Simulating study on tree recruitment of Quercus mongolica based on zero-inflated model and mixed effect model methods
-
摘要:目的林木的进界是确保森林长期维持的基本条件,而进界模型能够预测森林的发展,是量化森林生态系统未来健康和生产力的基础。方法以吉林省1995年设立的295块蒙古栎固定样地数据为例,构建基于林分因子、立地因子及气象因子的蒙古栎林林木进界模型。模型的基本形式包括泊松分布和负二项分布两种离散形式。考虑到样地中存在大量零值的问题,在这些基础模型上考虑加入零膨胀模型。为了解决模型存在的嵌套和纵向数据问题,在构建模型时把样地的随机效应考虑进去。最后利用验证数据来验证。结果林分算数平均直径和林分公顷株数是影响林木进界概率和数量最重要的影响因子,并且均与林木进界概率和数量呈反比。立地和气象因子中的各项因子对进界均没有产生明显影响。负二项分布模型由于考虑了数据过度离散问题,模拟精度要高于泊松分布;在考虑样地的随机效应后,除了标准负二项分布模型外所有模型都明显提高了模型的模拟精度;同时考虑随机效应和零膨胀的负二项分布模型,其模型的模拟效果最好,验证结果也支持此结论。结论为了确保进界的发生,在进行森林经营时,确定合理的初植和经营密度至关重要。Abstract:ObjectiveTree recruitment is the basis to ensure forest long-term maintenance, and the recruitment model can predict the development of forest and quantify the future health and productivity of forest ecosystem.MethodAbout 295 permanent sample plots were established across the natural range of Quercus mongolica in the Jilin Province of northeastern China in 1995. Stand factor, site factor, and climate factor were selected to construct recruitment model of Quercus mongolica. The basic forms of model include Poisson distribution and negative binomial distribution. The zero-inflated model was added to these basic models because of the existence of a large number of zero values in the sample plots. The sample plot’s random effect was taken into account in order to solve the problem of nested and longitudinal data in the model. Finally, the validation data were used to verify the fitness of model.ResultStand arithmetic mean diameter and the number of trees per hectare were the most important factors, and both were negatively correlated with the probability and quantity of tree recruitment. Both site and climate factors had no significant effect on tree recruitment. The accuracy of the negative binomial distribution model was higher than that of the Poisson distribution due to the over-dispersion of the data. After considering sample plot’s random effect, all the models obviously improved the simulation accuracy of the model except for the standard negative binomial distribution model. The simulation effect of the negative binomial distribution model was the best when considering random effect and zero-inflated model.ConclusionIn order to ensure the occurrence of tree recruitment, it is very important to determine science management and initial planting density in forest management.
-
Keywords:
- tree recruitment /
- zero-inflated model /
- mixed effect /
- Quercus mongolica /
- stand factor
-
近年来,木材被广泛应用于室外领域,如木结构建筑、木栈道、木围栏等。然而在室外应用时,木材会不可避免地受到自然环境因素的影响,产生腐朽等生物劣化现象[1],不仅缩短了其使用寿命,还会造成安全隐患。目前,户外木材主要采用南方松(Pinus spp.)和欧洲赤松(Pinus sylvestris)等松木为原料。并且有研究表明:相比于采绒革盖菌(Coriolus versicolor)等白腐菌,松木等针叶材更易受密黏褶菌(Gloeophyllum trabeum)和绵腐卧孔菌(Poria vaporaria)等褐腐菌侵害,且褐腐菌能够在较短时间内快速降解木材,在质量损失较低的情况下导致木材力学强度急剧下降[2],严重影响其使用价值。因此,阐明木材在褐腐初期的微观结构和化学成分变化对于木材防腐保护具有重要意义。
在褐腐过程中,轴向排列的细胞有利于真菌沿木材的顺纹方向蔓延生长,但实际应用中,木材通常要经过封端处理以防止端裂、腐朽等劣化发生。而对于花纹美观且直接暴露的弦切面与径切面,菌丝进入木材内部的通道主要为射线薄壁组织、细胞壁纹孔等[3-5]。随着褐腐的进行,木材中的纤维素和半纤维素被陆续降解,而木质素基本不被破坏[6],因此残留的木质素使得木材在宏观上通常呈现出红褐色[7]。研究表明:在褐腐过程中半纤维素首先发生降解,其降解速度比纤维素更快[8-9]。此外,腐朽材中纤维素的结晶度也明显降低,有研究显示:褐腐15周后的马尾松(Pinus massoniana)相对结晶度下降了60.05%[10],这表明结晶纤维素在褐腐过程中遭到破坏,原本排列有序的分子链被打乱,分子间作用力减小,进而导致分子间间隙增加。褐腐初期对于木材性能的影响非常显著。Witomski等[11]利用粉孢革菌(Coniophora puteana)对欧洲赤松进行腐朽试验,发现褐腐初期纤维素的聚合度由6 000降至1 800,而此时的质量损失仅为7%。尽管褐腐初期木材的质量损失较低(通常不超过10%[12]),但会使木材力学强度急剧下降[13]。
综上所示,以往研究的褐腐周期一般较长(12周),且大多关注腐朽带来的最终结果。对腐朽各阶段,尤其是褐腐初期,木材组分及宏、微观变化的研究并不深入。因此,本研究对户外常用的南方松边材进行不同时长的褐腐处理,重点关注腐朽初期木材的各项变化,揭示褐腐菌进入木材内部的通道,并阐明其对木材微观结构和化学成分变化的影响,为深入探究木材褐腐机理奠定理论基础。
1. 材料与方法
1.1 材 料
南方松边材,试件尺寸为10 mm (轴向) × 20 mm (弦向) × 20 mm (径向);饲木选用南方松边材,尺寸为3 mm(轴向) × 20 mm (弦向) × 20 mm(径向)。褐腐菌采用密黏褶菌,购自中国普通微生物菌种保藏管理中心。
1.2 褐腐试验
参照GB/T 13942.1—2009 《木材耐久性能第一部分:天然耐腐性实验室试验方法》[14]进行土壤木块法测试,腐朽时长分别为0、10、20、40 d。试件在腐朽过程中的质量损失率(L)按公式(1)计算:
L=m0−m1m0×100% (1) 式中:L为试件质量损失率,%;m0为试件腐朽前的绝干质量,g;m1为试件腐朽后的绝干质量,g。
1.3 颜色测定
利用色差仪(三恩施NH310,中国)对木材腐朽前后弦切面的颜色进行表征,测得CIE色度系统中的参数L*、a*和b*。L*为明度值(白色为100,黑色为0),a*为红绿色品指数(a*值越大,颜色越偏红,反之偏绿),b*为黄蓝色品指数(b*值越大,颜色越偏黄,反之偏蓝)。每块试件选取5个点位进行测试,并计算平均值。腐朽过程中的总色差(ΔE)按式(2)计算:
ΔE=√ΔL∗2+Δa∗2+Δb∗2 (2) 式中:ΔE为腐朽前后木材的总色差;ΔL*、Δa*、Δb*分别为不同腐朽时间后腐朽材与健康材的L*、a*、b*差值。
1.4 化学成分测定
试件的苯−乙醇抽提物、酸不溶木质素、综纤维素、纤维素含量,分别根据GB/T 2677.6—94《造纸原料有机溶剂抽出物含量的测定》[15]、ASTM D 1106—96 “Standard Test Method for Acid-Insoluble Lignin in Wood”[16]、Browning(1967)的综纤维素改进测定法[17]、硝酸−乙醇纤维素测定法[18]进行测试。半纤维素含量由综纤维素与纤维素含量之差得到。
1.5 微观形貌表征
收集不同腐朽时长的试件,并在其弦切面与横切面上分别制取5 mm × 5 mm薄片,利用场发射扫描电子显微镜(FE-SEM,日立SU8010,日本)进行观察。同时,使用ImageJ软件测量木材在腐朽过程中细胞壁厚度的变化。
1.6 红外光谱表征
利用傅里叶红外光谱仪(FTIR,Nicolet IS 10,美国),通过KBr法测定试件的红外光谱,扫描范围为400 ~ 4 000 cm−1,扫描次数为64次,分辨率为4 cm−1。
1.7 相对结晶度测定
利用X射线衍射仪(XRD,Bruker D8 ADVANCE,德国)、Jade 6.0软件对试件进行测试与分析。扫描角度范围为5° ~ 40°(2θ),扫描速率为2.0°/min,步长0.02°。
根据Scherrer公式计算微晶尺寸[19]:
Cs=Kλβcosθ (3) 式中:Cs为微晶尺寸,Å;K为校正系数,取0.90;λ为X射线衍射波长,取1.54 Å;β为衍射峰的半高宽,°;θ为布拉格角,°。
根据Segal公式计算相对结晶度[20]:
Cr=I200−IamI200×100% (4) 式中:Cr为相对结晶度,%;I200为(200)晶格衍射角的总强度,2θ = 22.4°,即结晶区的衍射强度;Iam为(110)与(200)晶格之间最小强度,即非结晶区衍射的散射强度,2θ = 18.4°。
2. 结果与讨论
2.1 宏观颜色变化分析
由图1可知:经褐腐菌侵染后,木材的表面(弦切面)颜色发生明显变化,从原来的偏黄色变为灰褐色。随着腐朽的进行,木材表面的ΔL*值持续降低,表明木材颜色变暗(图1b)。同时,Δa*与Δb*值总体呈增加趋势,表明腐朽后木材表面更偏向红褐色。随着腐朽程度的深入,木材中的综纤维素被大量脱除,残留的木质素使木材呈现为红褐色,色差值进一步增大。
2.2 微观形貌变化分析
图2和图3分别为南方松边材在腐朽不同时长后的弦切面和横切面电镜照片。在此过程中,木材的质量变化和细胞壁厚度变化情况如图4所示。由图2可知:未经腐朽的试件显示出较为光滑平整的弦切面(图2a),然而其横切面表面(图3a)还残留着一些破碎的木材组织,这主要由试件的锯切加工过程导致。腐朽10 d后,这些残留的木材组织被逐步降解,在横切面上裸露出木材的细胞腔与细胞壁(图3b)。同时,对于径向排列的射线薄壁细胞,可以观察到其内部菌丝已经穿透细胞壁(矩形框线内的截取图像),并横穿细胞腔,有延伸到下一个细胞的趋势。此外,在弦切面上(图2b)可以发现,木材表面被菌丝附着,同时细胞壁上部分具缘纹孔的纹孔膜被降解并发生破裂(矩形框内的放大图像),菌丝穿透纹孔进入木材细胞腔。研究表明,纹孔膜的主要成分为半纤维素与少量纤维素[21],为褐腐菌降解木材的主要成分。褐腐10 d后,木材内部残留的菌丝较少,结合图4可知,此时的木材质量损失率较低,仅为2.77%。腐朽20 d后,木材的质量损失率增大为16.60%,表明褐腐菌的生长迅速,对营养物质的代谢更剧烈,加快了对木材的降解进程。此时,在木材的管胞内(图2c、图3c)观察到大量交叉缠绕的菌丝,部分菌丝正从纹孔处进入细胞腔(图2c箭头位置),并在细胞腔内蔓延生长,表明褐腐菌逐步完成初期定植。此外,从横切面上可以观察到,木材的S2层被严重降解,细胞壁厚度损失率高达18.24%(图4b)。随着腐朽天数的延长,菌丝的数量不断增加,木材的质量和细胞壁厚度进一步降低。腐朽40 d后,木材的弦切面基本被菌丝覆盖(图2d),而横切面上的木材细胞壁也不再完整,由于纤维素的降解,细胞壁结构逐渐失去支撑作用,出现溃烂瓦解的现象(图3d)。此时,木材的质量损失率和细胞壁厚度损失率分别为20.35%和20.86%(图4),相比于之前,木材的降解速度有所减缓,据此推测腐朽20 d时菌丝已基本完成初期定植。
2.3 化学成分变化分析
腐朽过程中,木材中各组分的变化如表1所示,其对应的FTIR谱图如图5所示。由图5可知:相比于健康材,腐朽10 d后,木材中各特征峰的强度变化较小,质量损失率较低(仅为2.77%),表明褐腐初期木材的降解速度缓慢。由表1可知:此时的质量损失主要来源于抽提物和半纤维素含量的减少,两者的质量损失率分别为47.55%和49.19%。木材中抽提物的绝对含量很少,且成分复杂,除能够被腐朽菌利用外,部分还具有抑菌作用[22],因此其在褐腐初期的变化还有待进一步探讨。由此推测,在腐朽初期,褐腐菌主要降解木材中的半纤维素。随着腐朽时间的延长,木材中综纤维素相对质量分数不断降低,而木质素的相对质量分数有所增加。褐腐20 d时,腐朽材在1 736 cm−1(半纤维素中的乙酰基和羰基的C=O伸缩振动)、1 372 cm−1(纤维素中的C—H变形振动)、897 cm−1(纤维素中的C—H变形振动)和810 cm−1(半纤维素中的葡甘露聚糖)[23-26]处的峰强开始明显降低,表明木材中的碳水化合物发生了严重的降解。碳源作为营养物质被真菌代谢,以及大分子解聚导致3 342 cm−1(纤维素中的O—H伸缩振动)和2 860 cm−1(对称CH2的伸缩振动)[27]处的峰强增加。此时,半纤维素的质量损失率高达85.88%,而纤维素质量分数仅下降了3.54%。相反,木质素特征峰的强度显著增加,如1 510 cm−1(芳环的C=C骨架振动)、1 225 cm−1(C—O伸缩振动)处[23-26],此时木质素相对质量分数增加了16.07%。
表 1 不同腐朽时间后木材的质量损失及化学成分变化Table 1. Mass loss and chemical composition of wood samples at different decay times腐朽时间
Decay
time/d质量损失率
Mass loss
rate/%抽提物质量分数
Extract mass
fraction/%木质素质量分数
Lignin mass
fraction/%综纤维素质量分数
Holocellulose mass
fraction/%纤维素质量分数
Cellulose mass
fraction/%半纤维素质量分数
Hemicellulose mass
fraction/%0 0 3.26 28.07 68.67 50.05 18.62 10 2.77 1.71 28.11 60.12 50.66 9.46 20 16.60 2.77 31.29 50.91 48.28 2.63 40 20.35 3.04 32.58 48.91 46.68 2.23 综上可知,腐朽10 ~ 20 d内是褐腐菌定植木材的重要阶段,此时木材的质量急剧降低,其中的半纤维素和纤维素被迅速降解,细胞壁和纹孔的结构发生破坏,为褐腐菌深入木材进行后续降解奠定了基础。
2.4 相对结晶度分析
由化学成分变化分析可知,褐腐初期半纤维素的降解优先于纤维素,且降解程度更加剧烈。尽管纤维素在这一过程中的损失较少,但其结构也发生了不同程度的变化。本研究对腐朽不同时长后,木材中纤维素的晶格间距d200、微晶尺寸Cs、相对结晶度Cr变化进行了表征,结果如表2所示。总体而言,各阶段的腐朽材的(200)晶面均位于22.4°附近(介于22.30° ~ 22.45°之间),说明腐朽过程对纤维素结晶区的影响相对较小。相比于健康材,腐朽材的晶格间距减小,这主要是因为纤维素结晶区外部松散的非晶区域或不完全结晶的物质被脱除,导致剩余的结晶区更加有序地排列[28]。褐腐20 d后,由于半纤维素含量急剧降低,结晶区在氢键作用下紧密靠拢,因而此时晶格间距d200最小(3.962 Å),相对结晶度Cr从原来的38.63%增加到47.02%。结晶度的增加及晶格间距的减小将阻碍褐腐菌的代谢产物渗透进入纤维素结晶区,因此20 d后木材的腐朽降解速率变缓。然而,随着半纤维素的大量脱除,木材中的孔隙结构增多,褐腐菌将以酶降解的方式进一步对木材细胞壁进行破坏[29]。因此,腐朽40 d后,褐腐菌对半纤维素的降解速度减缓,逐步开始降解纤维素,因而导致其相对结晶度有所降低(降低为44.21%),晶格间距逐渐变大(3.972 Å)。此外,在腐朽过程中,由于微纤丝的不断聚集,使得其微晶尺寸逐渐增加。
表 2 不同腐朽时间后木材的微晶尺寸和相对结晶度变化Table 2. Changes in crystallite sizes and relative crystallinity of wood samples at different decay times腐朽时间
Decay
time/d2θ/(°) 晶格间距
Lattice distance
(d200)/Å微晶尺寸
Crystallite size
(Cs)/Å相对结晶度
Relative crystallinity
(Cr)/%0 22.31 3.982 75.29 38.63 10 22.33 3.979 78.97 39.61 20 22.42 3.962 80.79 47.02 40 22.37 3.972 81.93 44.21 3. 结 论
本研究主要聚焦于褐腐初期阶段,通过表征南方松边材内部的化学成分变化及宏观、微观结构变化等,阐明褐腐菌进入木材内部的路径及初步降解进程,得出以下结论:
(1)木材腐朽后表面颜色有偏红褐色的趋势。
(2)菌丝通过横向排列的射线薄壁细胞和轴向排列的管胞进入木材,并穿透细胞壁上的纹孔膜,从而抵达木材内部的细胞腔,并于20 d时基本完成初期定植;此时木材的质量损失速率增速最大,同时细胞壁S2层发生严重降解,细胞壁厚度损失率达到18.24%。
(3)腐朽初期,木材细胞壁中的半纤维素最先发生降解,木质素的相对含量增加。对于褐腐初期尚未发生显著降解的纤维素而言,其结晶结构发生变化;褐腐20 d时,纤维素的晶格间距最小,相对结晶度最大,可能会阻碍褐腐菌代谢产物对纤维素的分解。
-
表 1 蒙古栎样地各因子统计表
Table 1 Statistical table of factors in Quercus mongolica sample plots
影响进界的因子
Factor affecting recruitment调查年份
Survey year指标
Index平均值 (标准差)
Mean (standard deviation)最大值
Max.最小值
Min.林分和单木因子
Stand and single wood factor1999 胸径 DBH (d)/cm 12.7 (7.5) 82.7 5 林分平均直径 Average stand diameter (Dg)/cm 15.3 (4.2) 30.9 6.3 公顷断面积/(m2·hm− 2) Basal area/(m2·ha− 1) 22.9 (9.4) 57.7 3.0 公顷株数/(株·hm− 2) Stand density/(tree·ha− 1) 1 343 (621) 3 317 250 林分和单木因子
Stand and single wood factor2004 胸径 DBH (d)/cm 12.9 (7.6) 83.6 5 林分平均直径 Average stand diameter (Dg)/cm 15.7 (4.1) 31.3 6.3 公顷断面积/(m2·hm− 2) Basal area/(m2·ha− 1) 24.1 (8.8) 59.7 3.8 公顷株数/(株·hm− 2) Stand density/(tree·ha− 1) 1 370 (618) 3 250 350 林分和单木因子
Stand and single wood factor2009 胸径 DBH (d)/cm 13.5 (8.0) 84.9 5 林分平均直径 Average stand diameter (Dg)/cm 16.5 (4.1) 32.6 6.6 公顷断面积/(m2·hm− 2) Basal area/(m2·ha− 1) 26.2 (8.5) 61.2 7.3 公顷株数/(株·hm− 2) Stand density/(tree·ha− 1) 1 347 (584) 3 550 367 立地因子
Site factor海拔 Elevation/m 596 (196) 1 280 100 坡度 Slope degree/(°) 21 (8.5) 45 0 坡向 Slope aspect 按方位角从0º ~ 360º,共分成9个坡向,每个坡向大概45º,用数字1 ~ 9表示
According to the azimuth angle from 0−360 degrees, it is divided into 9 slope directions, each of which is about 45 degrees, represented by No. 1−9表 2 主要气象变量统计表
Table 2 Satistical table of main climate variables
气象因子
Climate factor最大值
Max.最小值
Min.平均值 (标准差)
Mean (standard deviation)年份
Year年平均温度
Mean annual temperature (MAT)/℃6.56 1.8 4.2 (0.8) 1999—2004 6.96 2.3 4.6 (0.8) 2004—2009 6 1.3 3.7 (0.8) 2009—2014 最暖月平均气温
Mean temperature of the warmest month (MWMT)/℃23.58 18.6 21.1 (0.9) 1999—2004 22.68 18.4 20.8 (0.8) 2004—2009 22.78 18.3 20.8 (0.8) 2009—2014 最冷月平均气温
Mean temperature of the coldest month (MCMT)/℃− 11.5 − 18.4 − 15.7 (1.1) 1999—2004 − 10.1 − 16.9 − 14.4 (1.1) 2004—2009 − 12.1 − 19 − 16.5 (1.1) 2009—2014 年平均降水量
Mean annual precipitation (MAP)/mm920.6 498.6 646.3 (75.3) 1999—2004 1 038.8 475.2 640.9 (113.3) 2004—2009 1 139.2 518.2 705.3 (126.4) 2009—2014 年平均夏季 (5月至9月)降水量
Mean annual summer (from May to September) precipitation (MSP)/mm731.4 399.2 514.9 (53.7) 1999—2004 827.6 379.2 512.9 (88.9) 2004—2009 884.2 389.8 539.4 (99.0) 2009—2014 无霜期天数
Number of frost-free days (NFFD)196.8 156.6 176.6 (7.9) 1999—2004 200.2 158.6 178.9 (8.1) 2004—2009 194.6 154.8 174.0 (7.7) 2009—2014 上一年8月至当年7月的降雪量
Snowfall between August in previous year and July in current year (PAS)/ mm115.8 35.2 54.9 (16.3) 1999—2004 123.2 35 60.9 (14.8) 2004—2009 154.6 52.4 80.5 (19.7) 2009—2014 表 3 林分进界模型模拟结果
Table 3 Simulation results of stand-level recruitment models
参数
Parameter基础模型 Basic model M1 M2 M3 M4 不考虑随机效应
No random effect模型的零部分
Zero component of the modelα0 5.730 8 (0.990 3)*** 5.726 6 (1.000 1)*** α1 − 0.203 8 (0.046 4)*** − 0.202 4 (0.046 8)*** α2 − 1.110 0 (0.265 1)*** − 1.110 3 (0.267 7)*** 计数的部分
Positive count component of the modelβ0 9.713 9 (0.026 7)*** 9.237 8 (0.027 6)*** 8.446 8 (0.469 7)*** 8.065 1 (0.295 0)*** β1 − 0.313 0 (0.001 7)*** − 0.274 4 (0.001 7)*** − 0.214 1 (0.021 4)*** − 0.187 4 (0.013 8)*** β2 − 0.756 0 (0.008 3)*** − 0.621 9 (0.008 5)*** − 0.771 5 (0.149 9)*** − 0.583 3 (0.095 2)*** k 2.437 2 0.753 2 AIC 55 314 39 871 4 877.6 4 671.8 BIC 55 327 39 896 4 894.2 4 700.9 − 2logL 55 308 39 859 4 869.6 4 657.8 参数
Parameter考虑混合效应模型 With mixed effect model M5 M6 M7 M8 考虑随机效应部分
With random effect模型的零部分
Zero component of the modelα0 5.729 5 (0.990 3)*** 5.716 6 (0.993 3)*** α1 − 0.203 8 (0.046 4)*** − 0.202 6 (0.046 5)*** α2 − 1.109 8 (0.265 2)*** − 1.108 0 (0.265 9)*** 计数的部分
Positive count component of the modelβ0 10.453 3 (0.150 7)*** 9.587 2 (0.113 4)*** 8.995 2 (0.552 7)*** 8.263 9 (0.354 6)*** β1 − 0.391 3 (0.006 4)*** − 0.259 9 (0.006 3)*** − 0.240 6 (0.026 7)*** − 0.202 0 (0.017 8)*** β2 − 0.992 8 (0.017 5)*** − 1.220 0 (0.020 8)*** − 0.926 2 (0.169 5)*** − 0.687 1 (0.107 8)*** k 2.292 2 0.525 7 AIC 21 504 15 054 4 882.4 4 645.0 BIC 21 518 15 078 4 899.8 4 672.7 − 2logL 21 496 15 040 4 872.4 4 629.0 随机效应方差协方差矩阵 Covariance matrix of random effect variance 2.976 0 0.673 0 0.000 1 0.254 7 注:k是负二项分布的待估参数;M1为标准泊松分布进界模型,即公式 (1);M2为零膨胀泊松分布进界模型,即公式 (2);M3为标准负二项分布进界模型,即公式 (3);M4为零膨胀负二项分布进界模型,即公式 (4);M5为考虑随机效应的标准泊松分布进界模型;M6为考虑随机效应的零膨胀泊松分布进界模型;M7为考虑随机效应的标准负二项分布进界模型;M8为考虑随机效应的零膨胀负二项分布进界模型。表中括号内的值为标准差;*为0.01 < P < 0.05,**为0.001 < P < 0.01,***为P < 0.001;α0和β0为截距参数,α1和β1为林分算数平均直径参数值,α2和β2为林分公顷株数参数值。Notes: k is a parameter to be estimated in negative binomial distribution; M1 is Poisson distribution recruitment model, i.e. formula (1); M2 is zero-inflated Poisson distribution recruitment model, i.e. formula (2); M3 is negative binomial distribution recruitment model, i.e. formula (3); M4 is zero-inflated negative binomial distribution recruitment model, i.e. formula (4); M5 is Poisson distribution recruitment model based on mixed effect model; M6 is zero-inflated Poisson distribution recruitment model based on mixed effect model; M7 is negative binomial distribution recruitment model based on mixed effect model; M8 is zero-inflated negative binomial distribution recruitment model based on mixed effect model. Values in brackets are standard deviation; * is 0.01 < P < 0.05,** is 0.001 < P < 0.01,*** is P < 0.001; α0 and β0 are intercept parameters, α1 and β1 are stand arithmetic average diameter parameters, α2 and β2 are stand number of per hectare parameters. 表 4 利用LRT指标对模型进行比较的结果
Table 4 Comparing results of the model based on LRT index
模型 Model LRT值 LRT value P 模型 Model LRT 值 LRT value P 模型 Model LRT值 LRT value P M1/M2 15 449 < 0.000 1 M1/M5 33 812 < 0.000 1 M3/M4 211.8 < 0.000 1 M2/M6 24 819 < 0.000 1 M3/M7 2.8 > 0.05 M4/M8 28.8 < 0.000 1 表 5 模型验证结果
Table 5 Validation results of models
评价指标
Evaluating index不考虑随机效应 No random effect 考虑随机效应 With random effect M1 M2 M3 M4 M5 M6 M7 M8 R2 0.40 0.55 0.50 0.65 0.75 0.91 0.54 0.84 RMSE/株 RMSE/tree 163.8 146.2 158.7 139.2 125.3 161.8 153.8 116.5 |ˉE|/株 |ˉE|/tree 98.8 95.9 83.9 81.7 65 70.2 85 61.7 -
[1] Kangas A, Maltamo M. Forest inventory[M]. Dordrecht: Springer, 2006.
[2] Li R, Weiskittel A R, Kershaw J A, Jr. Modeling annualized occurrence, frequency, and composition of ingrowth using mixed-effects zero-inflated models and permanent plots in the Acadian forest region of North America[J]. Canadian Journal of Forest Research, 2011, 41: 2077−2089. doi: 10.1139/x11-117
[3] Gauthier M M, Guillemette F, Bedard S. On the relationship between saplings and ingrowth in northern hardwood stands[J]. Forest Ecology and Management, 2015, 358: 261−271. doi: 10.1016/j.foreco.2015.09.020
[4] Russell M B, Westfall J A, Woodall C W. Modeling browse impacts on sapling and tree recruitment across forests in the northern United States[J]. Canadian Journal of Forest Research, 2017, 47: 1474−1481. doi: 10.1139/cjfr-2017-0155
[5] Shifley S R, Ek A R, Burk T E. A generalized methodology for estimating forest ingrowth at multiple threshold diameters[J]. Forest Science, 1993, 39: 776−798.
[6] Zhang X Q, Lei Y C, Cai D X, et al. Predicting tree recruitment with negative binomial mixture models[J]. Forest Ecology and Management, 2012, 270: 209−215. doi: 10.1016/j.foreco.2012.01.028
[7] Weiskittel A R, Hann D W, Kershaw J A, et al. Forest growth and yield modeling[M]. New Jersey: Wiley-Blackwell, 2011.
[8] Vanclay J K. Modelling regeneration and recruitment in a tropical rain forest[J]. Canadian Journal of Forest Research, 1992, 22(9): 1235−1248. doi: 10.1139/x92-165
[9] Trasobares A, Pukkala T, Miina J. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, northeast Spain[J]. Annual of Forest Science, 2004, 61: 9−24. doi: 10.1051/forest:2003080
[10] Liang J, Buongiorno J, Monserud R A. Growth and yield of all-aged Douglas fir western hemlock forest stands: a matrix model with stand diversity effects[J]. Canadian Journal of Forest Research, 2005, 35: 2368−2381. doi: 10.1139/x05-137
[11] Hao Q, Meng F, Zhou Y, et al. A transition matrix growth model for uneven-aged mixed-species forests in the Changbai Mountains, northeastern China[J]. New Forest, 2005, 29: 221−231. doi: 10.1007/s11056-005-5657-z
[12] Xiang W, Lei X D, Zhang X Q. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China[J]. Forest Ecology and Management, 2016, 382: 100−109. doi: 10.1016/j.foreco.2016.09.050
[13] Adame P, del Rìo M, Cañellas I. Ingrowth model for pyrenean oak stands in north-western Spain using continuous forest inventory data[J]. European Journal of Forest Research, 2010, 129: 669−678. doi: 10.1007/s10342-010-0368-1
[14] Lexerød N L. Recruitment models for different tree species in Norway[J]. Forest Ecology and Management, 2005, 206: 91−108. doi: 10.1016/j.foreco.2004.11.001
[15] Bravo F, Pando V, Ordóñez C, et al. Modelling ingrowth in mediterranean pine forests: a case study from scots pine (Pinus sylvestris L.) and mediterranean maritime pine (Pinus pinaster Ait.) stands in Spain[J]. Forest System, 2008, 17: 250−260.
[16] Klopcic M, Poljanec A, Boncina A. Modelling natural recruitment of European beech (Fagus sylvatica L.)[J]. Forest Ecology and Management, 2012, 284: 142−151. doi: 10.1016/j.foreco.2012.07.049
[17] Yang Y, Huang S. Two-stage ingrowth models for four major tree species in Alberta[J]. European Journal of Forest Research, 2015, 134: 991−1004. doi: 10.1007/s10342-015-0904-0
[18] Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing[J]. Technometrics, 1992, 34: 1−14. doi: 10.2307/1269547
[19] Hall D B. Zero-inflated Poisson and binomial regression with random effects: a case study[J]. Biometrics, 2000, 56: 1030−1039. doi: 10.1111/j.0006-341X.2000.01030.x
[20] Ripley T, Scrimgeour G, Boyce M S. Bull trout (Salvelinus confluentus) occurrence and abundance influenced by cumulative industrial developments in a Canadian boreal forest watershed[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62: 2431−2442. doi: 10.1139/f05-150
[21] Cunningham R B, Lindenmayer D B. Modeling count data of rare species: some statistical issues[J]. Ecology, 2005, 86: 1135−1142. doi: 10.1890/04-0589
[22] Fortin M, DeBlois J. Modeling tree recruitment with zero-inflated models: the example of hardwood stands in southern Québec, Canada[J]. Forest Science, 2007, 53(4): 529−539.
[23] Zell J, Rohner B, Thürig E, et al. Modeling ingrowth for empirical forest prediction systems[J]. Forest Ecology and Management, 2019, 433: 771−779. doi: 10.1016/j.foreco.2018.11.052
[24] Fang Z, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47: 287−300.
[25] Wang Y, Lemay V M, Baker T G. Modeling and prediction of dominant height and site index of Eucalyptus globules plantations using a nonlinear mixed-effects model approach[J]. Canadian Journal of Forest Research, 2007, 37(8): 1390−1403. doi: 10.1139/X06-282
[26] Zhao D, Wilson M, Borders B E. Modeling response curves and testing treatment effects in repeated measures experiments: a multilevel nonlinear mixed-effects models approach[J]. Canadian Journal of Forest Research, 2005, 35(1): 122−132. doi: 10.1139/x04-163
[27] Yoshida T, Noguchi M, Akibayashi Y, et al. Twenty years of community dynamics in a mixed conifer-broad-leaved forest under a selection system in northern Japan[J]. Canadian Journal of Forest Research, 2006, 36: 1363−1375. doi: 10.1139/x06-041
[28] Alves L F, Vieira S A, Scaranello M A, et al. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil)[J]. Forest Ecology and Management, 2010, 260: 679−691. doi: 10.1016/j.foreco.2010.05.023
[29] Batllori E, Camarero J J, Ninot J M, et al. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming[J]. Global Ecology and Biogeography, 2009, 18(4): 460−472. doi: 10.1111/j.1466-8238.2009.00464.x
[30] He Z B, Zhao W Z, Zhang L J, et al. Response of tree recruitment to climatic variability in the alpine treeline ecotone of the Qilian Mountains, northwestern China[J]. Forest Science, 2013, 59(1): 118−126. doi: 10.5849/forsci.11-044
[31] Wang T, Wang G, Innes J L, et al. Climate AP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448−458. doi: 10.15302/J-FASE-2017172
[32] Zuur A F, Ieno E N, Walker N J, et al. Mixed effects models and extensions in ecology with R[M/OL]. [2019−01−10]. https://link.springer.com/content/pdf/10.1007%2F978-0-387-87458-6.pdf.
[33] Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716−723. doi: 10.1109/TAC.1974.1100705
[34] Vonesh E F, Chinchilli V M. Linear and nonlinear models for the analysis of repeated measurements[M]. New York: Marcel Dekker, 1997.
[35] Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Canadian Journal of Forest Research, 2004, 34: 150−163. doi: 10.1139/x03-199
[36] Bose A K, Harvey B D, Brais S. Sapling recruitment and mortality dynamics following partial harvesting in aspen-dominated mixedwoods in eastern Canada[J]. Forest Ecology and Management, 2014, 329: 37−48. doi: 10.1016/j.foreco.2014.06.004
[37] De Avila A L, Schwartz G, Ruschel A R, et al. Recruitment, growth and recovery of commercial tree species over 30 years following logging and thinning in a tropical rain forest[J]. Forest Ecology and Management, 2017, 385: 225−235. doi: 10.1016/j.foreco.2016.11.039
-
期刊类型引用(2)
1. 李建建,贺宸靖,黄小平,向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展. 生物技术通报. 2023(01): 48-58 . 百度学术
2. 黄杰,陈勇,高日芳,毛莹莹,郑柏艳,张帆涛,谢建坤. 长链非编码RNA:与植物发育和胁迫响应相关的新型调控因子. 江西师范大学学报(自然科学版). 2023(06): 615-625 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 2015
- HTML全文浏览量: 604
- PDF下载量: 91
- 被引次数: 5