高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究

李金航 周玫 朱济友 徐程扬

李金航, 周玫, 朱济友, 徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究[J]. 北京林业大学学报, 2020, 42(3): 65-77. doi: 10.12171/j.1000-1522.20190218
引用本文: 李金航, 周玫, 朱济友, 徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究[J]. 北京林业大学学报, 2020, 42(3): 65-77. doi: 10.12171/j.1000-1522.20190218
Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. doi: 10.12171/j.1000-1522.20190218
Citation: Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. doi: 10.12171/j.1000-1522.20190218

黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究

doi: 10.12171/j.1000-1522.20190218
基金项目: 北京市教委科学研究与研究生培养共建项目
详细信息
    作者简介:

    李金航,博士生。主要研究方向:植物生理生态。Email:ljhbjfu@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    徐程扬,教授,博士生导师。主要研究方向:城市林业,生态林与城市森林培育理论与技术等。Email:cyxu@bjfu.edu.cn 地址:同上

Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress

  • 摘要: 目的通过研究黄栌幼苗根系构型对土壤养分胁迫环境的适应性,探讨黄栌根系构型在土壤养分供应不足环境中的适应对策。方法试验材料为一年生黄栌幼苗,采用盆栽模拟控制试验,设置养分充足(即全土,土壤含沙比例0,CK),轻度养分胁迫(土壤含沙比例30%,N1),中度养分胁迫(土壤含沙比例50%,N2),重度养分胁迫(土壤含沙比例70%,N3)和极度养分胁迫(即全沙,土壤含沙比例100%,N4)5个梯度,分别在移栽后第31、38、45、52和59天取样,研究幼苗根系分枝模式、几何特征和不同径级细根形态在上述养分环境中的变化规律。结果(1)CK处理幼苗的根系拓扑指数(TI和DBI)最大,最长链接路径的链接数(a)、根系外部链接数(μ)以及所有链接路径的链接总数(Pe)最小。N1环境中,幼苗的TI和DBI最小,aμPe最大,分别比CK高53.2%、131.6%和194.7%。(2)N1、N2、N3和N4处理中:幼苗比根长(SRL)、比表面积(SRA)和分枝密度(RBI)逐渐增大,其中,N4处理幼苗的SRL、SRA和RBI分别比CK高67.7% ~ 157.4%、52.3% ~ 120.7%和14.7% ~ 42.1%;根尖数量(RT)、根链接数量(RLN)、根链接总长度(RLTL)和分枝数量(RF)逐渐减小,以N1处理为最大,分别比CK高95.0% ~ 279.6%、104.3% ~ 247.4%、77.4% ~ 193.5%和102.6% ~ 235.0%;根链接平均长度(RLAL)、根链接平均直径(RLAD)和根组织密度(RTID)均呈减小趋势,以N4处理最小,分别比CK低15.2% ~ 22.7%、9.3% ~ 21.4%和32.4% ~ 42.7%。(3)CK环境中,SRL和SRA的正相关系数最大(0.951),N4环境中,RF与RLN之间和RLAL和RLAD之间的正相关系数最大(分别为0.989、0.904)。N1、N2和N3处理的RBI和RLAL之间的负相关系数分别为− 0.915、− 0.889和− 0.893。(4)N3和N4处理中,0 ~ 0.50 mm范围内细根的平均长度比例、平均表面积比例、平均体积比例和平均根尖数量比例均高于其他处理,分别达86.3%和86.1%、67.6%和66.7%、40.2%和38.1%、98.6%和98.4%,而上述指标在CK处理中均为最低,分别为80.9%、59.4%、32.2%和97.2%。结论(1)土壤养分充足时,黄栌根系最接近分枝少且结构相对简单的鲱鱼骨分枝模式,具有向土壤深处延伸生长的倾向。轻度胁迫环境中,黄栌构建了分枝多、次级根重叠度高的叉状分枝模式,主、侧根尽可能地主动向距离根基较远的土壤中拓展以吸收更大范围内的养分。中度、重度和极度胁迫环境中,幼苗为减少碳消耗而采取相对简单化的根系结构对策,根系通过形成短而细的密集横向分枝(以细根为主)而加强原位利用养分能力。(2)改变根系构型几何特征参数间的协同或权衡关系、实现自身资源利用的经济化,也是黄栌应对不同土壤养分环境的重要方面。(3)从全土到极端严重胁迫环境,0 ~ 0.50 mm范围细根的分化明显增强。重度胁迫逆境时,0 ~ 0.50 mm的细根是幼苗吸收养分的重要活跃位点。极度胁迫逆境时,黄栌通过促进产生一定数量的寿命相对较长、周转速率相对较慢的细根(0.50 ~ 2.00 mm)以减少细根周转对碳的消耗,从而维持根系资源利用效率。

     

  • 图  1  两种根系分枝模式及其拓扑指数

    Figure  1.  Two root branching patterns and their topological indices

    图  2  不同养分处理中的黄栌幼苗根系拓扑结构指标变化

    不同字母代表在α = 0.05水平上差异显著。Different letters represent significant difference at α = 0.05 level.

    Figure  2.  Root topological structure parameter changes of C. coggygria seedlings under different nutrient treatments

    图  3  不同养分处理中黄栌幼苗根系构型几何特征参数变化

    Figure  3.  Changes of geometric characteristic parameters of root architecture of C. coggygria seedlings under different nutrient treatments

    图  4  不同养分处理中黄栌幼苗不同径级细根性状所占比例变化

    FRLPG1. G1径级的细根长度比例;FRLPG2 + G3. G2 + G3径级的细根长度比例;FRAPG1. G1径级的细根表面积比例;FRAPG2 + G3. G2 + G3径级的细根表面积比例;FRVPG1. G1径级的细根体积比例;FRVPG2 + G3. G2 + G3径级的细根体积比例;FRTPG1. G1径级的细根根尖数量比例;FRAPG1. G2 + G3径级的细根根尖数量比例。FRLPG1, percentage of fine root length of G1; FRLPG2 + G3, percentage of fine root length of G2 + G3; FRAPG1, percentage of fine root surface area of G1; FRAPG2 + G3, percentage of fine root surface area of G2 + G3; FRVPG1, percentage of fine root volume of G1; FRVPG2 + G3, percentage of fine root volume of G2 + G3; FRTPG1, percentage of fine root tip number of G1; FRTPG2 + G3, percentage of fine root tip number of G2 + G3.

    Figure  4.  Changes of fine root trait proportions with different diameter grades of C. coggygria seedlings under different nutrient treatments

    表  1  不同养分处理基质的化学性质与养分含量

    Table  1.   Chemical properties and nutrient contents of the tested soil under different nutrient treatments

    处理
    Treatment
    pH有机质
    Organic matter/(g·kg− 1)
    总氮
    Total nitrogen/(g·kg− 1)
    速效磷
    Available phosphorus/(mg·kg− 1)
    速效钾
    Available potassium/(mg·kg− 1)
    CK 8.3 7.43 0.31 14.2 321
    N1 8.8 2.73 0.17 4.3 183
    N2 9.0 1.88 0.11 2.2 115
    N3 9.1 1.67 0.08 2.0 106
    N4 9.5 1.51 0.04 0.8 94
    注:CK. 养分充足;N1. 轻度养分胁迫;N2. 中度养分胁迫;N3. 重度养分胁迫;N4. 极度养分胁迫。下同。Notes:CK, nutrient-rich condition; N1, slight nutrient stress condition; N2, medium nutrient stress condition;N3, severe nutrient stress condition; N4, extreme nutrient stress condition.The same below.
    下载: 导出CSV

    表  2  养分处理对黄栌幼苗根系拓扑结构影响的方差分析

    Table  2.   One-way ANOVA of the influences of nutrient treatments on root topological structure of C. coggygria seedlings

    根系拓扑结构参数
    Root topological structure parameter
    dfFP
    a 4 6.57 < 0.001
    μ 4 8.78 < 0.001
    Pe 4 6.80 < 0.001
    TI 4 3.89 0.005
    DBI 4 3.31 0.013
    注:a. 根系最长链接路径的链接数;μ.根系外部链接数;Pe.根系所有链接路径的链接数总和; TI. 拓扑指数;DBI. 叉状分枝指数。下同。Notes: a, the number of root longest link path; μ, the number of root external link; Pe, total number of all root link paths; TI, topological index; DBI, dichotomous branching index. The same below.
    下载: 导出CSV

    表  3  五个取样时期养分处理对黄栌幼苗根系构型几何特征参数影响的方差分析(P值)

    Table  3.   Two-way ANOVA of the influences of nutrient treatments on geometric characteristic parameters of root architecture of C. coggygria seedlings in the five sampling time (P value)

    根系构型几何
    特征参数
    Geometric characteristic parameter of root architecture
    变异来源 Source of variation
    取样时期
    Sampling time
    养分处理
    Nutrient stress treatment
    取样时期 × 养分处理
    Sampling time × nutrient stress treatment
    SRL 0.007 < 0.001 0.031
    SRA < 0.001 < 0.001 0.036
    RT < 0.001 < 0.001 < 0.001
    RF < 0.001 < 0.001 0.009
    RBI < 0.001 < 0.001 < 0.001
    RTID < 0.001 < 0.001 0.013
    RFN < 0.001 < 0.001 0.057
    RLTL < 0.001 < 0.001 < 0.001
    RLAL < 0.001 < 0.001 0.067
    RLAD < 0.001 < 0.001 0.049
    RLN < 0.001 < 0.001 0.006
    注:SRL. 比根长;SRA. 比表面积;RT. 根尖数量;RF. 分枝数量;RBI. 分枝密度;RTID. 根组织密度;RFN. 根细度;RLTL. 根链接总长度;RLAL. 根链接平均长度;RLAD. 根链接平均直径;RLN. 根链接数量。下同。Notes: SRL, specific root length; SRA, specific root surface area; RT, the number of root tip; RF, the number of root branches; RBI, root branch intensity; RTID, root tissue density; RFN, root fineness; RLTL, root link total length; RLAL, root link average length; RLAD, root link average diameter; RLN, the number of root link. The same below.
    下载: 导出CSV

    表  4  不同养分处理中黄栌幼苗根系构型几何特征参数的因子载荷矩阵

    Table  4.   Component matrix for geometric characteristic parameters of root architecture of C. coggygria seedlings under different nutrient treatments

    处理
    Treatment
    成分
    Component
    根系构型几何特征参数
    Geometric characteristic parameters of root architecture
    贡献率
    Contribution rate/%
    SRLSRARTRFRTIDRFNRLNRBIRLTLRLALRLAD
    CK 1 0.427 0.218 0.879 0.896 0.242 0.751 0.939 0.103 0.947 − 0.238 − 0.479 54.1
    2 0.863 0.955 − 0.122 0.148 − 0.900 0.364 0.070 0.099 0.090 − 0.034 − 0.220 21.0
    3 0.172 0.144 0.236 0.281 − 0.002 0.241 0.281 0.913 0.035 − 0.944 − 0.765 14.4
    N1 1 0.122 − 0.093 0.783 0.926 0.279 0.577 0.918 0.185 0.981 − 0.244 − 0.408 53.4
    2 0.294 0.104 0.429 0.315 0.169 0.572 0.361 0.909 0.077 − 0.935 − 0.875 26.4
    3 0.916 0.979 − 0.252 − 0.017 − 0.893 − 0.004 − 0.087 0.123 − 0.057 − 0.046 − 0.105 11.1
    N2 1 0.349 0.005 0.869 0.855 0.388 0.830 0.882 0.161 0.917 − 0.202 − 0.563 50.0
    2 − 0.003 0.065 0.321 0.416 − 0.220 − 0.091 0.400 0.945 0.133 − 0.945 − 0.637 24.0
    3 0.924 0.981 − 0.047 − 0.036 − 0.810 0.175 − 0.040 0.048 − 0.060 − 0.100 − 0.250 14.6
    N3 1 0.274 0.148 0.872 0.931 0.059 0.405 0.941 0.191 0.948 − 0.205 − 0.205 49.4
    2 0.758 0.936 − 0.086 0.133 − 0.946 0.082 0.082 0.059 0.160 0.064 − 0.139 21.4
    3 − 0.042 0.005 0.202 0.279 − 0.059 − 0.009 0.267 0.950 − 0.008 − 0.944 − 0.626 15.3
    4 0.568 0.288 0.308 0.129 0.221 0.890 0.179 − 0.094 0.173 − 0.153 − 0.678 9.6
    N4 1 0.113 0.028 0.830 0.935 − 0.058 0.113 0.941 0.436 0.967 − 0.244 − 0.223 45.5
    2 0.888 0.967 − 0.122 0.111 − 0.899 0.152 0.052 − 0.003 0.149 0.069 − 0.068 24.3
    3 0.057 − 0.003 0.331 0.303 0.067 0.151 0.323 0.744 0.013 − 0.938 − 0.881 15.2
    4 0.425 0.194 0.288 − 0.046 0.371 0.955 0.044 − 0.432 − 0.001 − 0.097 − 0.381 11.2
    下载: 导出CSV

    表  5  不同养分处理中黄栌幼苗根系构型几何特征参数间的Pearson相关系数

    Table  5.   Pearson’s correlation coefficients between geometric characteristic parameters of root architecture of C. coggygria seedlings under different nutrient treatments

    参数
    Parameter
    处理
    Treatment
    SRARTRFRTIDRFNRLNRBIRLTLRLALRLAD
    SRL CK 0.951** 0.312** 0.523** − 0.606** 0.746** 0.484** 0.268** 0.446** − 0.290* − 0.543**
    N1 0.921** − 0.019 0.158 − 0.666** 0.350** 0.112 0.352** 0.073 − 0.301** − 0.423**
    N2 0.901** 0.239* 0.238* − 0.561** 0.510** 0.245* 0.114 0.222 − 0.175 − 0.456**
    N3 0.924** 0.332** 0.426** − 0.545** 0.685** 0.415** 0.021 0.464** − 0.067 − 0.480**
    N4 0.946** 0.121 0.201 − 0.627** 0.562** 0.187 − 0.076 0.244* − 0.051 − 0.294*
    SRA CK 0.136 0.363** − 0.791** 0.535** 0.310** 0.241* 0.286* − 0.227 − 0.422**
    N1 − 0.247* − 0.078 − 0.861** − 0.023 − 0.131 0.190 − 0.143 − 0.129 − 0.151
    N2 0.000 0.020 − 0.808** 0.105 0.015 0.109 − 0.018 − 0.152 − 0.241*
    N3 0.141 0.299** − 0.788** 0.377** 0.268* 0.062 0.338** − 0.027 − 0.350**
    N4 − 0.032 0.125 − 0.777** 0.314** 0.087 − 0.089 0.167 0.031 − 0.137
    RT CK 0.766** 0.295** 0.647** 0.883** 0.241* 0.770** − 0.472** − 0.567**
    N1 0.827** 0.493** 0.622** 0.909** 0.466** 0.779** − 0.627** − 0.653**
    N2 0.869** 0.259* 0.596** 0.932** 0.389** 0.837** − 0.491** − 0.617**
    N3 0.858** 0.158 0.510** 0.918** 0.295** 0.828** − 0.448** − 0.492**
    N4 0.814** 0.162 0.384** 0.896** 0.477** 0.738** − 0.556** − 0.556**
    RF CK 0.023 0.699** 0.978** 0.453** 0.941** − 0.463** − 0.601**
    N1 0.298** 0.646** 0.986** 0.518** 0.948** − 0.533** − 0.625**
    N2 0.188 0.549** 0.989** 0.555** 0.926** − 0.503** − 0.620**
    N3 − 0.046 0.507** 0.991** 0.454** 0.926** − 0.455** − 0.467**
    N4 − 0.141 0.128 0.987** 0.646** 0.931** − 0.506** − 0.467**
    RTID CK − 0.003 0.112 − 0.099 0.080 − 0.002 0.024
    N1 0.365** 0.367** 0.050 0.327** − 0.137 − 0.189
    N2 0.340** 0.214 − 0.164 0.277* 0.160 0.014
    N3 0.134 0.004 − 0.102 − 0.056 − 0.052 0.031
    N4 0.209 − 0.064 − 0.118 − 0.175 − 0.144 − 0.125
    RFN CK 0.721** 0.273* 0.644** − 0.381** − 0.727**
    N1 0.664** 0.516** 0.573** − 0.555** − 0.798**
    N2 0.578** 0.096 0.583** − 0.151 − 0.635**
    N3 0.549** 0.018 0.535** − 0.199 − 0.658**
    N4 0.204 − 0.222 0.133 − 0.230* − 0.532**
    RLN CK 0.408** 0.936** − 0.490** − 0.623**
    N1 0.522** 0.933** − 0.581** − 0.657**
    N2 0.522** 0.925** − 0.514** − 0.636**
    N3 0.426** 0.926** − 0.466** − 0.486**
    N4 0.626** 0.913** − 0.540** − 0.510**
    RBI CK 0.180 − 0.832** − 0.657**
    N1 0.266* − 0.915** − 0.820**
    N2 0.257* − 0.889** − 0.671**
    N3 0.159 − 0.893** − 0.545**
    N4 0.429** − 0.712** − 0.582**
    RLTL CK − 0.263* − 0.471**
    N1 − 0.318** − 0.468**
    N2 − 0.260* − 0.497**
    N3 − 0.191 − 0.371**
    N4 − 0.235* − 0.258*
    RLAL CK 0.854**
    N1 0.908**
    N2 0.807**
    N3 0.706**
    N4 0.904**
    注:**和*分别代表在α = 0.01和α = 0.05水平上显著。Notes: ** and * represent significant difference at α = 0.01 and α = 0.05 level, respectively.
    下载: 导出CSV
  • [1] Fortunel C, Fine P V A, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree species[J]. Functional Ecology, 2012, 26(5): 1153−1161. doi: 10.1111/j.1365-2435.2012.02020.x
    [2] Ristova D, Busch W. Natural variation of root traits: from development to nutrient uptake[J]. Plant Physiology, 2014, 116(2): 518−527.
    [3] 李洪波, 薛慕瑶, 林雅茹, 等. 土壤养分空间异质性与根系觅食作用: 从个体到群落[J]. 植物营养与肥料学, 2013, 19(4):995−1004.

    Li H B, Xue M Y, Lin Y R, et al. Spatial heterogeneity of soil nutrients and root foraging from individual to community[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 995−1004.
    [4] 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型的研究进展[J]. 生态学报, 2016, 36(17):1−13.

    Chen W L, Li J, Zhu H H, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17): 1−13.
    [5] 郑慧玲, 赵成章, 段贝贝, 等. 琵琶柴根系分叉数与连接长度权衡关系的坡向差异[J]. 生态学杂志, 2015, 34(10):2727−2732.

    Zheng H L, Zhao C Z, Duan B B, et al. Differences of trade-off relationship among root forks and link length in Reaumuria soongorica on slopes of different aspects[J]. Chinese Journal of Ecology, 2015, 34(10): 2727−2732.
    [6] Paez-Garcia A, Motes C M, Scheible W R, et al. Root traits and phenotyping strategies for plant improvement[J]. Plants, 2015, 4(2): 334−355. doi: 10.3390/plants4020334
    [7] Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement[J]. Biotechnology, 2015, 32: 93−98.
    [8] 叶子奇, 邓如军, 王雨辰, 等. 胡杨繁殖根系分枝特征及其与土壤因子的关联性[J]. 北京林业大学学报, 2018, 40(2):31−39.

    Ye Z Q, Deng R J, Wang Y C, et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31−39.
    [9] 单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应[J]. 中国沙漠, 2012, 32(5):1283−1290.

    Shan L S, Li Y, Dong Q L, et al. Ecological adaption of Reaumuria Soongorica root system architecture to arid environment[J]. Journal of Desert Research, 2012, 32(5): 1283−1290.
    [10] 李秉钧, 颜耀, 吴文景, 等. 环境因子对植物根系及其构型的影响研究进展[J]. 亚热带水土保持, 2019, 31(3):41−45. doi: 10.3969/j.issn.1002-2651.2019.03.008

    Li B J, Yan Y, Wu W J, et al. Research progress on the influences of environmental factors on plant root and root architecture[J]. Subtropical Soil and Water Conservation, 2019, 31(3): 41−45. doi: 10.3969/j.issn.1002-2651.2019.03.008
    [11] 杜建会, 刘安隆, 董玉祥, 等. 华南海岸典型沙生植物根系构型特征[J]. 植物生态学报, 2014, 38(8):888−895.

    Du J H, Liu A L, Dong Y X, et al. Architectural characteristics of roots in typical coastal psammophytes of South China[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 888−895.
    [12] Larson J E, Funk J L. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms[J]. New Phytologist, 2016, 210(3): 827−838. doi: 10.1111/nph.13829
    [13] Fort F, Volaire F, Guilioni L, et al. Root traits are related to plant water-use among rangeland Mediterranean species[J]. Functional Ecology, 2017, 31(9): 1700−1709. doi: 10.1111/1365-2435.12888
    [14] 郭京衡, 曾凡江, 李尝君, 等. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1):36−44. doi: 10.3724/SP.J.1258.2014.00004

    Guo J H, Zeng F J, Li C J, et al. Root architecture and ecological adaption strategies in three shelterbelt plant species in the southern Taklimakan Desert[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 36−44. doi: 10.3724/SP.J.1258.2014.00004
    [15] Fitter A H. An architectural approach to the comparative ecology of plant root systems[J]. New Phytologist, 1987, 106(1): 61−77.
    [16] Fitter A H, Stickland T R, Harvey M L, et al. Architectural analysis of plant root systems (1): architectural correlates of exploitation efficiency[J]. New Phytologist, 1991, 118: 375−382. doi: 10.1111/j.1469-8137.1991.tb00018.x
    [17] Fitter A H, Sticklabd T R. Architectural analysis of plant root systems (2): influence of nutrient supply on architecture in contrasting plant species[J]. New Phytologist, 1991, 118: 383−389. doi: 10.1111/j.1469-8137.1991.tb00019.x
    [18] 杨小林, 张希明, 李义玲, 等. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J]. 植物生态学报, 2008, 32(6):1268−1276. doi: 10.3773/j.issn.1005-264x.2008.06.007

    Yang X L, Zhang X M, Li Y L, et al. Analysis of root architecture and root adaptive strategy in the Taklimakan Desert area of China[J]. Journal of Plant Ecology, 2008, 32(6): 1268−1276. doi: 10.3773/j.issn.1005-264x.2008.06.007
    [19] Beidler K V, Taylor B N, Strand A E, et al. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies[J]. New Phytologist, 2015, 205(3): 1153−1163. doi: 10.1111/nph.13123
    [20] Janecek S, Janecek P, Leps J. Effect of competition and soil quality on root topology of the perennial grass Molinia caerulea[J]. Preslia, 2007, 79(1): 23−32.
    [21] 黄同丽, 唐丽霞, 陈龙, 等. 喀斯特区3种灌木根系构型及其生态适应策略[J]. 中国水土保持科学, 2019, 17(1):89−94.

    Huang T L, Tang L X, Chen L, et al. Root architecture and ecological adaption strategy of three shrubs in karst area[J]. Science of Soil and Water Conservation, 2019, 17(1): 89−94.
    [22] Bouma T J, Nielsen K L, Vanhal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency[J]. Functional Ecology, 2001, 15(3): 360−369. doi: 10.1046/j.1365-2435.2001.00523.x
    [23] 刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8):938−945. doi: 10.3773/j.issn.1005-264x.2010.08.006

    Liu J, Xiang W H, Xu X, et al. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 938−945. doi: 10.3773/j.issn.1005-264x.2010.08.006
    [24] Abenavoli M R, Leone M, Sunseri F, et al. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy)[J]. Journal of Agronomy and Crop Science, 2016, 202(1): 1−11. doi: 10.1111/jac.12124
    [25] 张伟涛, 赵成章, 宋清华, 等. 高寒退化草地星毛委陵菜根系分叉数和连接长度的关系[J]. 生态学报, 2017, 37(24):1−7.

    Zhang W T, Zhao C Z, Song Q H, et al. Trade-off between root forks and link length of Potentilla acaulis in degraded alpine grassland[J]. Acta Ecologica Sinica, 2017, 37(24): 1−7.
    [26] 郑慧玲, 赵成章, 徐婷, 等. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11):1062−1070. doi: 10.17521/cjpe.2015.0103

    Zheng H L, Zhao C Z, Xu T, et al. Trade-off relationship between root forks and branch angle of Reaumuria songrica on different aspects of slopes[J]. Chinese Journal of Plant Ecology, 2015, 39(11): 1062−1070. doi: 10.17521/cjpe.2015.0103
    [27] 宋清华, 赵成章, 史元春, 等. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J]. 植物生态学报, 2015, 39(6):577−585. doi: 10.17521/cjpe.2015.0055

    Song Q H, Zhao C Z, Shi Y C, et al. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes[J]. Chinese Journal of Plant Ecology, 2015, 39(6): 577−585. doi: 10.17521/cjpe.2015.0055
    [28] Martinez-Sanchez J J, Ferrandis P, Trabaud L, et al. Comparative root system structure of post-fire Pinus halepensis Mill. and Cistus monspeliensis L. saplings[J]. Plant Ecology, 2003, 168(2): 309−320. doi: 10.1023/A:1024406029497
    [29] 刘刚, 张光灿, 刘霞. 土壤干旱胁迫对黄栌叶片光合作用的影响[J]. 应用生态学报, 2010, 21(7):1697−1701.

    Liu G, Zhang G C, Liu X. Responses of Cotinus coggygria var. cinereal photosynthesis to soil drought stress[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1697−1701.
    [30] 李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29−41.

    Li J H, Qi X H, Xu C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Scientia Silvae Sinicae, 2015, 51(1): 29−41.
    [31] 孙鹏, 李金航, 刘海轩, 等. 黄栌根系结构与个体健康程度的关系[J]. 西北林学院学报, 2016, 31(2):20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04

    Sun P, Li J H, Liu H X, et al. Relationship between root structure and health level of Cotinus coggygria trees[J]. Journal of Northwest Forestry University, 2016, 31(2): 20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04
    [32] 靳泽辉, 苗峻峰, 张永端, 等. 华北地区极端降水变化特征及多模式模拟评估[J]. 气象科技, 2017, 45(1):91−100.

    Jin Z H, Miao J F, Zhang Y D, et al. Characteristics of extreme precipitation and its multi-model simulation evaluation in North China[J]. Meteorological Science and Technology, 2017, 45(1): 91−100.
    [33] 路炳军, 王志强. 北京西部山区径流小区产流产沙和土壤养分流失特征[J]. 中国水土保持科学, 2015, 13(6):33−39. doi: 10.3969/j.issn.1672-3007.2015.06.005

    Lu B J, Wang Z Q. Water and nutrient losses on runoff plots in the mountainous area at western Beijing[J]. Science of Soil and Water Conservation, 2015, 13(6): 33−39. doi: 10.3969/j.issn.1672-3007.2015.06.005
    [34] 史佳良, 王秀茹, 李淑芳, 等. 次降雨过程中北京市不同土地利用方式下土壤养分流失特征[J]. 水土保持学报, 2016, 30(5):58−63.

    Shi J L, Wang X R, Li S F, et al. Characteristics of soil nutrients loss under different land use patterns in Beijing during course of rain[J]. Journal of Soil and Water Conservation, 2016, 30(5): 58−63.
    [35] 李金航, 齐秀慧, 徐程扬, 等. 华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J]. 北京林业大学学报, 2014, 36(1):48−54.

    Li J H, Qi X H, Xu C Y, et al. Short term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Journal of Beijing Forestry University, 2014, 36(1): 48−54.
    [36] 王艺霖, 周玫, 李苹, 等. 根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策[J]. 北京林业大学学报, 2017, 39(6):60−67.

    Wang Y L, Zhou M, Li P, et al. Root morphological plasticity determining the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60−67.
    [37] Alvarez-Flores R, Winkel T, Nguyen-Thi-Truc A, et al. Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species[J]. Plant and Soil, 2014, 380(1−2): 415−428. doi: 10.1007/s11104-014-2105-x
    [38] Birouste M, Zamora-Ledezma E, Bossard C, et al. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content[J]. Plant Soil, 2014, 374(1−2): 299−313. doi: 10.1007/s11104-013-1874-y
    [39] Hodge A. Plastic plants and patchy soils[J]. Journal of Experimental Botany, 2006, 57(2): 401−411. doi: 10.1093/jxb/eri280
    [40] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2003, 162(1): 9−24.
    [41] 王庆成, 程云环. 土壤养分空间异质性与植物根系的觅食反应[J]. 应用生态学报, 2004, 15(6):1063−1068. doi: 10.3321/j.issn:1001-9332.2004.06.030

    Wang Q C, Cheng Y H. Response of fine roots to soil nutrient spatial heterogeneity[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1063−1068. doi: 10.3321/j.issn:1001-9332.2004.06.030
    [42] 梅莉, 王政权, 韩有志, 等. 水曲柳根系生物量、比根长和根长密度的分布格局[J]. 应用生态学报, 2006, 17(1):1−4. doi: 10.3321/j.issn:1001-9332.2006.01.001

    Mei L, Wang Z Q, Han Y Z, et al. Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density[J]. Chinese Journal of Applied Ecology, 2006, 17(1): 1−4. doi: 10.3321/j.issn:1001-9332.2006.01.001
    [43] 于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 18(5):957−962. doi: 10.3321/j.issn:1001-9332.2007.05.003

    Yu L Z, Ding G Q, Shi J W, et al. Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 957−962. doi: 10.3321/j.issn:1001-9332.2007.05.003
    [44] Wu Q, Pages L, Wu J. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize[J]. Annals of Botany, 2016, 117(3): 379−390. doi: 10.1093/aob/mcv185
    [45] 何广志, 陈亚宁, 陈亚鹏, 等. 柽柳根系构型对干旱的适应策略[J]. 北京师范大学学报(自然科学版), 2016, 52(3):277−281.

    He G Z, Chen Y N, Chen Y P, et al. Adaptive strategy of Tamarix spp. root architecture in arid environment[J]. Journal of Beijing Normal University (Natural Sciences), 2016, 52(3): 277−281.
    [46] 梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展[J]. 植物生态学报, 2004, 28(4):704−710.

    Mei L, Wang Z Q, Cheng Y H, et al. A review: factors influencing fine root longevity in forest ecosystems[J]. Acta Phytoecologica Sinica, 2004, 28(4): 704−710.
    [47] 张旭东, 王智威, 韩清芳, 等. 玉米早期根系构型及其生理特性对土壤水分的响应[J]. 生态学报, 2016, 36(10):1−10.

    Zhang X D, Wang Z W, Han Q F, et al. Effects of water stress on the root structure and physiological characteristics of early-stage maize[J]. Acta Ecologica Sinica, 2016, 36(10): 1−10.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  1786
  • HTML全文浏览量:  316
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 修回日期:  2019-12-13
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回