高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响

刘峰 席本野 戴腾飞 于景麟 李广德 陈雨姗 王杰 贾黎明

刘峰, 席本野, 戴腾飞, 于景麟, 李广德, 陈雨姗, 王杰, 贾黎明. 水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响[J]. 北京林业大学学报, 2020, 42(1): 75-83. doi: 10.12171/j.1000-1522.20190222
引用本文: 刘峰, 席本野, 戴腾飞, 于景麟, 李广德, 陈雨姗, 王杰, 贾黎明. 水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响[J]. 北京林业大学学报, 2020, 42(1): 75-83. doi: 10.12171/j.1000-1522.20190222
Liu Feng, Xi Benye, Dai Tengfei, Yu Jinglin, Li Guangde, Chen Yushan, Wang Jie, Jia Liming. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75-83. doi: 10.12171/j.1000-1522.20190222
Citation: Liu Feng, Xi Benye, Dai Tengfei, Yu Jinglin, Li Guangde, Chen Yushan, Wang Jie, Jia Liming. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75-83. doi: 10.12171/j.1000-1522.20190222

水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响

doi: 10.12171/j.1000-1522.20190222
基金项目: 国家自然科学基金项目(31670625)
详细信息
    作者简介:

    刘峰。主要研究方向:用材林和能源林培育理论与技术。Email:962070300@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    贾黎明,教授,博士生导师。主要研究方向:用材林和能源林培育理论与技术。Email:jlm@bjfu.edu.cn  地址:同上

  • 中图分类号: S792.117;S158.5

Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa

  • 摘要: 目的杨树速生丰产林是我国主要的纸浆兼用材林,较低的水肥利用效率容易造成土壤退化、环境污染甚至林分产量下降。因此,迫切需要探究适宜的水肥耦合策略,实现可持续发展。本研究通过探讨不同水肥耦合处理对根区土壤氮分布、根系分布以及林木产量的影响,旨在筛选出适宜毛白杨人工林的最佳水肥耦合措施。方法以三倍体毛白杨为研究对象,设置3个灌溉水平:− 20 kPa(I20)、− 33 kPa(I33)、− 45 kPa(I45)和4个施N水平:0(F0)、120 kg/(hm2·a)(F120)、190 kg/(hm2·a)(F190)、260 kg/(hm2·a)(F260),并设置CK对照(不灌溉不施肥)。测定其全年的土壤NO3-N动态、细根分布以及生物量产量。结果(1) 施N量和灌溉量显著增加NO3-N运移、分布和深层累积量,其中I20F260处理NO3-N深层浸出现象严重,而I20F120处理浸出量最小。(2) 水肥耦合管理可使根系分布浅层化;其中N肥供应可改变根系分布规律,灌溉促使根系分布表层化;而根系生长对N的响应取决于灌溉水平,其中I20F260处理根长密度(RLD)显著高于其他处理(P < 0.05)。(3) 不同处理NO3-N含量、RLD和整株生物量(TB),彼此间存在显著相关性。其中,土壤NO3-N含量与RLD存在显著抛物线回归关系(P < 0.05);因此,土壤养分差异是造成细根分布差异的重要因素。0 ~ 10 cm、20 ~ 40 cm土层RLD与TB呈极显著的抛物线回归关系(P < 0.01);可见,0 ~ 10 cm、20 ~ 40 cm土层适量的RLD有利于提高林木产量。其中,I20F120水肥耦合处理,林木年均生物量最高。结论I20F120处理施N量是传统施N量的四分之一,且深层NO3-N浸出量最小,有效减轻对环境的污染;此外,能够形成适量的RLD,促进林木对土壤养分的吸收利用,并最终形成较高的林木产量和较高的水肥利用率等优点。因此推荐I20F120处理为砂地毛白杨人工林最佳水肥耦合措施。

     

  • 图  1  林地小区试验设计图

    Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ代表5次重复;F0、F120、F190、F260分别代表0、120、190、260 kg/(hm2·a)的4个施N水平;I20、I33、I45分别代表− 20、− 33、− 45 kPa 3个灌溉水平。下同。Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ indicate the five repetitions; F0, F120, F190, and F260 represent the four N application levels of 0, 120, 190, and 260 kg/(ha·year); I20, I33, and I45 represent the three irrigation levels of − 20,− 33, and − 45 kPa. Same as below.

    Figure  1.  Test design of forest land plot

    图  2  2018年不同灌溉和施氮处理下0 ~ 140 cm土层NO3-N含量分布

    4-23. 4月23日;5-13. 5月13日;6-03. 6月3日;6-23. 6月23日;7-13. 7月13日;8-01. 8月1日。南北方向距树25 cm为湿润区,80 cm为干燥区。4-23, April 23; 5-13, May 13; 6-03, June 3; 6-23, June 23; 7-13, July 13; 8-01, August 1. 25 cm away from the tree in the north-south direction is the humid region, 80 cm is the arid region.

    Figure  2.  NO3-N content distribution in the 0 − 140 cm soil layers under various irrigation and nitrogen treatments in 2018

    图  3  不同灌溉和施氮量处理毛白杨根长密度在不同土壤深度的分布

    Figure  3.  Distribution of root length density at different soil depth of Populus tomentosa under different irrigation and nitrogen application treatments

    表  1  试验地土壤理化性质

    Table  1.   Soil physical characteristics at the experimental site

    土壤深度
    Soil depth/
    cm
    土壤密度
    Soil bulk density/
    (g·cm− 3)
    饱和含水率
    Saturated water content/(cm3·cm− 3)
    田间持水量
    Field capacity/
    (cm3·cm− 3)
    全氮
    Total N/
    (g·kg− 1)
    铵态氮
    Ammonium nitrogen/
    (mg·kg− 1)
    硝态氮
    Nitrate nitrogen/
    (mg·kg− 1)
    有机质
    Organic matter/
    (g·kg− 1)
    0 ~ 20 1.43 0.43 0.35 0.31 1.65 1.52 5.77
    20 ~ 40 1.39 0.44 0.33 0.34 1.12 1.5 3.73
    40 ~ 60 1.41 0.44 0.34 0.13 1.44 1.13 2.29
    60 ~ 80 1.42 0.44 0.34 0.14 1.23 0.88 1.56
    下载: 导出CSV

    表  2  不同灌溉和施氮量下毛白杨0 ~ 80 cm土层根长度密度差异

    Table  2.   Difference of root length density at 0 – 80 cm soil layers of Populus tomentosa under different irrigation and nitrogen application treatments cm/cm 3

    土层深度
    Soil depth/cm
    I20F120I20F190I20F260I33F260I45F260 CK
    0 ~ 100.321 ± 0.005 77c0.359 ± 0.002 31b0.425 ± 0.008 66a0.292 ± 0.000 35d0.208 ± 0.006 35e0.151 ± 0.000 75f
    10 ~ 200.220 ± 0.002 31a0.170 ± 0.000 27b0.196 ± 0.001 73a0.151 ± 0.000 58b0.102 ± 0.000 61c0.096 ± 0.000 60c
    20 ~ 300.162 ± 0.016 35bc0.183 ± 0.000 58b0.288 ± 0.000 30a0.164 ± 0.011 21bc0.131 ± 0.000 58c0.082 ± 0.000 13d
    30 ~ 400.135 ± 0.000 04c0.209 ± 0.000 59b0.343 ± 0.000 02a0.183 ± 0.010 13b0.162 ± 0.000 14c0.056 ± 0.000 06d
    40 ~ 500.091 ± 0.000 09c0.136 ± 0.000 58b0.239 ± 0.000 26a0.114 ± 0.000 69c0.075 ± 0.000 05d0.042 ± 0.000 07e
    50 ~ 600.054 ± 0.162 50a0.102 ± 0.000 04a0.175 ± 0.000 02a0.075 ± 0.000 08a0.043 ± 0.000 12a0.037 ± 0.000 02a
    60 ~ 700.015 ± 0.000 14c0.069 ± 0.000 06b0.108 ± 0.000 10a0.043 ± 0.011 03b0.019 ± 0.000 08c0.033 ± 0.000 04c
    70 ~ 800.013 ± 0.000 05bc0.038 ± 0.000 03bc0.074 ± 0.000 02a0.004 ± 0.000 09d0.005 ± 0.000 07d0.057 ± 0.000 12b
    注:不同字母表示不同水肥耦合处理的根长密度(RLD)有显著差异(P < 0.05)。下同。Notes: different letters indicate significant differences(P < 0.05)in root length density(RLD)of different irrigation and nitrogen treatments. The same below.
    下载: 导出CSV

    表  3  硝态氮、RLD与TB间的相关性

    Table  3.   Correlation test of nitrate nitrogen, RLD and TB

    项目ItemNO3-NRLDTB
    硝态氮含量 NO3-N content10.773*− 0.887**
    RLD1− 0.634*
    TB1
    注:TB表示林木生物量;RLD表示根长密度;* 表示在P < 0.05水平差异显著;** 表示在P < 0.01水平极显著。下同。Notes: TB indicates total biomass of tree; RLD indicates root length density of tree; * indicates significant difference at P < 0.05 level;** indicates significant difference at P < 0.05 level. The same below.
    下载: 导出CSV

    表  4  2018年不同水肥耦合处理毛白杨RLD,TB和NO3-N含量间的回归关系

    Table  4.   Relationship between nitrate nitrogen, RLD and TB in Populus tomentosa at various coupling treatments of irrigation and fertilization in 2018

    土层深度
    Soil depth/cm
    硝态氮含量与根长密度
    NO3-N content & root length density
    土层深度
    Soil depth/cm
    根长密度与林木生物量
    Root length density & total biomass
    回归方程 Regression equationR2回归方程 Regression equationR2
    0 ~ 20Y = − 0.214x2 + 0.806x − 0.1540.806*0 ~ 10Y = − 241.53x2 + 155.42x − 3.2330.903**
    10 ~ 20Y = − 456.15x2 + 197.95x + 6.4200.755*
    20 ~ 40Y = − 0.424x2 + 1.457x − 0.7050.752*20 ~ 30Y = − 383.15x2 + 164.15x + 4.0550.862**
    30 ~ 40Y = − 182.83x2 + 89.845x + 10.2790.897**
    40 ~ 60Y = − 0.307x2 + 1.011x − 0.5420.239NS40 ~ 50Y = − 422.22x2 + 138.23x + 10.5460.733*
    50 ~ 60Y = − 673.86x2 + 151.75x + 13.4320.257NS
    注:NS 表示无显著性差异(P > 0.05)。NS means no significant difference (P > 0.05).
    下载: 导出CSV

    表  5  灌溉施肥处理对叶、枝、干、细根和总生物量的影响           t/hm2

    Table  5.   Effects of irrigation and nitrogen application rates on leaf, branch, trunk, fine-root and total biomass t/ha

    处理 Treatment叶 Leaf枝 Branch干 Trunk细根 Fine root总生物量 Total biomass
    I20F1205.18 ± 0.20 ab7.30 ± 0.73 a22.77 ± 1.54 a0.45 ± 0.10 b41.60 ± 2.39 a
    I20F1905.11 ± 0.65 ab6.78 ± 1.10 a19.73 ± 2.77 a0.44 ± 0.03 b37.51 ± 4.64 ab
    I20F2606.45 ± 0.51 a7.43 ± 1.17 a19.70 ± 1.02 a0.54 ± 0.12 a39.26 ± 1.14 a
    I33F2605.52 ± 0.75 ab8.15 ± 0.87 a21.77 ± 2.48 a0.36 ± 0.06 c40.33 ± 2.97 a
    I45F2604.91 ± 0.10 ab6.15 ± 0.59 a20.18 ± 2.00 a0.34 ± 0.07 c36.25 ± 3.02 ab
    CK3.71 ± 0.97 b5.62 ± 1.75 a14.61 ± 1.50 b0.21 ± 0.07 d26.84 ± 3.46 b
    下载: 导出CSV
  • [1] Xi B Y, Wang Y, Jia L M, et al. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: implications for irrigation water management[J]. Agricultural Water Management, 2013, 117: 83−92. doi: 10.1016/j.agwat.2012.11.006
    [2] Ma J Z, Wang X S, Edmunds W M. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid North-West China: a case study of the Shiyang River Basin[J]. Journal of Arid Environments, 2005, 61(2): 277−295. doi: 10.1016/j.jaridenv.2004.07.014
    [3] Du J, Yang P L, Li Y K, et al. Influence of the irrigation, fertilization and groundwater depth on wheat yield and nitrate nitrogen leaching[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 57−64.
    [4] Xing G X, Zhu Z L. An assessment of N loss from agricultural fields to the environment in China[J]. Nutrient Cycling in Agroecosystems, 2000, 57(1): 67−73. doi: 10.1023/A:1009717603427
    [5] Wang Q, Li F R, Zhao L, et al. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland[J]. Plant Soil, 2010, 337(1−2): 325−339. doi: 10.1007/s11104-010-0530-z
    [6] Fort F, Cruz P, Catrice O, et al. Root functional trait syndromes and plasticity drive the ability of grassland fabaceae to tolerate water and phosphorus shortage[J]. Environmental and Experimental Botany, 2015, 110: 62−72. doi: 10.1016/j.envexpbot.2014.09.007
    [7] Xi B Y, Li G D, Bloomberg M, et al. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain[J]. Australian Forestry, 2014, 77(3−4): 159−167. doi: 10.1080/00049158.2014.920552
    [8] Yan X L, Dai T F, Jia L M. Evaluation of the cumulative effect of drip irrigation and fertigation on productivity in a poplar plantation[J/OL]. Annals of Forest Science, 2018, 75(1): 5 [2019−10−25]. https://xs.scihub.ltd/https://doi.org/ 10.1007/ s13595-017-0682-6 .
    [9] Follett R F, Delgado J A. Nitrogen fate and transport in agricultural systems[J]. Soil Water Conserv, 2002, 57(6): 402−408.
    [10] Dai X Q, Sui P, Xie G H, et al. Water use and nitrate nitrogen changes in intensive farmlands following introduction of poplar (Populus×euramericana) in a semi-arid region[J]. Arid Soil Research and Rehabilitation, 2006, 20(4): 281−294.
    [11] Li J, Liu Y. Water and nitrate distributions as affected by layered textural soil and buried dripline depth under subsurface drip fertigation[J]. Irrigation Science, 2010, 29(6): 469−478.
    [12] Saha R, Ghosh P K. Soil organic carbon stock, moisture availability and crop yield as influenced by residue management and tillage practices in maize–mustard cropping system under hill agro-ecosystem[J]. National Academy Science Letters, 2013, 36(5): 461−468. doi: 10.1007/s40009-013-0158-7
    [13] Wang C Y, Liu W X, Li Q X, et al. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions[J]. Field Crops Research, 2014, 165: 138−149. doi: 10.1016/j.fcr.2014.04.011
    [14] Sandhu S S, Mahal S S, Vashist K K, et al. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India[J]. Agricultural Water Management, 2012, 104: 32−39. doi: 10.1016/j.agwat.2011.11.012
    [15] Xu C L, Tao H B, Tian B J, et al. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat[J]. Field Crops Research, 2016, 196: 268−275. doi: 10.1016/j.fcr.2016.07.009
    [16] 彭亚静, 汪新颖, 张丽娟, 等. 根层调控对小麦−玉米种植体系氮素利用及土壤硝态氮残留的影响[J]. 中国农业科学, 2015, 48(11):2187−2198. doi: 10.3864/j.issn.0578-1752.2015.11.010

    Peng Y J, Wang X Y, Zhang L J, et al. Effects of root layer regulation on nitrogen utilization and soil NO3-N residue of wheat-maize system[J]. Science Agricultural Sinica, 2015, 48(11): 2187−2198. doi: 10.3864/j.issn.0578-1752.2015.11.010
    [17] 王烨. 毛白杨速生纸浆林地下滴灌施肥效应研究[D]. 北京: 北京林业大学, 2015.

    Wang Y. Research on effects of nitrogen fertilization on tree-growth and its mechanisms of action in Populus tomentosa plantation[D]. Beijing: Beijing Forestry University, 2015.
    [18] 郭迎新, 秦大庸, 刘家宏, 等. 黑龙港地区降雨与土壤含水率的动态变化[J]. 灌溉排水学报, 2011, 30(1):80−83.

    Guo Y X, Qin D Y, Liu J H, et al. Characteristics of soil moisture dynamic changes under rainfall infiltration in Heilonggang region[J]. Journal of Irrigation and Drainage, 2011, 30(1): 80−83.
    [19] 贺曰林, 王烨, 张宏锦, 等. 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响[J]. 农业工程学报, 2018, 34(20):90−98. doi: 10.11975/j.issn.1002-6819.2018.20.012

    He Y L, Wang Y, Zhang H J, et al. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in young Populus tomentosa plantations under surface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 90−98. doi: 10.11975/j.issn.1002-6819.2018.20.012
    [20] Xue X R, Mai W X, Zhao Z Y, et al. Optimized nitrogen fertilizer application enhances absorption of soil nitrogen and yield of castor with drip irrigation under mulch film[J]. Industrial Crops and Products, 2017, 95: 156−162. doi: 10.1016/j.indcrop.2016.09.049
    [21] Hanson B R, Simunek J, Hopmans J W. Evaluation of urea-nitrate fertigation with drip irrigation using numerical modelling[J]. Agricultural Water Management, 2006, 86(1−2): 102−113. doi: 10.1016/j.agwat.2006.06.013
    [22] Fang Q X, Yu Q, Wang E L, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain[J]. Plant Soil, 2006, 284(1−2): 335−350. doi: 10.1007/s11104-006-0055-7
    [23] Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions[J]. Plant Soil, 1994, 163(2): 267−277. doi: 10.1007/BF00007976
    [24] Huang P, Zhang J, Ma D, et al. Atmospheric deposition as an important nitrogen load to a typical agro-ecosystem in the Huang-Huai-Hai Plain[J]. Atmospheric Environment, 2016, 129: 1−8. doi: 10.1016/j.atmosenv.2016.01.015
    [25] Allard V, Martre P, Gouis J L. Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status[J]. European Journal of Agronomy, 2013, 46: 68−76. doi: 10.1016/j.eja.2012.12.004
    [26] Liu Y X, Zhang W P, Sun J H, et al. High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems[J]. Plant Soil, 2015, 397(1−2): 387−399. doi: 10.1007/s11104-015-2654-7
    [27] Croft S A, Hodge A, Pitchford J W. Optimal root proliferation strategies: the roles of nutrient heterogeneity, competition and mycorrhizal networks[J]. Plant Soil, 2012, 351(1−2): 191−206. doi: 10.1007/s11104-011-0943-3
    [28] Muñoz-Romero V, Benítez-Vega J, López-Bellido R J, et al. Effect of tillage system on the root growth of spring wheat[J]. Plant Soil, 2010, 326(1−2): 97−107. doi: 10.1007/s11104-009-9983-3
    [29] Di N, Liu Y, Mead D J, et al. Root-system characteristics of plantation-grown Populus tomentosa, adapted to seasonal fluctuation in the groundwater table[J]. Trees, 2018, 32(1): 137−149. doi: 10.1007/s00468-017-1619-2
    [30] Lv G H, Kang Y H, Li L, et al. Effect of irrigation methods on root development and profile soil water uptake in winter wheat[J]. Irrigation Science, 2010, 28(5): 387−398. doi: 10.1007/s00271-009-0200-1
    [31] Xue Q, Zhu Z, Musick J T, et al. Root growth and water uptake in winter wheat under deficit irrigation[J]. Plant Soil, 2003, 257(1): 151−161. doi: 10.1023/A:1026230527597
    [32] Chen J, Wang P, Ma Z, et al. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Triticum aestivum L.) under permanent raised bed tillage in arid northwest China[J]. Soil & Tillage Research, 2018, 181: 117−126.
    [33] 闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美 108 杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2015, 35(11):3692−3701.

    Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana plantation[J]. Journal of Ecology, 2015, 35(11): 3692−3701.
    [34] Wang Z Q, Zhang W Y, Beebout S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crop Resesrch, 2016, 193: 54−69. doi: 10.1016/j.fcr.2016.03.006
    [35] Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514: 486−489. doi: 10.1038/nature13609
    [36] Yu S, Ehrenfeld J G. The effects of changes in soil moisture on nitrogen cycling in acid wetland types of the New Jersey Pinelands (USA)[J]. Soil Biol Biochem, 2009, 41(12): 2394−2405. doi: 10.1016/j.soilbio.2009.06.012
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  402
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-14
  • 修回日期:  2019-10-08
  • 网络出版日期:  2019-12-20
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回