高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晋西黄土区不同植被格局坡面产流产沙特征

王恒星 张建军 孙若修 张佳楠

王恒星, 张建军, 孙若修, 张佳楠. 晋西黄土区不同植被格局坡面产流产沙特征[J]. 北京林业大学学报, 2021, 43(3): 85-95. doi: 10.12171/j.1000-1522.20190231
引用本文: 王恒星, 张建军, 孙若修, 张佳楠. 晋西黄土区不同植被格局坡面产流产沙特征[J]. 北京林业大学学报, 2021, 43(3): 85-95. doi: 10.12171/j.1000-1522.20190231
Wang Hengxing, Zhang Jianjun, Sun Ruoxiu, Zhang Jianan. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85-95. doi: 10.12171/j.1000-1522.20190231
Citation: Wang Hengxing, Zhang Jianjun, Sun Ruoxiu, Zhang Jianan. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85-95. doi: 10.12171/j.1000-1522.20190231

晋西黄土区不同植被格局坡面产流产沙特征

doi: 10.12171/j.1000-1522.20190231
基金项目: 国家重点研发计划项目(2016YFC0501704)
详细信息
    作者简介:

    王恒星。主要研究方向:水土保持与森林水文。Email:13120111624@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    张建军,教授,博士生导师。主要研究方向:水土保持与森林水文。Email:zhangjianjun@bjfu.edu.cn 地址:同上

  • 中图分类号: U416.1+69

Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China

  • 摘要:   目的   研究不同植被格局对坡面产流产沙特征的影响,为黄土高原水资源匮乏地区坡面水土保持植被格局的优化配置提供依据。   方法   采用野外模拟降雨试验,测定5种植被格局(2种块状镶嵌格局、横条带状格局、顺坡带状格局和裸地格局)的产流产沙特征及土壤入渗特征,探讨坡面不同植被格局和破碎度对产流、产沙、入渗的影响。   结果   (1)植被具有良好的蓄水减沙效益,植被的减沙效益为47.44% ~ 91.67%,蓄水效益为25.67% ~ 62.94%,植被的减沙能力强于蓄水能力。(2)植被格局对坡面的产流产沙量均有显著性影响(P < 0.05),试验所设置的几种格局的蓄水减沙效益依次为:块状镶嵌格局 > 横条带状格局 > 顺坡带状格局。块状镶嵌格局水土保持效果最佳。(3)不同植被格局的产流过程均呈现“快速上升—相对稳定”的趋势,植被格局有助于延迟坡面径流峰值的出现时间。(4)植被斑块的破碎化指数与侵蚀产沙呈反比,植被斑块破碎化程度越高,侵蚀产沙量越低,蓄水减沙效益越好。(5)不同植被格局的入渗系数为:块状镶嵌格局 > 横条带状格局 > 顺坡带状格局 > 裸地,Horton模型对不同植被格局土壤入渗的拟合效果较好。   结论   通过以上研究发现,块状镶嵌格局的蓄水减沙效益明显优于裸地和顺坡带状格局,因此在水资源有限的黄土区,可以采取植被与裸地交替分布的方式种植植被,以达到蓄水、减沙效益最大化。

     

  • 图  1  蔡家川流域地理位置图

    Figure  1.  Geographical location map of Caijiachuan Watershed

    图  2  植被格局布置示意图

    Figure  2.  Diagram of vegetation pattern

    图  3  不同植被格局产流强度随产流历时变化过程

    Figure  3.  Variation of runoff yield intensity with duration of runoff under different vegetation patterns

    图  4  不同植被格局下累计产沙量随降雨历时变化过程

    Figure  4.  Variation of accumulated sediment yield with duration of runoff under different vegetation patterns

    图  5  不同植被格局下土壤入渗速率随降雨历时变化过程

    Figure  5.  Variation of soil infiltration rate with duration of runoff under different vegetation patterns

    表  1  径流小区状况

    Table  1.   Status of runoff plot

    小区格局
    Plot pattern
    坡度
    Slope/(°)
    面积(长 × 宽)
    Area (length×width)/m2
    前期含水量 Pre-water content/%土壤密度
    Soil density/
    (g·cm−3)
    第1次试验 The first test第2次试验 The second test第3次试验 The third test
    SP1 15 5 × 1 19.47 20.61 22.62 1.24
    SP2 15 5 × 1 20.19 20.85 23.88 1.26
    BP 10 5 × 1 20.08 21.87 23.91 1.19
    LP 15 5 × 1 19.56 21.29 20.38 1.21
    CK 15 5 × 1 19.81 20.52 18.22 1.23
    下载: 导出CSV

    表  2  不同植被格局下产流量及产沙量特征

    Table  2.   Characteristics of runoff and sediment yield under different vegetation patterns

    格局 Pattern产流量 Runoff yield/mm产沙量 Sediment yield/(g·m−2)蓄水效益 Water storage effect/%减沙效益 Sand reduction effect/%
    SP1 18.95 ± 1.48a 51.55 ± 12.89a 62.94 91.67
    SP2 24.19 ± 1.62ab 60.33 ± 0.19a 52.69 90.25
    BP 27.79 ± 1.44b 92.86 ± 25.96a 45.65 84.99
    LP 38.01 ± 2.52c 325.13 ± 43.94b 25.67 47.44
    CK 51.13 ± 3.76d 618.61 ± 149.18c
    注:同一列不同字母表示特征值差异性显著(P < 0.05)。Note: different lowercase letters in the same column mean significant differences (P < 0.05).
    下载: 导出CSV

    表  3  不同植被格局产流强度变化特征

    Table  3.   Variation characteristics of runoff yield intensity in different vegetation patterns

    格局
    Pattern
    产流强度 Runoff yield intensity
    波动范围
    Fluctuation range/(mm·min−1)
    平均值
    Mean value/(mm·min−1)
    CV/%
    20 min 前 First 20 min20 min 后 After 20 min整个过程 Whole process
    SP1 0.02 ~ 0.49 0.23 92.30 20.13 79.32
    SP2 0.06 ~ 0.53 0.29 53.59 16.97 56.82
    BP 0.04 ~ 0.54 0.32 67.78 7.54 55.28
    LP 0.04 ~ 0.89 0.43 80.84 18.29 75.53
    CK 0.11 ~ 1.04 0.63 59.69 6.80 55.13
    下载: 导出CSV

    表  4  不同植被格局入渗特征

    Table  4.   Infiltration characteristics under different vegetation patterns

    格局
    Pattern
    初始入渗速率
    Initial infiltration rate/(mm·min−1)
    稳定入渗速率
    Stable infiltration rate/(mm·min−1)
    入渗系数
    Infiltration coefficient/%
    SP1 1.41 1.02 78.94
    SP2 1.42 0.96 73.12
    BP 1.39 0.88 69.12
    LP 1.41 0.61 57.77
    CK 1.34 0.46 43.19
    下载: 导出CSV

    表  5  不同植被格局入渗方程模拟结果

    Table  5.   Simulation results of infiltration equations of different vegetation patterns

    植被格局 Vegetation pattern Philip模型 Philip modelR2 Kostiakov模型 Kostiakov modelR2Horton模型 Horton modelR2
    SP1 y = 1.03 + 0.75t(−0.5) 0.75 y = 1.63t(−0.10) 0.89 y = 0.95 + 0.54e(−0.03t) 0.98
    SP2 y = 0. 90 + 0.85t(−0.5) 0.85 y = 1.59t(−0.12) 0.95 y = 0.90 + 0.53e(−0.05t) 0.99
    BP y = 0.832 + 0.95t(−0.5) 0.89 y = 1.60t(−0.14) 0.93 y = 0.95 + 0.61e(−0.103t) 0.97
    LP y = 0.53 + 1.59t(−0.5) 0.79 y = 1.89t(−0.25) 0.88 y = 0.51 + 1.04e(−0.04t) 0.99
    CK y = 0.27 + 1.80t(−0.5) 0.87 y = 1.88t(−0.33) 0.91 y = 0.41 + 1.10e (−0.07t) 0.99
    下载: 导出CSV

    表  6  不同植被格局的破碎化指数

    Table  6.   Fragmentation index of different vegetation patterns

    格局
    Pattern
    单个植被斑块面积
    Single vegetation
    patch area/m2
    斑块密度指数/(个·m−2)
    Patch density index (PD)/
    (number·m−2)
    单位周长斑块数/(个·m−1)
    Number of patches per unit
    perimeter (NPUP)/(number·m−1)
    破碎化指数
    Fragmentation
    index (FN)
    SP1 0.25 4.00 0.50 0.45
    SP2 0.50 2.00 0.33 0.40
    BP 0.50 2.00 0.33 0.40
    LP 1.25 0.80 0.10 0.20
    下载: 导出CSV
  • [1] 唐克丽. 中国土壤侵蚀与水土保持学的特点及展望[J]. 水土保持研究, 1999, 6(2):3−8.

    Tang K L. Characteristics and perspectives on scientific discipline of soil erosion and soil and water conservation in China[J]. Research of Soil and Water Conservation, 1999, 6(2): 3−8.
    [2] 刘贤赵, 黄明斌, 康绍忠. 黄土沟壑区小流域水土保持减水效益分析[J]. 应用基础与工程科学学报, 2005, 8(4):354−361.

    Liu X Z, Huang M B, Kang S Z. Analysis on the benefits of water reduction by soil and water conservation for small watersheds in loess gully region[J]. Journal of Basic Science and Engineering, 2005, 8(4): 354−361.
    [3] 甘卓亭, 叶佳, 周旗, 等. 模拟降雨下草地植被调控坡面土壤侵蚀过程[J]. 生态学报, 2010, 30(9):2387−2396.

    Gan Z T, Ye J, Zhou Q, et al. Effects of grass vegetations on the processes of soil erosion over slope lands in simulated rainfalls[J]. Acta Ecologica Sinica, 2010, 30(9): 2387−2396.
    [4] 李坤, 姚文艺, 肖培青, 等. 植被对土壤入渗和地表产流过程的影响研究进展[J]. 中国水土保持, 2017(3):27−30. doi: 10.3969/j.issn.1000-0941.2017.03.011

    Li K, Yao W Y, Xiao P Q, et al. Influence of vegetation on soil infiltration and surface runoff[J]. Soil and Water Conservation in China, 2017(3): 27−30. doi: 10.3969/j.issn.1000-0941.2017.03.011
    [5] 李兆松, 王兵, 李盼盼, 等. 氮添加条件下白羊草种群及近地表生物结皮对土壤入渗性能的影响[J]. 山地学报, 2018, 36(3):354−363.

    Li Z S, Wang B, Li P P, et al. Effects of bothriochloa ischaemum community and near soil surface biological crust on the soil infiltration capacity based on nitrogen addition[J]. Mountain Research, 2018, 36(3): 354−363.
    [6] 曹斌挺. 黄土丘陵沟壑区退耕坡面不同植物群落的土壤侵蚀特征[D]. 杨凌: 西北农林科技大学, 2016.

    Cao B T. Characteristics of soil erosion of different plant communities converted from slope cropland in the Loess Plateau[D]. Yangling: Northwest A&F University, 2016.
    [7] 李盼盼, 王兵, 刘国彬, 等. 氮添加对白羊草种群及土壤特征的影响[J]. 中国水土保持科学, 2017, 15(2):35−42.

    Li P P, Wang B, Liu G B, et al. Effects of nitrogen addition on the population characteristics of bothriochloa ischaemum and soil properties[J]. Science of Soil and Water Conservation, 2017, 15(2): 35−42.
    [8] 张宽地, 王光谦, 孙晓敏, 等. 模拟植被覆盖条件下坡面流水动力学特性[J]. 水科学进展, 2014, 25(6):825−834.

    Zhang K D, Wang G Q, Sun X M, et al. Hydraulic characteristic of overland flow under different vegetation coverage[J]. Advances in Water Science, 2014, 25(6): 825−834.
    [9] 任海, 王俊, 陆宏芳. 恢复生态学的理论与研究进展[J]. 生态学报, 2014, 34(15):4117−4124.

    Ren H, Wang J, Lu H F. Theories and research advances of restoration ecology[J]. Acta Ecologica Sinica, 2014, 34(15): 4117−4124.
    [10] 李勉, 姚文艺, 李占斌. 黄土高原草本植被水土保持作用研究进展[J]. 地球科学进展, 2005, 20(1):74−80. doi: 10.3321/j.issn:1001-8166.2005.01.013

    Li M, Yao W Y, Li Z B. The effect of grassland vegetation for conserving soil and water on Loess Plateau[J]. Advances in Earth Science, 2005, 20(1): 74−80. doi: 10.3321/j.issn:1001-8166.2005.01.013
    [11] 李强, 李占斌, 鲁克新, 等. 黄土丘陵区不同植被格局产流产沙试验研究[J]. 中国农村水利水电, 2008, 30(4):102−104.

    Li Q, Li Z B, Lu K X, et al. Experimental research on the runoff and sediment production in loess hilly gully region with different vegetation patterns[J]. China Rural Water and Hydropower, 2008, 30(4): 102−104.
    [12] 闵俊杰. 不同植被格局下人工模拟降雨对坡面侵蚀的影响[D]. 南京: 南京林业大学, 2012.

    Min J J. Effects of simulated rainfall on slope erosion under different vegetation patterns[D]. Nanjing: Nanjing Forestry University, 2012.
    [13] 李小雁. 干旱地区土壤−植被−水文耦合、响应与适应机制[J]. 中国科学: 地球科学, 2011, 41(12):1721−1730.

    Li X Y. Soil-vegetation-hydrological coupling, response and adaptation mechanism in arid areas[J]. Science in China: Earth Science, 2011, 41(12): 1721−1730.
    [14] 韩鹏, 李秀霞. 黄河流域土壤侵蚀及植被水保效益研究[J]. 应用基础与工程科学学报, 2008, 16(2):181−190. doi: 10.3969/j.issn.1005-0930.2008.02.004

    Han P, Li X X. Study on soil erosion and vegetation effect on soil conservation in the Yellow River Basin[J]. Journal of Basic Science & Engineering, 2008, 16(2): 181−190. doi: 10.3969/j.issn.1005-0930.2008.02.004
    [15] 汪有科, 刘宝元, 焦菊英. 恢复黄土高原林草植被及盖度的前景[J]. 水土保持通报, 1992, 12(2):55−60.

    Wang Y K, Liu B Y, Jiao J Y. Perspective of recovering the vegetation and cover percentage of forest and grass on the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1992, 12(2): 55−60.
    [16] 程圣东. 黄土区植被格局对坡沟—流域侵蚀产沙的影响研究[D]. 西安: 西安理工大学, 2016.

    Cheng S D. The effect of vegetation pattern on erosion and sediment yield of slope-gully system and watershed on loess area[D]. Xi’an: Xi’an University of Technology, 2016.
    [17] 苏远逸, 李鹏, 李占斌, 等. 坡面植被格局对坡沟系统能量调控及水沙响应关系的影响[J]. 水土保持学报, 2017, 31(5):32−39.

    Su Y Y, Li P, Li Z B, et al. Effects of slope vegetation patterns on energy regulation and water-sediment response relations in slope-gully system[J]. Journal of Soil and Water Conservation, 2017, 31(5): 32−39.
    [18] 张霞, 李鹏, 李占斌, 等. 坡面草带分布对坡沟水土流失的防控作用及其优化配置[J]. 农业工程学报, 2019, 35(7):122−128. doi: 10.11975/j.issn.1002-6819.2019.07.015

    Zhang X, Li P, Li Z B, et al. Prevention and control of grass strips distribution on soil and water loss and its optimal configuration of slope-gully system[J]. Journal of Soil and Water Conservation, 2019, 35(7): 122−128. doi: 10.11975/j.issn.1002-6819.2019.07.015
    [19] 秦伟, 曹文洪, 郭乾坤, 等. 植被格局对侵蚀产沙影响的研究评述[J]. 生态学报, 2017, 37(14):4905−4912.

    Qin W, Cao W H, Guo Q K, et al. Review of the effects of vegetation patterns on soil erosion and sediment yield[J]. Acta Ecologica Sinica, 2017, 37(14): 4905−4912.
    [20] 曹奇光. 晋西黄土区人工刺槐林地土壤水分特征及合理密度研究[D]. 北京: 北京林业大学, 2007.

    Cao Q G. Study on soil water characteristic and suitable density of artifical Robinia psedoaeacio on slope of west of Shanxi Province[D]. Beijing: Beijing Forestry University, 2007.
    [21] 傅伯杰, 徐延达, 吕一河. 景观格局与水土流失的尺度特征与耦合方法[J]. 地球科学进展, 2010, 25(7):673−681.

    Fu B J, Xu Y D, Lü Y H. Scale characteristics and coupled research of landscape pattern and soil and water loss[J]. Advances in Earth Science, 2010, 25(7): 673−681.
    [22] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局[J]. 生态学报, 2016, 36(2):377−386.

    Wang Y H, Zhao Y G, Li L, et al. Distribution patterns and spatial variability of vegetation and biocrusts in revegetated lands in different rainfall zones of the Loess Plateau region, China[J]. Acta Ecologica Sinica, 2016, 36(2): 377−386.
    [23] 肖笃宁, 布仁仓, 李秀珍. 生态空间理论与景观异质性[J]. 生态学报, 1997, 17(5):3−11.

    Xiao D N, Bu R C, Li X Z. Spatial ecology and landscape heterogeneity[J]. Acta Ecologica Sinica, 1997, 17(5): 3−11.
    [24] 温永福, 高鹏, 穆兴民, 等. 野外模拟降雨条件下径流小区产流产沙试验研究[J]. 水土保持研究, 2018, 25(1):23−29.

    Wen Y F, Gao P, Mu X M, et al. Experimental study on runoff and sediment yield in runoff plot under field simulated rainfall condition[J]. Research of Soil and Water Conservation, 2018, 25(1): 23−29.
    [25] 王林华, 马波, 吴发启. 黄土区不同生长期大豆坡耕地的入渗特征[J]. 中国水土保持科学, 2015, 13(4):15−24. doi: 10.3969/j.issn.1672-3007.2015.04.003

    Wang L H, Ma B, Wu F Q. Infiltration characteristics in sloping farmland at different growth stages of soybean (Glycine max L.) in loess area[J]. Science of Soil and Water Conservation, 2015, 13(4): 15−24. doi: 10.3969/j.issn.1672-3007.2015.04.003
    [26] 陈洪松, 邵明安, 张兴昌, 等. 野外模拟降雨条件下坡面降雨入渗、产流试验研究[J]. 水土保持学报, 2005, 19(2):5−8. doi: 10.3321/j.issn:1009-2242.2005.02.002

    Chen H S, Shao M A, Zhang X C, et al. Field experiment on hillslope rainfall infiltration and runoff under simulated rainfall conditions[J]. Journal of Soil and Water Conservation, 2005, 19(2): 5−8. doi: 10.3321/j.issn:1009-2242.2005.02.002
    [27] Laws J O. Measurements of the fall-velocity of water -drops and raindrops[J]. John Wiley & Sons, Ltd, 1941, 22(3): 709−721.
    [28] 牟金泽. 雨滴速度计算公式[J]. 中国水土保持, 1983, 35(3):40−41.

    Mou J Z. Formula for calculating velocity of raindrops[J]. Soil and Water Conservation in China, 1983, 35(3): 40−41.
    [29] 吴光艳, 吴发启, 尹武君, 等. 陕西杨凌天然降雨雨滴特性研究[J]. 水土保持研究, 2011, 18(1):48−51.

    Wu G Y, Wu F Q, Yin W J, et al. Study on characteristics of natural rainfall in Yangling, Shaanxi Province[J]. Research of Soil and Water Conservation, 2011, 18(1): 48−51.
    [30] 李坤, 姚文艺, 肖培青, 等. 黄丘区自然草地对坡面土壤入渗的影响机制[J]. 人民黄河, 2017, 39(6):82−85, 98. doi: 10.3969/j.issn.1000-1379.2017.06.018

    Li K, Yao W Y, Xiao P Q, et al. Effects of vegetation on slope soil infiltration in the loess hilly region[J]. Yellow River, 2017, 39(6): 82−85, 98. doi: 10.3969/j.issn.1000-1379.2017.06.018
    [31] 张冠华. 茵陈蒿群落分布格局对坡面侵蚀及坡面流水动力学特性的影响[D]. 杨凌: 西北农林科技大学, 2012.

    Zhang G H. Influence of patterned Artemisia capillaris on slope erosion and overland flow hydrodynamic characteristics[D]. Yangling: Northwest A&F University, 2012.
    [32] 魏霞, 李勋贵, 李占斌, 等. 植被覆盖下黄土凸型复合坡面水流特征[J]. 农业工程学报, 2014, 30(22):147−154. doi: 10.3969/j.issn.1002-6819.2014.22.018

    Wei X, Li X G, Li Z B, et al. Flow characteristics of convex composite slopes of loess under vegetation cover[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 147−154. doi: 10.3969/j.issn.1002-6819.2014.22.018
    [33] Ludwig J A, Tongway D J, Marsden S G. Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia[J]. Catena, 1999, 37(1): 257−273.
    [34] Muñoz-Robles C, Tighe M, Reid N, et al. A two-step up-scaling method for mapping runoff and sediment production from pasture and woody encroachment on semi-arid hillslopes[J]. Ecohydrology, 2013, 6(1): 83−93. doi: 10.1002/eco.283
    [35] Bautista S, Mayor G, Bourakhouada R J, et al. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid mediterranean landscape[J]. Ecosystems, 2007, 10(6): 987−998. doi: 10.1007/s10021-007-9074-3
    [36] 沈中原. 坡面植被格局对水土流失影响的实验研究[D]. 西安: 西安理工大学, 2006.

    Shen Z Y. Study on the effect of vegetation slope pattern on soil and water loss[D]. Xi’an: Xi’an University of Technology, 2006.
    [37] 马勇勇, 李占斌, 任宗萍, 等. 草带布设位置对坡沟系统水文连通性的影响[J]. 农业工程学报, 2018, 34(8):170−176. doi: 10.11975/j.issn.1002-6819.2018.08.022

    Ma Y Y, Li Z B, Ren Z P, et al. Effect of different positions of grass strips on hydrological connectivity in slope-gully system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 170−176. doi: 10.11975/j.issn.1002-6819.2018.08.022
    [38] 曹梓豪, 赵清贺, 左宪禹, 等. 基于坡面水文连通性的黄河下游河岸缓冲带植被格局优化[J]. 应用生态学报, 2018, 29(3):739−747.

    Cao Z H, Zhao Q H, Zuo X Y, et al. Optimizing vegetation pattern for the riparian buffer zone along the lower Yellow River based on slope hydrological connectivity[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 739−747.
    [39] 游珍, 李占斌. 坡面植被对径流的减流减沙作用机理及试验研究[J]. 泥沙研究, 2011, 6(3):59−62.

    You Z, Li Z B. Mechanism and experiment of vegetation on slope to reduce runoff and sediment[J]. Journal of Sediment Research, 2011, 6(3): 59−62.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  121
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-19
  • 修回日期:  2020-08-01
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回