高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林火干扰对广东省杉木林土壤有机碳及其组分的影响

胡海清 罗斯生 罗碧珍 魏书精 王振师 吴泽鹏

胡海清, 罗斯生, 罗碧珍, 魏书精, 王振师, 吴泽鹏. 林火干扰对广东省杉木林土壤有机碳及其组分的影响[J]. 北京林业大学学报, 2019, 41(12): 108-118. doi: 10.12171/j.1000-1522.20190179
引用本文: 胡海清, 罗斯生, 罗碧珍, 魏书精, 王振师, 吴泽鹏. 林火干扰对广东省杉木林土壤有机碳及其组分的影响[J]. 北京林业大学学报, 2019, 41(12): 108-118. doi: 10.12171/j.1000-1522.20190179
Hu Haiqing, Luo Sisheng, Luo Bizhen, Wei Shujing, Wang Zhenshi, Wu Zepeng. Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 108-118. doi: 10.12171/j.1000-1522.20190179
Citation: Hu Haiqing, Luo Sisheng, Luo Bizhen, Wei Shujing, Wang Zhenshi, Wu Zepeng. Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 108-118. doi: 10.12171/j.1000-1522.20190179

林火干扰对广东省杉木林土壤有机碳及其组分的影响

doi: 10.12171/j.1000-1522.20190179
基金项目: 国家自然科学基金项目(41371109),中央高校基本科研业务费专项(2572017PZ05),国家林业公益性行业科研专项(201404402),广西自然科学基金项目(2014GXNSFBA118108)
详细信息
    作者简介:

    胡海清,博士,教授,博士生导师。主要研究方向:林火生态与管理。Email:huhq@nefu.edu.cn 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    罗碧珍,博士,讲师。主要研究方向:林火生态与管理。Email:luobizhen8@163.com 地址:同上

  • 中图分类号: S762.8

Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China

  • 摘要: 目的定量研究林火干扰对森林生态系统土壤有机碳及其组分的影响,揭示林火干扰对森林生态系统土壤有机碳及组分的变化规律,以期为森林土壤碳循环和碳过程研究提供科学参考。方法以广东省杉木林为研究对象,采用相邻样地比较法,以野外调查采样与室内实验分析为主要手段,在森林生态系统水平上,定量测定不同林火干扰强度对土壤有机碳密度、土壤有机碳组分含量和细根生物量的影响,探讨林火干扰对土壤有机碳密度、土壤有机碳组分含量和细根生物量的影响机制。结果林火干扰对杉木林的土壤有机碳密度、土壤有机碳组分含量和细根生物量均有影响,土壤有机碳密度与土壤有机碳组分含量变化趋势表现为对照 > 轻度林火干扰 > 中度林火干扰 > 重度林火干扰。轻度林火干扰对土壤有机碳密度的影响差异不显著(P > 0.05),而中度和重度林火干扰则显著降低了土壤有机碳密度(P < 0.05)。杉木林土壤细根生物量均低于对照样地,变化趋势为重度林火干扰 > 中度林火干扰 > 轻度林火干扰,轻度林火干扰只显著降低了土壤表层细根生物量(P < 0.05),而中度和重度林火干扰则显著降低了土壤表层和浅层细根生物量(P < 0.05)。结论林火干扰减少了土壤有机碳密度,减少幅度随土壤剖面深度增加而逐渐变小。不同林火干扰强度后,土壤有机碳组分含量总体随林火干扰强度增加沿土壤剖面递减的幅度呈下降趋势。通过分析林火干扰后土壤碳密度的分布格局及影响机制,可为林火干扰后生态系统碳汇管理以及定量评价林火干扰对森林生态系统碳库的影响提供参考依据。

     

  • 图  1  林火干扰对杉木林土壤密度的影响

    不同小写字母表示相同土层不同林火干扰与对照样地之间差异显著(P < 0.05)。下同。Different lowercase letters indicate significant difference between different forest fire disturbance and control check plots in the same soil layer at P < 0.05 level. The same below.

    Figure  1.  Effects of forest fire disturbance on soil bulk density of Cunninghamia lanceolata forest

    图  2  林火干扰对土壤有机碳含量的影响

    Figure  2.  Effects of forest fire disturbance on soil organic carbon content

    图  3  林火干扰对杉木林土壤有机碳密度的影响

    Figure  3.  Effects of forest fire disturbance on soil organic carbon density of Cunninghamia lanceolata forest

    图  4  林火干扰对杉木林土壤微生物生物量碳含量的影响

    图中的A、B、C、D、E、F、G和Z 分别代表土层0 ~ 10 cm、10 ~ 20 cm、20 ~ 30 cm、30 ~ 40 cm、40 ~ 60 cm、60 ~ 80 cm、80 ~ 100 cm、0 ~ 100 cm。下同。A, B, C, D, E, F, G and Z in the figure represent soil layers of 0−10 cm, 10−20 cm, 20−30 cm, 30−40 cm, 40−60 cm, 60−80 cm, 80−100 cm and 0−100 cm, respectively . The same below.

    Figure  4.  Effects of forest fire disturbance on soil microbial biomass carbon content of Cunninghamia lanceolata forest

    图  5  林火干扰对杉木林土壤可溶性有机碳含量的影响

    Figure  5.  Effects of forest fire disturbance on soil dissolved organic carbon content of Cunninghamia lanceolata forest

    图  6  林火干扰对杉木林土壤易氧化碳含量的影响

    Figure  6.  Effects of forest fire disturbance on soil easily oxidized carbon content of Cunninghamia lanceolata forest

    图  7  林火干扰对杉木林土壤颗粒有机碳含量的影响

    Figure  7.  Effects of forest fire disturbance on soil particulate organic carbon content of Cunninghamia lanceolata forest

    表  1  杉木林林火干扰样地基本情况

    Table  1.   Basic situation of forest fire disturbance in sample plot of Cunninghamia lanceolata forest

    样地状况
    Sample plot
    condition
    林龄范围/a
    Stand age
    range/year
    平均胸径
    Average DBH/cm
    平均树高
    Average tree
    height/m
    密度/
    (株·hm− 2
    Stand
    density/
    (tree﹒ha− 1)
    郁闭度
    Canopy
    closure
    坡度
    Slope degree/(°)
    坡位
    Slope
    position
    坡向
    Slope
    direction
    海拔
    Altitude/
    m
    土壤类型
    Soil
    type
    森林起源
    Forest
    origin
    对照样地 CK 27 ~ 29 18.27 ± 3.25 16.59 ± 4.23 1 426 ± 199 0.90 15 ~ 25 中坡 Middle slope 阳坡 Sunny slope 265 ~ 290 赤红壤 Lateritic red soil 人工林 Plantation
    轻度林火干扰 L 27 ~ 29 18.27 ± 3.25 16.59 ± 4.23 1 426 ± 245 0.75 15 ~ 25 中坡 Middle slope 阳坡 Sunny slope 250 ~ 350 赤红壤 Lateritic red soil 人工林 Plantation
    中度林火干扰 M 27 ~ 29 18.27 ± 3.25 16.59 ± 4.23 1 285 ± 127 0.55 15 ~ 25 中坡 Middle slope 阳坡 Sunny slope 250 ~ 350 赤红壤 Lateritic red soil 人工林 Plantation
    重度林火干扰 H 27 ~ 29 18.27 ± 3.25 16.59 ± 4.23 939 ± 97 0.30 15 ~ 25 中坡 Middle slope 阳坡 Sunny slope 250 ~ 350 赤红壤 Lateritic red soil 人工林 Plantation
    注:数据为平均值 ± 标准差。CK、L、M和H分别代表对照、轻度林火干扰、中度林火干扰和重度林火干扰。下同。Notes: data are mean ± SD. CK, L, M and H represent control check, light forest fire disturbance, moderate forest fire disturbance and high forest fire disturbance, respectively. The same below.
    下载: 导出CSV

    表  2  林火干扰对杉木林土壤细根生物量的影响                t/hm2

    Table  2.   Effects of forest fire disturbance on soil fine root biomass of Cunninghamia lanceolate forests t/ha

    土层 Soil layer/cm对照 CK轻度林火干扰 L中度林火干扰 M重度林火干扰 H
    0 ~ 10 3.22 ± 0.34a 2.45 ± 0.45b 2.19 ± 0.37b 1.75 ± 0.45b
    10 ~ 20 2.69 ± 0.29a 2.04 ± 0.38b 1.68 ± 0.47bc 1.25 ± 0.25c
    20 ~ 30 2.01 ± 0.36a 1.77 ± 0.37a 1.09 ± 0.41b 0.87 ± 0.36b
    30 ~ 40 0.97 ± 0.25a 0.75 ± 0.14a 0.61 ± 0.12b 0.57 ± 0.21b
    注:数据为平均值 ± 标准差。不同小写字母表示不同林火干扰强度与对照样地之间差异显著(P < 0.05)。下同。Notes: data are mean ± SD. Different small letters indicate significant difference between different forest fire disturbance intensities and control check plots at P < 0.05 level. The same below.
    下载: 导出CSV

    表  3  杉木林土壤活性有机碳含量与土壤有机碳、细根生物量的相关系数

    Table  3.   Pearson correlation coefficients between LOC and SOC, fine root biomass of Cunninghamia lanceolata forest

    土壤活性有机碳
    Soil activated organic
    carbon (LOC)
    土壤有机碳
    Soil organic carbon (SOC)
    细根生物量
    Fine root biomass
    土壤微生物量碳 MBC 0.991** 0.983*
    可溶性有机碳 DOC 0.995** 0.982*
    易氧化碳 EOC 0.966* 0.949
    颗粒有机碳 POC 0.983* 0.976*
    注:*** 分别指在 P < 0.05 和 P < 0.01 水平上相关性显著。Notes:* and ** represent significant correlations at P < 0.05 and P < 0.01 level, respectively.
    下载: 导出CSV
  • [1] German D P, Chacon S S, Allison S D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition[J]. Ecology, 2011, 92(7): 1471−1480. doi: 10.1890/10-2028.1
    [2] Yanni S F, Diochon A, Helgason B L, et al. Temperature response of plant residue and soil organic matter decomposition in soil from different depths[J]. European Journal of Soil Science, 2018, 69(2): 325−335. doi: 10.1111/ejss.12508
    [3] Ludwig S M, Alexander H D, Kielland K, et al. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest[J]. Global Change Biology, 2018, 24(12): 5841−5852. doi: 10.1111/gcb.14455
    [4] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623−1627. doi: 10.1126/science.1097396
    [5] Yang Y, Tilman D, Furey G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019, 10(1): 1−7. doi: 10.1038/s41467-018-07882-8
    [6] Alcañiz M, Outeiro L, Francos M, et al. Effects of prescribed fires on soil properties: a review[J]. Science of The Total Environment, 2018, 613: 944−957.
    [7] González-Pérez J A, González-Vila F J, Almendros G, et al. The effect of fire on soil organic matter: a review[J]. Environment International, 2004, 30(6): 855−870. doi: 10.1016/j.envint.2004.02.003
    [8] Li Q, Tian Y, Zhang X, et al. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature[J]. Applied Soil Ecology, 2017, 114: 152−160. doi: 10.1016/j.apsoil.2017.01.009
    [9] 赵鑫, 宇万太, 李建东, 等. 不同经营管理条件下土壤有机碳及其组分研究进展[J]. 应用生态学报, 2006, 17(11):2203−2209. doi: 10.3321/j.issn:1001-9332.2006.11.040

    Zhao X, Yu W T, Li J D, et al. Research advances in soil organic carbon and its fractions under different management patterns[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2203−2209. doi: 10.3321/j.issn:1001-9332.2006.11.040
    [10] 姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学, 2005, 41(1):10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003

    Jiang P K. Soil active carbon pool under different types of vegetation[J]. Scientia Silvae Sinicae, 2005, 41(1): 10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003
    [11] 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17):4829−4838.

    Yu J, Fang L, Bian Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829−4838.
    [12] Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C. Identifying soil organic carbon fractions sensitive to agricultural management practices[J]. Soil and Tillage Research, 2014, 139: 19−22. doi: 10.1016/j.still.2014.01.006
    [13] 周广胜, 王玉辉, 蒋延玲, 等. 陆地生态系统类型转变与碳循环[J]. 植物生态学报, 2002, 26(2):250−254. doi: 10.3321/j.issn:1005-264X.2002.02.019

    Zhou G S, Wang Y H, Jiang Y L, et al. Conversion of terrestrial ecosystems and carbon cycling[J]. Chinese Journal of Plant Ecology, 2002, 26(2): 250−254. doi: 10.3321/j.issn:1005-264X.2002.02.019
    [14] 孙悦, 徐兴良, KUZYAKOV Yakov. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1):62−75.

    Sun Y, Xu X L, Kuzyakov Y. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 62−75.
    [15] 任清胜, 辛颖, 赵雨森. 重度火烧对大兴安岭落叶松天然林土壤团聚体有机碳和黑碳的影响[J]. 北京林业大学学报, 2016, 38(2):29−36.

    Ren Q S, Xin Y, Zhao Y S. Impact of severe burning on organic carbon and black carbon in soil aggregates in natural Larix gmelinii forest of Great Xing’an Mountains[J]. Journal of Beijing Forestry University, 2016, 38(2): 29−36.
    [16] 张参参, 吴小刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2):19−28.

    Zhang C C, Wu X G, Liu B, et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19−28.
    [17] 郭丽玲, 潘萍, 欧阳勋志, 等. 赣南马尾松天然林不同生长阶段碳密度分布特征[J]. 北京林业大学学报, 2018, 40(1):37−45.

    Guo L L, Pan P, Ouyang X Z, et al. Distribution characteristics of carbon density of natural Pinus massoniana forest at different stand growing stages in southern Jiangxi Province, eastern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 37−45.
    [18] 哈文秀, 周金星, 庞丹波, 等. 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究[J]. 北京林业大学学报, 2019, 41(2):1−11.

    Ha W X, Zhou J X, Pang D B, et al. Soil organic carbon fraction and enzyme activities under different restoration methods in karst area[J]. Journal of Beijing Forestry University, 2019, 41(2): 1−11.
    [19] 胡海清, 魏书精, 孙龙. 大兴安岭呼中区2010年森林火灾碳排放的计量估算[J]. 林业科学, 2012, 48(10):109−119. doi: 10.11707/j.1001-7488.20121017

    Hu H Q, Wei S J, Sun L. Estimation of carbon emissions from forest fires in 2010 in Huzhong of Daxing'anling Mountain[J]. Scientia Silvae Sinicae, 2012, 48(10): 109−119. doi: 10.11707/j.1001-7488.20121017
    [20] Alexander M E. Calculating and interpreting forest fire intensities[J]. Canadian Journal of Botany, 1982, 60(4): 349−357. doi: 10.1139/b82-048
    [21] McLatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil[J]. Journal of Environmental Quality, 1998, 27(5): 1268−1274.
    [22] 张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1):277−282.

    Zhang R, Zhang G L, Ji Y Y, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1): 277−282.
    [23] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777−783. doi: 10.2136/sssaj1992.03615995005600030017x
    [24] Wang Q, Zhong M, Wang S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems[J]. Forest Ecology and Management, 2012, 271: 91−97. doi: 10.1016/j.foreco.2012.02.006
    [25] Johnson D W, Curtis P S. Effect of forest management on soil C and N storage[J]. Forest Ecology Manage, 2001, 140: 227−238. doi: 10.1016/S0378-1127(00)00282-6
    [26] 尹云锋, 杨玉盛, 高人, 等. 皆伐火烧对杉木人工林土壤有机碳和黑碳的影响[J]. 土壤学报, 2009, 46(2):352−355. doi: 10.3321/j.issn:0564-3929.2009.02.023

    Yin Y F, Yang Y S, Gao R, et al. Effects of slash burning on soil organic carbon and black carbon in Chinese fir plantation[J]. Acta Pedologica Sinica, 2009, 46(2): 352−355. doi: 10.3321/j.issn:0564-3929.2009.02.023
    [27] Dai X, Boutton T W, Glaser B, et al. Black carbon in a temperate mixed-grass savanna[J]. Soil Biology and Biochemistry, 2005, 37(10): 1879−1881. doi: 10.1016/j.soilbio.2005.02.021
    [28] Neff J C, Harden J W, Gleixner G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska[J]. Canadian Journal of Forest Research, 2005, 35(9): 2178−2187. doi: 10.1139/x05-154
    [29] 崔晓阳, 郝敬梅, 赵山山, 等. 大兴安岭北部试验林火影响下土壤有机碳含量的时空变化[J]. 水土保持学报, 2012, 26(5):195−200.

    Cui X Y, Hao J M, Zhao S S, et al. Temporal and spacial changes of total soil organic carbon content as affected by an experimental forest fire in the Greater Xing'an Mountains[J]. Journal of Soil and Water Conservation, 2012, 26(5): 195−200.
    [30] Grosse G, Harden J, Turetsky M, et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): 1−23.
    [31] 李红运, 辛颖, 赵雨森. 火烧迹地不同恢复方式土壤有机碳分布特征[J]. 应用生态学报, 2016, 27(9):2747−2753.

    Li H Y, Xin Y, Zhao Y S. Distribution characteristics of soil organic carbon of burned area under different restorations[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2747−2753.
    [32] 孔健健, 杨健. 火烧对中国东北部兴安落叶松林土壤性质和营养元素有效性的影响[J]. 生态学杂志, 2013, 32(11):2837−2843.

    Kong J J, Yang J. Effects of fire on soil properties and nutrient availability in a Dahurian larch forest in Great Xing'an Mountains of Northeast China[J]. Chinese Journal of Ecology, 2013, 32(11): 2837−2843.
    [33] Prieto-Fernández A, Acea M J, Carballas T. Soil microbial and extractable C and N after wildfire[J]. Biology and Fertility of Soils, 1998, 27(2): 132−142. doi: 10.1007/s003740050411
    [34] Certini G. Effects of fire on properties of forest soils: a review[J]. Oecologia, 2005, 143(1): 1−10. doi: 10.1007/s00442-004-1788-8
    [35] 钱国平, 赵志霞, 李正才, 等. 火烧对北亚热带天然次生林土壤有机碳的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(6):115−119.

    Qian G P, Zhao Z X, Li Z C, et al. Effects of fire on soil organic carbon in natural secondary forest in north subtropical areas[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(6): 115−119.
    [36] 王海淇, 郭爱雪, 邸雪颖. 大兴安岭林火点烧对土壤有机碳和微生物量碳的即时影响[J]. 东北林业大学学报, 2011, 39(5):72−76. doi: 10.3969/j.issn.1000-5382.2011.05.023

    Wang H Q, Guo A X, Di X Y. Immediate changes in soil organic carbon and microbial biomass carbon after an experimental fire in Great Xing'an Mountains[J]. Journal of Northeast Forestry University, 2011, 39(5): 72−76. doi: 10.3969/j.issn.1000-5382.2011.05.023
    [37] Hart S C, Classen A T, Wright R J. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest[J]. Journal of Applied Ecology, 2005, 42(4): 752−761. doi: 10.1111/j.1365-2664.2005.01055.x
    [38] Neary D G, Klopatek C C, DeBano L F, et al. Fire effects on belowground sustainability: a review and synthesis[J]. Forest Ecology and Management, 1999, 122(1−2): 51−71. doi: 10.1016/S0378-1127(99)00032-8
    [39] Holden S R, Gutierrez A, Treseder K K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests[J]. Ecosystems, 2013, 16(1): 34−46. doi: 10.1007/s10021-012-9594-3
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  369
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-06-16
  • 网络出版日期:  2019-12-13
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回