高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热河谷优势灌木养分重吸收率及其C∶N∶P化学计量特征

贺静雯 刘颖 余杭 吴建召 崔羽 林勇明 王道杰 李键

贺静雯, 刘颖, 余杭, 吴建召, 崔羽, 林勇明, 王道杰, 李键. 干热河谷优势灌木养分重吸收率及其C∶N∶P化学计量特征[J]. 北京林业大学学报, 2020, 42(1): 18-26. doi: 10.12171/j.1000-1522.20190185
引用本文: 贺静雯, 刘颖, 余杭, 吴建召, 崔羽, 林勇明, 王道杰, 李键. 干热河谷优势灌木养分重吸收率及其C∶N∶P化学计量特征[J]. 北京林业大学学报, 2020, 42(1): 18-26. doi: 10.12171/j.1000-1522.20190185
He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. doi: 10.12171/j.1000-1522.20190185
Citation: He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. doi: 10.12171/j.1000-1522.20190185

干热河谷优势灌木养分重吸收率及其C∶N∶P化学计量特征

doi: 10.12171/j.1000-1522.20190185
基金项目: 国家自然科学基金项目(41790434),福建农林大学杰出青年科研人才计划项目(xjq2017016),中国科学院山地灾害与地表过程重点实验室开放基金(2019),福建农林大学科技创新专项基金项目(CXZX2017111、CXZX2017283)
详细信息
    作者简介:

    贺静雯。主要研究方向:自然资源管理。Email:1121833004@qq.com 地址:350002 福建省福州市仓山区上下店路15号福建农林大学林学院

    责任作者:

    林勇明,博士,教授。主要研究方向:区域资源优化、生态学。Email:monkey1422@163.com 地址:同上

  • 中图分类号: S718.43

Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry

  • 摘要: 目的探讨干热河谷区灌木植物成熟叶与衰老叶之间的养分重吸收率及其C∶N∶P化学计量特征。方法以坡柳、马桑和苦刺为研究对象,运用单因素方差分析和Pearson相关性分析,测定并计算其鲜叶、凋落叶的养分含量、重吸收率及其C∶N∶P化学计量比。结果除凋落叶N含量表现为马桑 > 苦刺 > 坡柳外,鲜叶N、P及凋落叶P含量均表现为苦刺 > 坡柳 > 马桑。苦刺N重吸收率最高,坡柳P重吸收率最高。3种灌木鲜叶和凋落叶C∶N、C∶P均存在显著差异性(P < 0.05),N∶P无显著差异。此外坡柳N重吸收率与凋落叶C∶N、P重吸收率与鲜叶C:N具有显著相关性(P < 0.05),马桑N重吸收率与鲜叶C∶N、凋落叶N:P和P重吸收率与鲜叶C∶N、N∶P均呈显著负相关(P < 0.05),苦刺N重吸收率与凋落叶C∶N、N∶P具有显著相关性(P < 0.05)。3种灌木除鲜叶N含量与土壤中水解氮(AN)含量存在显著相关性外,鲜叶和凋落叶C、N、P含量与土壤中各养分含量均无显著相关性。结论3种灌木除在生长过程中受 P限制外,N、P含量均表现为不完全吸收,N、P重吸收率均低于全球尺度上多种陆生植物的养分重吸收率,说明干热河谷坡柳、马桑和苦刺成熟植株通过养分重吸收来适应贫瘠立地的能力弱化,N、P养分保存和自身转移能力较低。

     

  • 图  1  3种灌木N、P重吸收率

    不同小写字母表示不同灌木间差异显著(P < 0.05)。 Different lowercase letters indicate significant differences among different shrubs (P < 0.05).

    Figure  1.  N, P reabsorption efficiency in three shrubs

    表  1  3种灌木样地概况

    Table  1.   Characteristics of three types of shrub sample plots

    物种
    Species
    经度
    Longitude
    纬度
    Latitude
    海拔
    Elevation/m
    坡度
    Slope/(°)
    坡向
    Aspect
    平均树高
    Average tree height/m
    平均冠幅
    Average crown width/m
    坡柳 Dodonaea viscose 103°08′15″E 26°14′25″N 1 483 43 N 1.38 1.16
    马桑 Coriaria sinica 103°08′47″E 26°14′55″N 1 548 40 NE 2.69 3.44
    苦刺 Sophora davidii 103°08′26″E 26°14′27″N 1 427 38 NE 1.17 0.79
    下载: 导出CSV

    表  2  3种灌木样地0 ~ 10 cm土壤性质

    Table  2.   Soil properties of the 0−10 cm layer of three different shrub sample plots

    物种
    Species
    有机碳含量
    SOC content/(g·kg− 1)
    全氮含量
    TN content/(g·kg− 1)
    全磷含量
    TP content/(g·kg− 1)
    水解氮含量
    AN content/(mg·kg− 1)
    有效磷含量
    AP content/(mg·kg− 1)
    坡柳 Dodonaea viscose 37.57 ± 10.03a 1.72 ± 0.58a 1.09 ± 0.05a 224.93 ± 24.68a 49.13 ± 1.49a
    马桑 Coriaria sinica 21.14 ± 7.65a 2.5 ± 0.52a 1.04 ± 0.02a 113.87 ± 40.01a 27.51 ± 10.83a
    苦刺 Sophora davidii 31.92 ± 4.06a 1.7 ± 0.29a 1.11 ± 0.13a 201 ± 42.58a 52.01 ± 1.47a
    注:SOC. 土壤有机碳;TN. 全氮;TP. 全磷;AN. 水解氮;AP. 有效磷。同列不同小写字母表示差异显著(P < 0.05)。下同。Notes: SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; AN, alkali-hydrolyzable nitrogen; AP, available phosphorus. Different lowercase letters in the same column indicate significant difference at P < 0.05 level. The same below.
    下载: 导出CSV

    表  3  3种灌木鲜叶和凋落物C、N、P含量

    Table  3.   C, N, P contents of fresh leaf and litter in three shrubs g/kg

    类型 Type物种 SpeciesC含量 C contentN含量 N contentP含量 P content
    鲜叶 Fresh leaf 坡柳 Dodonaea viscose 681.88 ± 18.68a 34.99 ± 2.44a 0.99 ± 0.04a
    马桑 Coriaria sinica 462.65 ± 3.89b 34.93 ± 1.41a 0.94 ± 0.09a
    苦刺 Sophora davidii 386.37 ± 8.12c 72.40 ± 1.95b 1.48 ± 0.04b
    凋落叶 Litter 坡柳 Dodonaea viscose 652.89 ± 16.62a 15.26 ± 1.20a 0.51 ± 0.01a
    马桑 Coriaria sinica 428.48 ± 6.14b 32.92 ± 1.14b 0.74 ± 0.03b
    苦刺 Sophora davidii 276.61 ± 5.55c 28.11 ± 1.50c 1.21 ± 0.05c
    下载: 导出CSV

    表  4  3种灌木鲜叶和凋落叶C∶N∶P化学计量特征

    Table  4.   C, N, P stoichiometry of fresh leaf and litter in three shrubs

    类型 Type物种 SpeciesC∶NN∶PC∶P
    鲜叶 Fresh leaf 坡柳 Dodonaea viscose 20.01 ± 1.57a 35.35 ± 1.69a 698.22 ± 40.38a
    马桑 Coriaria sinica 13.34 ± 0.46b 38.19 ± 2.21a 510.30 ± 35.54b
    苦刺 Sophora davidii 5.36 ± 0.19c 49.17 ± 1.94b 262.08 ± 7.41c
    凋落叶 Litter 坡柳 Dodonaea viscose 44.16 ± 3.76a 30.14 ± 2.59a 1 285.51 ± 43.54a
    马桑 Coriaria sinica 13.10 ± 0.54b 44.85 ± 1.82b 586.15 ± 27.24b
    苦刺 Sophora davidii 10.04 ± 0.76b 23.54 ± 1.74c 231.03 ± 11.20c
    下载: 导出CSV

    表  5  3种灌木鲜叶和凋落叶N、P重吸收率与C∶N∶P化学计量特征的相关性

    Table  5.   Correlations between N, P reabsorption efficiency (RE) of fresh leaf and litter and C∶N∶P stoichiometric characteristics in three shrubs

    物种
    Species
    重吸收率
    RE
    鲜叶 Fresh leaf凋落叶 Litter
    C∶NN∶PC∶P C∶NN∶PC∶P
    坡柳 Dodonaea viscoseN− 0.2870.657− 0.1930.718*− 0.741*0.050
    P0.429*0.1230.347− 0.1000.0520.260
    马桑 Coriaria sinicaN− 0.797*0.099− 0.5020.141− 0.719*− 0.660
    P− 0.697*− 0.714*− 0.969**− 0.09− 0.35− 0.430
    苦刺 Sophora davidiiN− 0.029− 0.090− 0.0720.859**− 0.851**0.307
    P0.486− 0.3500.161− 0.340.457− 0.06
    注:*表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。下同。Notes: * indicates significant difference (P < 0.05); ** indicates extremely significant difference (P < 0.01). The same below.
    下载: 导出CSV

    表  6  3种灌木土壤养分含量与叶片养分含量的相关性分析

    Table  6.   Correlations between soil nutrient content and leaf nutrient content in three shrubs

    养分含量 Nutrient content有机碳 SOC全氮 TN全磷 TP水解氮 AN有效磷 AP
    鲜叶 Fresh leaf SOC 0.232 − 0.088 − 0.213 − 0.098 0.145
    TN 0.092 − 0.33 − 0.029 0.579* 0.434
    TP − 0.023 − 0.295 − 0.136 0.388 0.305
    凋落叶 Litter SOC 0.159 − 0.067 − 0.14 − 0.237 − 0.044
    TN − 0.485 0.331 0.097 − 0.066 − 0.511
    TP − 0.045 − 0.146 0.045 0.45 0.213
    下载: 导出CSV
  • [1] 严思维, 陈爱民, 林勇明, 等. 干热河谷区不同林龄赤桉叶中养分含量和再吸收率的比较及其线性回归分析[J]. 植物资源与环境学报, 2017, 26(1):39−46. doi: 10.3969/j.issn.1674-7895.2017.01.05

    Yan S W, Chen A M, Lin Y M, et al. Comparisons on content and reabsorption rate of nutrients in leaf of Eucalyptus camaldulensis at different stand ages in arid-hot valley and their linear-regression analysis[J]. Journal of Plant Resources and Environment, 2017, 26(1): 39−46. doi: 10.3969/j.issn.1674-7895.2017.01.05
    [2] Santa R I, Leonardi S, Rapp M. Foliar nutrient dynamics and nutrient use efficiency in Castanea sativa coppice stands of southern Europe[J]. Forestry, 2001, 74: 1−10. doi: 10.1093/forestry/74.1.1
    [3] 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3):522−527.

    Deng H J, Chen A M, Yan S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages ofLeucaena leucocephala[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522−527.
    [4] 汤璐瑛. 木本植物叶片养分重吸收研究[D]. 北京: 北京大学, 2012.

    Tang L Y. Study on nutrient reabsorption of woody plant leaves[D]. Beijing: Peking University, 2012.
    [5] Pugnaire F I, Chapin III F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species[J]. Ecology, 1993, 74(1): 124−129. doi: 10.2307/1939507
    [6] Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands[J]. Oecologia, 1990, 84: 391−397. doi: 10.1007/BF00329765
    [7] 段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系[J]. 草业学报, 2016, 25(12):76−83. doi: 10.11686/cyxb2016235

    Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu[J]. Acta Prataculturae Sinica, 2016, 25(12): 76−83. doi: 10.11686/cyxb2016235
    [8] 张林, 阎恩荣, 魏海霞, 等. 藏东南色季拉山林线过渡带7种灌木植物的叶氮回收潜力[J]. 植物生态学报, 2014, 38(12):1325−1332. doi: 10.3724/SP.J.1258.2014.00127

    Zhang L, Yan E R, Wei H X, et al. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang[J]. Chinese Journal of Plant Ecology, 2014, 38(12): 1325−1332. doi: 10.3724/SP.J.1258.2014.00127
    [9] 闫帮国, 何光熊, 史亮涛, 等. 元谋干热河谷燥红土和变性土上植物叶片的元素含量及其重吸收效率[J]. 应用生态学报, 2016, 27(4):1039−1045.

    Yan B G, He G X, Shi L T, et al. Element concentration in leaves and nutrient resorption efficiency on dry-red soil and vertisols in dry and hot valley in Yuanmou[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1039−1045.
    [10] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2010, 3(6): 540−550.
    [11] 戚德辉, 温仲明, 王红霞, 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36(20):6420−6430.

    Qi D H, Wen Z M, Wang H X, et al. Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau[J]. Acta Ecologica Sinica, 2016, 36(20): 6420−6430.
    [12] 平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响[J]. 生态学报, 2014, 34(8):1965−1974.

    Ping C, Wang C K, Quan X K. Influence of environmental changes on stoichiometric traits of nitrogen and phosphorus for Larix gmelinii trees[J]. Acta Ecologica Sinica, 2014, 34(8): 1965−1974.
    [13] 李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J]. 生态学报, 2013, 33(18):5760−5767. doi: 10.5846/stxb201304300872

    Li C J, Lei J Q, Xu X W, et al. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18): 5760−5767. doi: 10.5846/stxb201304300872
    [14] 赵耀, 王百田, 李萌, 等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018, 24(3):518−524.

    Zhao Y, Wang B T, Li M, et al. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3): 518−524.
    [15] 佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征[J]. 草业学报, 2018, 27(4):123−130. doi: 10.11686/cyxb2017220

    She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan[J]. Acta Prataculturae Sinica, 2018, 27(4): 123−130. doi: 10.11686/cyxb2017220
    [16] 王宝荣, 曾全超, 安韶山, 等. 黄土高原子午岭林区两种天然次生林植物叶片−凋落叶−土壤生态化学计量特征[J]. 生态学报, 2017, 37(16):5461−5473.

    Wang B R, Zeng Q C, An S S, et al. C∶N∶P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling Region of the Loess Plateau[J]. Acta Ecologica Sinica, 2017, 37(16): 5461−5473.
    [17] Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390. doi: 10.1111/j.1461-0248.2010.01532.x
    [18] 闫帮国, 刘刚才, 樊博, 等. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8):807−815. doi: 10.17521/cjpe.2015.0077

    Yan B G, Liu G C, Fan B, et al. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 807−815. doi: 10.17521/cjpe.2015.0077
    [19] 刘旻霞, 朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报, 2013, 35(2):52−58. doi: 10.3969/j.issn.1673-5021.2013.02.010

    Liu M X, Zhu K J. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on alpine meadow in the eastern edge of Tibetan Plateau[J]. Chinese Journal of Grassland, 2013, 35(2): 52−58. doi: 10.3969/j.issn.1673-5021.2013.02.010
    [20] 罗玉珠, 曾太, 东伟, 等. 高寒嵩草草甸植物群落生态化学计量特征研究[J]. 中国草地学报, 2013, 35(3):92−96. doi: 10.3969/j.issn.1673-5021.2013.03.016

    Luo Y Z, Zeng T, Dong W, et al. Research of ecological stoichiometry of plant community in alpine kobresia meadow[J]. Chinese Journal of Grassland, 2013, 35(3): 92−96. doi: 10.3969/j.issn.1673-5021.2013.03.016
    [21] 金振洲, 欧晓昆, 周跃. 云南元谋干热河谷植被概况[J]. 植物生态学报, 1987, 11(4):308−317.

    Jin Z Z, Ou X K, Zhou Y. The general situation of natural vegetation in dry-hot river valley of Yuanmou, Yunnan Province[J]. Chinese Journal of Plant Ecology, 1987, 11(4): 308−317.
    [22] 吴建召, 陈爱民, 崔羽, 等. 干热河谷常见植物地表形态特征与泥沙拦截的关系[J]. 应用与环境生物学报, 2018, 24(6):1236−1246.

    Wu J Z, Chen A M, Cui Y, et al. Relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1236−1246.
    [23] 林勇明, 崔鹏, 王道杰, 等. 泥石流频发区人工新银合欢林群落特征[J]. 中国水土保持科学, 2009, 7(6):63−67. doi: 10.3969/j.issn.1672-3007.2009.06.011

    Lin Y M, Cui P, Wang D J, et al. Community characteristic of plantation of Leucaena leucocephala in the area with high-frequency debris flow[J]. Science of Soil and Water Conservation, 2009, 7(6): 63−67. doi: 10.3969/j.issn.1672-3007.2009.06.011
    [24] 崔鹏, 王道杰, 韦方强. 干热河谷生态修复模式及其效应: 以中国科学院东川泥石流观测研究站为例[J]. 中国水土保持科学, 2005, 3(3):60−64. doi: 10.3969/j.issn.1672-3007.2005.03.012

    Cui P, Wang D J, Wei F Q. Model and effect of ecological restoration of dry-hot valley: a case study of the CAS Dongchuan Debris Flow Observation Station[J]. Science of Soil and Water Conservation, 2005, 3(3): 60−64. doi: 10.3969/j.issn.1672-3007.2005.03.012
    [25] Drenovsky R E, Koehler C E, Skelly K, et al. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees[J]. Oecologia, 2013, 171(1): 39−50. doi: 10.1007/s00442-012-2396-7
    [26] 郭超, 蔡家艳, 金奇, 等. 鄱阳湖湿地优势植物氮磷再吸收[J]. 生态学杂志, 2016, 35(3):692−697.

    Guo C, Cai J Y, Jin Q, et al. Nitrogen and phosphorus resorption of six dominant plant species in Poyang Lake wetlands[J]. Chinese Journal of Ecology, 2016, 35(3): 692−697.
    [27] 罗绪强, 张桂玲, 杜雪莲, 等. 茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征[J]. 生态环境学报, 2014, 23(7):1121−1129. doi: 10.3969/j.issn.1674-5906.2014.07.005

    Luo X Q, Zhang G L, Du X L, et al. Characteristics of element contents and ecological stoichiometry in leaves of common calcicole species in Maolan Karst Forest[J]. Ecology and Environmental Sciences, 2014, 23(7): 1121−1129. doi: 10.3969/j.issn.1674-5906.2014.07.005
    [28] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
    [29] Bowman W D, Bahn L, Damm M. Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability[J]. Arctic, Antarctic, and Alpine Research, 2003, 35(2): 144−149. doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
    [30] 朱军涛, 李向义, 张希明, 等. 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配[J]. 植物生态学报, 2010, 34(9):1025−1032. doi: 10.3773/j.issn.1005-264x.2010.09.003

    Zhu J T, Li X Y, Zhang X M, et al. Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1025−1032. doi: 10.3773/j.issn.1005-264x.2010.09.003
    [31] Leonardus V, Stefano M, Amilcare P, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82: 205−220. doi: 10.1890/11-0416.1
    [32] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1):52−62. doi: 10.17521/cjpe.2015.0006

    Liu W D, Su J R, Li S F, et al. Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 52−62. doi: 10.17521/cjpe.2015.0006
    [33] 李志安, 林永标, 彭少麟. 华南人工林凋落叶养分及其转移[J]. 应用生态学报, 2000, 11(3):321−326. doi: 10.3321/j.issn:1001-9332.2000.03.001

    Li Z A, Lin Y B, Peng S L. Nutrient content in litterfall and its translocation in plantation forests in south China[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 321−326. doi: 10.3321/j.issn:1001-9332.2000.03.001
    [34] 王冬梅, 杨惠敏. 4种牧草不同生长期C、N生态化学计量特征[J]. 草业科学, 2011, 28(6):921−925.

    Wang D M, Yang H M. Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses[J]. Pratacultural Science, 2011, 28(6): 921−925.
    [35] Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. The Journal of Ecology, 1996, 84(4): 597−608. doi: 10.2307/2261481
    [36] 刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12):4071−4080.

    Liu H W, Liu W D, Wang W, et al. Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing[J]. Acta Ecologica Sinica, 2015, 35(12): 4071−4080.
    [37] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J]. 植物生态学报, 2010, 34(1):48−57.

    Yan E R, Wang X H, Guo M, et al. C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57.
    [38] Gusewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [39] 赵琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展[J]. 生态学杂志, 2009, 28(1):122−128.

    Zhao Q, Zeng D H. Diagnosis methods of N and P limitation to tree growth: a review[J]. Chinese Journal of Ecology, 2009, 28(1): 122−128.
    [40] Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models[J]. Ecology, 1994, 75: 418−429. doi: 10.2307/1939545
    [41] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 1−67. doi: 10.1016/S0065-2504(08)60016-1
    [42] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  1201
  • HTML全文浏览量:  514
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-06-05
  • 网络出版日期:  2019-12-30
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回