, therefore it largely impacts the transportation of water, air, and chemical materials in soil. Recently, it has become a focus of interest for quantitative analysis and influencing factors of three-dimensional(3D) morphological characteristics of soil macropores, since it could provide fundamental explanations for water soil movement patterns and groundwater pollution assessment. This paper examines state-of-the-art research development regarding 3D morphological characteristics of soil macropore by revisiting the concept (macropore volume, surface area, length, number, tortuosity, inclination angle, path number, macropore diameter, node, connectivity, roundness, etc.), quantitative measurements and software (Avizo 9.0, VG Studio MAX 2.2, Arc/Info 10.0, Image J, etc.) and impact factors (root system, soil animal, alternation of dry wet and freeze-thaw, human factors, etc.) of soil macropore characteristics. On the basis of summarizing the current research status, this paper summarizes the relevant research conclusions, and also proposes the direction of future work by reviewing current work.
  • 图  1   不同控制措施土壤大孔隙三维可视图

    引自文献[30]。Cited from reference [30].

    Figure  1.   Three-dimensional(3D) visualization of soil macropores with different control measures

    表  1   大孔隙特征及其定义

    Table  1   Characteristics and definition of macropores

    大孔隙特征
    Macropore characteristics
    定义
    Definition
    体积密度
    Volume density/(mm3·mm−3)
    单位土柱体积内大孔隙的总体积
    Total volume of macropores per unit volume of soil column[19-20]
    表面积密度
    Surface area density/(mm2·mm−3)
    单位土柱体积内大孔隙的总表面积
    Total surface area of macropores per unit volume of soil column[19-20]
    长度密度
    Length density/(mm·mm−3)
    单位土柱体积内大孔隙的总实际长度
    Total actual length of macropores per unit volume of soil column[20]
    网络密度(数量密度)
    Network density (quantity density)/(number·mm−3)
    单位土柱体积内大孔隙的总数量
    Total number of macropores per unit volume of soil column[20-24]
    迂曲度
    Tortuosity
    大孔隙的实际长度与直线长度的比值,可表示大孔隙的弯曲程度
    Ratio of actual length of macropores to the length of straight lines, indicating the bending degree of macropores[20, 25]
    倾斜角度
    Inclination angle/(°)
    大孔隙的纵向与地平面的夹角,表示大孔隙的倾斜程度
    Angle between vertical direction of macropores and ground plane, indicating the inclination degree of macropores[18, 20, 23, 25-26]
    路径数量
    Number of path
    连续且独立的穿透土柱顶端及底端的大孔隙的数量
    Number of continuous and independent macropores penetrating top and bottom of column[19]
    平均孔径
    Average diameter of macropore/mm
    单位体积内所有大孔隙直径的平均值
    Average value of all macropore diameter per unit volume[20]
    节点数量
    Number of node
    连接两个大孔隙分支的交叉点数量
    Number of intersections connecting two macropore branches[19]
    节点密度/(个·mm−3)
    Node density/(number·mm−3)
    单位体积土壤内大孔隙节点的数量
    Number of macropore nodes per unit volume soil[19]
    连接度
    Connectivity
    大孔隙空间内两点间独立路径的数量,连接土壤表面和底部的大孔隙数量
    Number of independent paths between two points in macropore space, and the number of macropores connecting the surface and bottom of soil[24, 27]
    圆度
    Roundness
    大孔隙表面积接近理论圆的程度
    Degree of surface area of macropores approaching the theoretical circle[28]
    下载: 导出CSV

    表  2   大孔隙特征测定方法及其精度

    Table  2   Measuring method and precision of macropore characteristics

    计算软件
    Computing software
    能得到的大孔隙特征
    Available macropore characteristics
    测定精度
    Accuracy of measurement
    Avizo 9.0 体积、表面积、长度、数量、倾斜角度、迂曲度、路径数量、节点数量、节点密度、孔径、连接度等
    Volume, surface area, length, number, inclination angle, tortuosity, number of path, number of node, node density, diameter of macropore, connectivity, etc.
    毫米级 Millimeter-scale
    VG Studio MAX 2.2 体积、表面积、长度、网络密度/数量密度、倾斜角度、迂曲度、孔径、连接度等
    Volume, surface area, length, network density/quantity density, inclination angle, tortuosity, diameter of macropore, connectivity, etc.
    毫米级 Millimeter-scale
    Arc/Info 10.0 体积、网络密度/数量密度、孔径、圆度等
    Volume, network density/quantity density, diameter of macropore, roundness, etc.
    毫米级 Millimeter-scale
    ImageJ 体积、表面积、长度、网络密度/数量密度、连接度、迂曲度、路径数量等
    Volume, surface area, length, network density/quantity density, connectivity, tortuosity, number of path, etc.
    毫米级 Millimeter-scale
    下载: 导出CSV
  • [1]

    Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research, 1982, 18(5): 1311−1325. doi: 10.1029/WR018i005p01311.

    [2]

    Lin H, Bouma J, Wilding L P, et al. Advances in hydropedology[J]. Advances in Agronomy, 2005, 85: 81−89. doi: 10.1016/S0065-2113(04)85001-6.

    [3]

    Jarvis N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality[J]. European Journal of Soil Science, 2007, 58(3): 523−546. doi: 10.1111/j.1365-2389.2007.00915.x

    [4]

    Hao Z C, Feng J. Recent advances in water and solute movement in macro-porous soil[J]. Irrigation and Drainage, 2002, 21(1): 67−71.

    [5]

    Grdens A I, Jarvis N, Van Genuchten M T. Twodimensional modelling of preferential water flow and pesticide transport from a tile-drained field[J]. Journal of Hydrology, 2006, 329(3): 647−660.

    [6]

    Katuwal S, Norgaard T, Moldrup P, et al. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography[J]. Geoderma, 2015, 237: 9−20.

    [7]

    Lamande M, Labouriau R, Holmtrup M, et al. Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[J]. Geoderma, 2011, 162: 319−326. doi: 10.1016/j.geoderma.2011.03.004.

    [8]

    Lamandé M, Schjønning P. Transmission of vertical stress in a real soil profile (Ⅱ): effect of tyre size, inflation pressure and wheel load[J]. Soil and Tillage Research, 2011, 114(2): 71−77. doi: 10.1016/j.still.2010.08.011.

    [9]

    Marquart A, Goldbach L, Blaum N. Soil-texture affects the influence of termite macropores on soil water infiltration in a semi-arid savanna[J/OL]. Ecohydrology, 2020: 1−11 [2020−10−13]. https:doi.org/10.1002/eco.2249.

    [10]

    Pierret A, Capowiez Y, Belzunces L, et al. 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma, 2002, 106(3): 247−271.

    [11]

    Bastardie F, Capowiez Y, De Dreuzy J R, et al. X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores[J]. Applied Soil Ecology, 2003, 24(1): 3−16. doi: 10.1016/S0929-1393(03)00071-4.

    [12]

    Peth S, Horn R, Beckmann F, et al. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography[J]. Soil Science Society of America Journal, 2008, 72(4): 897−907. doi: 10.2136/sssaj2007.0130.

    [13]

    Li X, Lu Y D, Zhang X Z, et al. Quantification of macropores of Malan loess and the hydraulic significance on slope stability by X-ray computed tomography[J]. Environmental Earth Sciences, 2019, 78(16): 1−19. doi: 10.1007/s12665-019-8527-2.

    [14]

    Lin H S, Mcinnes K J, Wilding L P, et al. Effective porosity and flow rate with infiltration at low tensions into a well-structured subsoil[J]. Transactions of the ASAE, 1996, 39(1): 131−135. doi: 10.13031/2013.27490.

    [15]

    Gantzer C J, Anderson S H. Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds[J]. Soil and Tillage Research, 2002, 64(1): 101−111.

    [16]

    Udawatta R P, Anderson S H, Gantzer C J, et al. Influence of prairie restoration on CT-measured soil pore characteristics[J]. Journal of Environmental Quality, 2008, 37(1): 219−228. doi: 10.2134/jeq2007.0227.

    [17]

    Mooney S J, Morris C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography[J]. Catena, 2008, 73(2): 204−211. doi: 10.1016/j.catena.2007.09.003.

    [18]

    Stewart J B, Moran C J, Wood J T. Macropore sheath: quantification of plant root and soil macropore association[J]. Plant and Soil, 1999, 211(1): 59−67. doi: 10.1023/A:1004405422847.

    [19]

    Luo L, Lin H, Li S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography[J]. Journal of Hydrology, 2010, 393(1−2): 53−64. doi: 10.1016/j.jhydrol.2010.03.031.

    [20]

    Meng C, Niu J, Li X, et al. Quantifying soil macropore networks in different forest communities using industrial computed tomography in a mountainous area of North China[J]. Journal of Soils and Sediments, 2017, 17(9): 2357−2370. doi: 10.1007/s11368-016-1441-2.

    [21]

    Timms W A, Acworth R I, Crane R A, et al. The influence of syndepositional macropores on the hydraulic integrity of thick alluvial clay aquitards[J]. Water Resources Research, 2018, 54(4): 3122−3138. doi: 10.1029/2017WR021681

    [22]

    Soto-Gómez D, Pérez-Rodríguez P, Vázquez-Juiz L, et al. Linking pore network characteristics extracted from CT images to the transport of solute and colloid tracers in soils under different tillage managements[J]. Soil and Tillage Research, 2018, 177: 145−154. doi: 10.1016/j.still.2017.12.007.

    [23]

    Hu X, Lu Y L, Liu Y, et al. Exclosure on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China[J]. Journal of Soils and Sediments, 2018, 18(3): 718−726. doi: 10.1007/s11368-017-1828-8.

    [24]

    Larsbo M, Koest E L J, Jarvis N. Relations between macropore network characteristics and the degree of preferential solute transport[J]. Hydrology and Earth System Sciences, 2014, 18(12): 5255−5269. doi: 10.5194/hess-18-5255-2014.

    [25]

    Müller K, Katuwal S, Young I, et al. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures[J]. Geoderma, 2018, 313: 82−91. doi: 10.1016/j.geoderma.2017.10.020.

    [26]

    Li Y, He S, Deng X, et al. Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology[J]. Journal of Asian Earth Sciences, 2018, 154: 271−279. doi: 10.1016/j.jseaes.2017.12.028.

    [27]

    Perret J, Prasher S O, Kantzas A, et al. Three-dimensional quantification of macropore networks in undisturbed soil cores[J]. Soil Science Society of America Journal, 1999, 63(6): 1530−1543. doi: 10.2136/sssaj1999.6361530x.

    [28]

    Guo X, Zhao T, Liu L, et al. Effect of Sewage irrigation on the CT-measured soil pore characteristics of a clay farmland in northern China[J]. International Journal of Environmental Research and Public Health, 2018, 15(5): 1043−1056. doi: 10.3390/ijerph15051043.

    [29]

    Smet S, Beckers E, Plougonven E, et al. Can the pore scale geometry explain soil sample scale hydrodynamic properties?[J]. Frontiers in Environmental Science, 2018, 6: 20−36. doi: 10.3389/fenvs.2018.00020.

    [30]

    Zhang Z, Liu K, Zhou H, et al. Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography[J]. Journal of Hydrology, 2019, 571: 1−10. doi: 10.1016/j.jhydrol.2019.01.041.

    [31]

    Vogel H J, Roth K. A new approach for determining effective soil hydraulic functions[J]. European Journal of Soil Science, 1998, 49(4): 547−556. doi: 10.1046/j.1365-2389.1998.4940547.x.

    [32] 吴华山, 陈效民, 陈集. 利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报, 2007, 21(2):175−178. doi: 10.3321/j.issn:1009-2242.2007.02.044

    Wu H S, Chen X M, Chen J. Study on macropore in main paddy soils in Tai-Lake Region with CT[J]. Journal of Soil and Water Conservation, 2007, 21(2): 175−178. doi: 10.3321/j.issn:1009-2242.2007.02.044

    [33]

    Perret J, Prasher S O, Kantzas A, et al. A two-domain approach using CAT scanning to model solute transport in soil[J]. Journal of Environmental Quality, 2000, 29(3): 995−1010.

    [34]

    Yu X L, Lu S G. Double effects of biochar in affecting the macropore system of paddy soils identified by high-resolution X-ray tomography[J]. Science of The Total Environment, 2020, 3(3): 1−12. doi: 10.1016/j.scitotenv.2020.137690.

    [35]

    Yi J, Yang Y, Liu M X, et al. Characterising macropores and preferential flow of mountainous forest soils with contrasting human disturbances[J]. Soil Research, 2019, 57(6): 601−614. doi: 10.1071/SR18198.

    [36]

    Ferro N D, Strozzi A G, Duwig C, et al. Application of smoothed particle hydrodynamics (SPH) and pore morphologic model to predict saturated water conductivity from X-ray CT imaging in a silty loam cambisol[J]. Geoderma, 2015, 255: 27−34.

    [37]

    Hu X, Li Z C, Li X Y, et al. Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China[J]. Soil and Tillage Research, 2015, 150: 1−9. doi: 10.1016/j.still.2014.12.019.

    [38]

    Mooney S J, Morris C. Quantification of soil macropores at different slope positions under alpine meadow using computed tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet[J]. Eurasian Soil Science, 2019, 52(11): 1391−1401. doi: 10.1134/S1064229319110152

    [39]

    Wang J, Qin Q, Guo L, et al. Multi-fractal characteristics of three-dimensional distribution of reconstructed soil pores at opencast coal-mine dump based on high-precision CT scanning[J]. Soil and Tillage Research, 2018, 182: 144−152. doi: 10.1016/j.still.2018.05.013.

    [40]

    Hellner Q, Koestel J, Ulén B, et al. Effects of tillage and liming on macropore networks derived from X-ray tomography images of a silty clay soil[J/OL]. Soil Use and Management, 2018, 34(2): 12418 [2019−08−13]. https://doi.org/10.1111/sum.12418.

    [41]

    Serra J. Image analysis and mathematical morphology[M]. San Diego: Academic Press, Inc., 1983.

    [42]

    Lindquist W B. Network flow model studies and 3D pore structure[J]. Contemporary Mathematics, 2002, 295: 355−366.

    [43]

    Peyton R L, Haeffner B A, Anderson S H, et al. Applying X-ray CT to measure macropore diameters in undisturbed soil cores[J]. Geoderma, 1992, 53(3): 329−340.

    [44]

    Luo L, Lin H, Halleck P. Quantifying soil structure and preferential flow in intact soil using X-ray computed tomography[J]. Soil Science Society of America Journal, 2008, 72(4): 1058−1069. doi: 10.2136/sssaj2007.0179.

    [45]

    Xu L Y, Wang M Y, Shi X Z, et al. Effect of long-term organic fertilization on the soil pore characteristics of greenhouse vegetable fields converted from rice-wheat rotation fields[J]. Science of the Total Environment, 2018, 631: 1243−1250.

    [46]

    Zhang Y, Niu J, Zhu W, et al. Effects of plant roots on soil preferential pathways and soil matrix in forest ecosystems[J]. Journal of Forestry Research, 2015, 26(2): 397−404. doi: 10.1007/s11676-015-0023-2.

    [47] 时忠杰, 王彦辉, 徐丽宏, 等. 六盘山典型植被下土壤大孔隙特征[J]. 应用生态学报, 2008, 18(12):2675−2680.

    Shi Z J, Wang Y H, Xu L H, et al. Soil macropore characteristics under typical vegetations in Liupan Mountains[J]. Chinese Journal of Applied Ecology, 2008, 18(12): 2675−2680.

    [48] 张家明, 徐则民, 李峰. 植被发育斜坡土体大孔隙分布特征的染色示踪法研究[J]. 山地学报, 2015, 33(1): 1−7.

    Zhang J M, Xu Z M, Li F. Heterogeneous characteristics of macropores in soil of well vegetated slopes by dye tracing method[J]. Mountain research, 2015, 33(1):1−7

    [49]

    Liu B, Xie G, Zhang X, et al. Vegetation root system, soil erosion and ecohydrology system: a review[J]. AER-Advances in Engineering Research, 2015, 40: 271−279.

    [50]

    Lesturgez G, Poss R, Hartmann C, et al. Roots of stylosantheshamata create macropores in the compact layer of a sandy soil[J]. Plant and Soil, 2004, 260(1−2): 101−109.

    [51]

    Devitt D A, Smith S D. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99−108. doi: 10.1006/jare.2001.0853.

    [52]

    Hu X, Li Z C, Li X Y, et al. Quantification of soil macropores under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau[J]. Geoderma, 2016, 264: 244−251. doi: 10.1016/j.geoderma.2015.11.001.

    [53]

    Musso A, Lamorski K, Sławiński C, et al. Evolution of soil pores and their characteristics in a siliceous and calcareous proglacial area[J/OL]. Catena, 2019, 182: 104154 [2019−11−12]. https://www.sciencedirect.com/science/article/pii/S0341816219302966.

    [54]

    Pires L F, Araujo-Junior C F, Auler A C, et al. Soil physico-hydrical properties changes induced by weed control methods in coffee plantation[J]. Agriculture, Ecosystems & Environment, 2017, 246: 261−268.

    [55]

    Ng C W W, Tasnim R, Capobianco V, et al. Influence of soil nutrients on plant characteristics and soil hydrological responses[J]. Géotechnique Letters, 2018, 8(1): 19−24. doi: 10.1680/jgele.17.00104.

    [56]

    Edwards W M, Norton L D, Redmond C E. Characterizing macropores that affect infiltration into nontilled soil[J]. Soil Science Society of America Journal, 1988, 52(2): 483−487. doi: 10.2136/sssaj1988.03615995005200020033x.

    [57]

    Mccoy E L, Boast C W, Stehouwer R C, et al. Macropore hydraulics: taking a sledgehammer to classical theory[J]. Soil Processes and Water Quality, 1994: 303−348.

    [58]

    Mallants D, Mohanty B P, Vervoort A, et al. Spatial analysis of saturated hydraulic conductivity in a soil with macropores[J]. Soil Technology, 1997, 10(2): 115−131. doi: 10.1016/S0933-3630(96)00093-1.

    [59]

    Capowiez Y, Pierret A, Daniel O, et al. 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores[J]. Biology and Fertility of Soils, 1998(1): 51−59. doi: 10.1007/s003740050399.

    [60]

    Hirmas D R, Giménez D, Nemes A, et al. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle[J]. Nature, 2018, 561: 100.

    [61]

    Mohammed A A, Kurylyk B L, Cey E E, et al. Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework[J/OL]. Vadose Zone Journal, 2018, 17(1): 180084 [2019−05−16]. https://doi.org/10.2136/vzj2018.04.0084.

    [62]

    Urbina C A, Van Dam J C, Hendriks R F A, et al. Water flow in soils with heterogeneous macropore geometries[J/OL]. Vadose Zone Journal, 2019, 18(1) [2019−12−13]. https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/vzj2019.02.0015.

    [63] 区自清, 贾良清, 金海燕, 等. 大孔隙和优先水流及其对污染物在土壤中迁移行为的影响[J]. 土壤学报, 1999, 36(3):341−347. doi: 10.3321/j.issn:0564-3929.1999.03.007.

    Qu Z Q, Jia L Q, Jin H Y, et al. Macropores and preferential flow and their effects on pollutant migration in soils[J]. Acta Pedologica Sinica, 1999, 36(3): 341−347. doi: 10.3321/j.issn:0564-3929.1999.03.007.

    [64]

    Watanabe K, Kugisaki Y. Effect of macropores on soil freezing and thawing with infiltration[J]. Hydrological Processes, 2017, 31(2): 270−278. doi: 10.1002/hyp.10939.

    [65]

    Guo Y, Fan R, Zhang X, et al. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure [J/OL]. Science of the Total Environment, 2019, 73: 134617 [2019−12−11]. https://www.sciencedirect.com/science/article/pii/S004896971934608X.

    [66]

    Gao L, Becker E, Liang G, et al. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon[J]. Geoderma, 2017, 288: 97−104. doi: 10.1016/j.geoderma.2016.11.005.

    [67]

    Mcgarry D, Bridge B J, Radford B J. Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics[J]. Soil and Tillage Research, 2000, 53(2): 105−115. doi: 10.1016/S0167-1987(99)00091-4.

    [68] 李文凤, 张晓平, 梁爱珍, 等. 免耕对黑土蚯蚓数量和土壤密度的影响[J]. 农业系统科学与综合研究, 2007, 23(4):489−493. doi: 10.3969/j.issn.1001-0068.2007.04.025.

    Li W F, Zhang X P, Liang A Z, et al. Impacts of no-tillage on earthworm and soil bulk density in black soil in northeast China[J]. System Sciences and Comprehensive Studies in Agriculture, 2007, 23(4): 489−493. doi: 10.3969/j.issn.1001-0068.2007.04.025.

    [69]

    Hangen E, Buczko U, Bens O, et al. Infiltration patterns into two soils under conventional and conservation tillage: influence of the spatial distribution of plant root structures and soil animal activity[J]. Soil and Tillage Research, 2002, 63(3): 181−186.

  • 期刊类型引用(12)

    1. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
    2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 . 百度学术
    3. 冯健,张金博,杨圆圆,杜超群,徐柏松,曹颖,姚飞. 基于生长性状和SSR遗传多样性分析的红松第二代优树选择研究. 西南林业大学学报(自然科学). 2024(04): 1-7 . 百度学术
    4. 胡勐鸿,吕寻,戴小芬,李宗德,李万峰. 日本落叶松无性系种子园和优树半同胞家系苗期比较. 东北林业大学学报. 2024(12): 10-17 . 百度学术
    5. 向华,向文明,向明. 我国用材林优树选择技术研究进展. 湖南林业科技. 2021(02): 89-96 . 百度学术
    6. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 . 百度学术
    7. 邓乐平,黄婷,王哲,吴惠姗,李晓华,廖仿炎,李义良,郭文冰,赵奋成. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择. 林业与环境科学. 2020(04): 1-7 . 百度学术
    8. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 . 百度学术
    9. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 . 百度学术
    10. 金星,于忠峰,苗海伟,于国斌,朱瑞,张丽杰. 辽宁地区油松花粉形态及生活力的测定. 分子植物育种. 2019(15): 5115-5119 . 百度学术
    11. 康向阳. 关于林木育种策略的思考. 北京林业大学学报. 2019(12): 15-22 . 本站查看
    12. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看

    其他类型引用(4)

图(1)  /  表(2)
计量
  • 文章访问数:  1964
  • HTML全文浏览量:  466
  • PDF下载量:  152
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-12-02
  • 网络出版日期:  2020-10-14
  • 发布日期:  2020-12-13

目录

    /

    返回文章
    返回