高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

楸树木质部水分输导组织构造特征的轴向变化

李昕 李姗 邓丽萍 李仁 殷亚方 郑景明

李昕, 李姗, 邓丽萍, 李仁, 殷亚方, 郑景明. 楸树木质部水分输导组织构造特征的轴向变化[J]. 北京林业大学学报, 2020, 42(1): 27-34. doi: 10.12171/j.1000-1522.20190238
引用本文: 李昕, 李姗, 邓丽萍, 李仁, 殷亚方, 郑景明. 楸树木质部水分输导组织构造特征的轴向变化[J]. 北京林业大学学报, 2020, 42(1): 27-34. doi: 10.12171/j.1000-1522.20190238
Li Xin, Li Shan, Deng Liping, Li Ren, Yin Yafang, Zheng Jingming. Axial variation of characteristics of water conducting tissue in xylem of Catalpa bungei[J]. Journal of Beijing Forestry University, 2020, 42(1): 27-34. doi: 10.12171/j.1000-1522.20190238
Citation: Li Xin, Li Shan, Deng Liping, Li Ren, Yin Yafang, Zheng Jingming. Axial variation of characteristics of water conducting tissue in xylem of Catalpa bungei[J]. Journal of Beijing Forestry University, 2020, 42(1): 27-34. doi: 10.12171/j.1000-1522.20190238

楸树木质部水分输导组织构造特征的轴向变化

doi: 10.12171/j.1000-1522.20190238
基金项目: 中央级公益性科研院所基本科研业务费专项(CAFYBB2017ZX003)
详细信息
    作者简介:

    李昕。主要研究方向:生态学。Email:furyclaire@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    郑景明,副教授。主要研究方向:生态学。Email:zhengjm@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.47;S781.1

Axial variation of characteristics of water conducting tissue in xylem of Catalpa bungei

  • 摘要: 目的本文拟探究楸树木质部边材解剖结构的轴向变化规律,为深入理解阔叶树种的水分传导机制提供参考,并为楸树人工林的栽培、中国特有温带珍贵优质用材树种的保护及木材利用提供理论依据。方法以3株楸树为研究对象,自基部向上采集树干0、1.3、3.8、6.3、8.8、11.3 m共6个高度处的边材样品,分别测量边材面积、制备横向及弦向显微切片,并利用光学显微镜观察测量导管腔直径、导管密度等木质部解剖结构特征,利用相关性分析、方差分析研究木质部解剖特征间的相互关系,利用线性回归分析研究木质部解剖特征的轴向变化规律。结果(1)早材导管腔直径、早晚材导管密度随高度变化不显著,但早材导管腔直径随取样高度增加有减小趋势,导管密度则有相反趋势。最大早晚材导管腔直径、晚材导管腔直径、纹孔膜直径随树高增加而显著减小。(2)随树高增加,边材面积与导管水力直径均显著减小。(3)边材面积、纹孔膜直径均与导管水力直径呈显著正相关。结论楸树木质部水分疏导组织构造特征的轴向变化主要表现在边材面积、导管特征和纹孔膜特征3个方面。楸树生长轮明显,早晚材导管腔直径差异较大,早材比晚材变异幅度更大。最大导管腔直径的轴向变化显著,导管密度的轴向变化不显著,边材面积和纹孔膜直径的轴向变化显著。综合来看,楸树基部导管相对大而疏,边材面积大,上部导管相对小而多,边材面积小。这是楸树木质部结构适应长距离输水功能的一种优化设计,以降低树木栓塞化风险,提高水分运输的效率和安全性。

     

  • 图  1  楸树基部木质部横切面图

    Figure  1.  Transversal section of C. Bungei xylem at a tree bottom

    图  2  楸树导管腔直径径级分布图

    Figure  2.  Frequency distribution of vessel lumen diameter bins of C. bungei

    图  3  木质部导管解剖特征随树木高度的变化趋势

    Figure  3.  Trend of xylem vessel anatomical features with tree height

    图  4  其他指标的轴向变化

    Figure  4.  Axial variation of other indicators

    图  5  指标间的相关关系

    Figure  5.  Correlations between indicators

    表  1  样木基本信息

    Table  1.   Sample wood information

    样木号
    Tree No.
    树龄/a
    Tree age/year
    树高
    Tree height/m
    胸径
    DBH/cm
    圆盘数
    Disk number
    13314.926.36
    24420.330.46
    33615.825.56
    下载: 导出CSV

    表  2  木质部解剖指标高度间的差异显著性分析(ANOVA)

    Table  2.   Significance test of xylem anatomical traits at different tree heights by ANOVA

    高度
    Height/
    m
    导管水力
    直径
    Vessel hydraulic diameter/μm
    边材面积
    Sapwood
    area/mm2
    早材导管
    腔直径
    Earlywood vessel lumen diameter/μm
    晚材导管
    腔直径
    Latewood vessel lumen diameter/μm
    早材最大导管
    腔直径
    Earlywood max. vessel lumen diameter/μm
    晚材最大导管
    腔直径
    Latewood max. vessel lumen diameter/μm
    早材导管密度/
    (个·mm− 2
    Earlywood
    vessel density/
    (number·mm− 2)
    晚材导管密度/
    (个·mm− 2
    Latewood
    vessel density/
    (number·mm− 2)
    纹孔膜直径
    Pit membrane diameter/
    μm
    0 277 ± 18a 10 566 ± 1 298a 200 ± 46a 27 ± 3a 332 ± 15ab 52 ± 9ab 9 ± 1b 347 ± 133a 9 ± 1ab
    1.3 282 ± 14a 8 497 ± 489ab 200 ± 27a 26 ± 3ab 357 ± 10a 56 ± 4a 13 ± 3ab 309 ± 79a 9 ± 1a
    3.8 252 ± 17bc 6 330 ± 901bc 212 ± 14a 24 ± 3ab 315 ± 19bc 40 ± 8b 10 ± 2ab 298 ± 94a 8 ± 0.5ab
    6.3 264 ± 10ab 4 713 ± 2 331cd 218 ± 14a 22 ± 2ab 336 ± 9ab 38 ± 7b 11 ± 1ab 325 ± 83a 8 ± 0.4ab
    8.8 234 ± 5c 3 616 ± 1 052de 201 ± 16a 22 ± 5ab 294 ± 7c 45 ± 8ab 13 ± 1ab 418 ± 55a 8 ± 0.4ab
    11.3 209 ± 17d 1 993 ± 1 026e 178 ± 10a 20 ± 3b 264 ± 25d 39 ± 8b 14 ± 3a 436 ± 157a 8 ± 0.5b
    注:表中数据为“平均值 ± 标准差”。同列不同字母表示差异显著(P < 0.05)。Notes: the data in the table is “average ± standard deviation”. Different letters in each column indicate significant difference (P < 0.05).
    下载: 导出CSV
  • [1] 张红霞, 袁凤辉, 关德新, 等. 维管植物木质部水分传输过程的影响因素及研究进展[J]. 生态学杂志, 2017, 36(11):289−296.

    Zhang H X, Yuan F H, Guan D X, et al. A review on water transport in xylem of vascular plants and its affecting factors[J]. Journal of Ecology, 2017, 36(11): 289−296.
    [2] Li S, Lens F, Espino S, et al. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem[J]. IAWA Journal, 2016, 37(2): 152−171. doi: 10.1163/22941932-20160128
    [3] Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4): 235−242. doi: 10.2307/1313077
    [4] West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400: 664−667.
    [5] Schuldt B, Leuschner C, Brock N, et al. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees[J]. Tree Physiology, 2013, 33(2): 161−174. doi: 10.1093/treephys/tps122
    [6] Tommaso A, Vinicio C, Marco C, et al. Convergent tapering of xylem conduits in different woody species[J]. New Phytologist, 2006, 169(2): 279−290. doi: 10.1111/j.1469-8137.2005.01587.x
    [7] Anfodillo T, Petit G, Crivellaro A. Axial conduit widening in woody species: a still neglected anatomical pattern[J]. IAWA Journal, 2013, 34(4): 352−364. doi: 10.1163/22941932-00000030
    [8] Pfautsch S, Aspinwall M J, Drake J E, et al. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis[J]. Annals of Botany, 2018, 121(1): 129−141. doi: 10.1093/aob/mcx137
    [9] Lechthaler S, Turnbull T L, Gelmini Y, et al. A standardization method to disentangle environmental information from axial trends of xylem anatomical traits[J]. Tree Physiology, 2019, 39(3): 495−502. doi: 10.1093/treephys/tpy110
    [10] Becker P, Gribben R J, Schulte P J. Incorporation of transfer resistance between tracheary elements into hydraulic resistance models for tapered conduits[J]. Tree Physiology, 2003, 23(15): 1009−1019. doi: 10.1093/treephys/23.15.1009
    [11] Petit G, Pfautsch S, Anfodillo T, et al. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance[J]. New Phytologist, 2010, 187(4): 1146−1153. doi: 10.1111/j.1469-8137.2010.03304.x
    [12] Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap[M]. Berlin: Springer, 2002: 45−56.
    [13] 李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2015, 39(8):838−848. doi: 10.17521/cjpe.2015.0080

    Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants[J]. Journal of Plant Ecology, 2015, 39(8): 838−848. doi: 10.17521/cjpe.2015.0080
    [14] Corothie H. Multilingual glossary of terms used in wood anatomy[M]. Amsterdam: IAWA, 1964: 43.
    [15] England J R, Attiwill P M. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans[J]. Tree Physiology, 2007, 27(8): 1113−1124. doi: 10.1093/treephys/27.8.1113
    [16] Gerrish G. An explanation of natural forest dieback based on the “pipe model” analogy[J]. GeoJournal, 1988, 17(2): 295−299. doi: 10.1007/BF02432939
    [17] Pothier D, Margolis H A, Waring R H. Patterns of change of saturated sapwood permeability and sapwood conductance with stand development[J]. Canadian Journal of Forest Research, 1989, 19(4): 432−439. doi: 10.1139/x89-068
    [18] Coyea M R, Margolis H A. Factors affecting the relationship between sapwood area and leaf area of balsam fir[J]. Canadian Journal of Forest Research, 1992, 22: 1684−1693.
    [19] Fan Z, Cao K, Becker P. Axial and radial variations in xylem anatomy of angiosperm and conifer trees in Yunnan, China[J]. IAWA Journal, 2009, 30(1): 1−13. doi: 10.1163/22941932-90000198
    [20] 范泽鑫, 曹坤芳, 邹寿青. 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化[J]. 植物生态学报, 2005, 29(6):968−975. doi: 10.3321/j.issn:1005-264X.2005.06.013

    Fan Z X, Cao K F, Zou S Q. Axial and radial changes in xylem anatomical characteristics in six evergreen broadleaved tree species in Ailao Mountain, Yunnan[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 968−975. doi: 10.3321/j.issn:1005-264X.2005.06.013
    [21] Scholz A, Klepsch M, Karimi Z, et al. How to quantify conduits in wood?[J]. Frontiers in Plant Science, 2013, 4: 1−11.
    [22] Sperry J S, Nichols K L, Sullivan J E M, et al. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska[J]. Ecology, 1994, 75: 1736−1752. doi: 10.2307/1939633
    [23] Petit G, Anfodillo T, Mencuccini M. Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[J]. New Phytologist, 2008, 177(3): 653−664. doi: 10.1111/j.1469-8137.2007.02291.x
    [24] Petit G, Anfodillo T, Carraro V, et al. Hydraulic constraints limit height growth in trees at high altitude[J]. New Phytologist, 2011, 189(1): 241−252. doi: 10.1111/j.1469-8137.2010.03455.x
    [25] Petit G, Declerck F A J, Carrer M, et al. Axial vessel widening in arborescent monocots[J]. Tree Physiology, 2014, 34(2): 137−145. doi: 10.1093/treephys/tpt118
    [26] Petit G, Anfodillo T. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants[J]. Journal of Theoretical Biology, 2009, 259(1): 1−4. doi: 10.1016/j.jtbi.2009.03.007
    [27] Lintunen A, Kalliokoski T. The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris[J]. Tree Physiology, 2010, 30(11): 1433−1447. doi: 10.1093/treephys/tpq085
    [28] Bettiati D, Petit G, Anfodillo T. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses[J]. Tree Physiology, 2012, 32(2): 171−177. doi: 10.1093/treephys/tpr137
    [29] Olson M E, Soriano D, Rosell J A, et al. Plant height and hydraulic vulnerability to drought and cold[J]. Proceedings of the National Academy of Sciences, 2018, 115(29): 7551−7556. doi: 10.1073/pnas.1721728115
    [30] Cardoso S, Sousa V B, Quilhó T, et al. Anatomical variation of teakwood from unmanaged mature plantations in East Timor[J]. Journal of Wood Science, 2015, 61(3): 326−333. doi: 10.1007/s10086-015-1474-y
    [31] 龚容, 徐霞江, 红蕾, 等. 干旱半干旱区几种典型灌木半灌木茎叶水分传导系统的结构特征[J]. 北京师范大学学报(自然科学版), 2018, 54(4):104−112.

    Gong R, Xu X J, Hong L, et al. Architectural traits of stem-leaf hydraulic system in typical shrubs in arid and semi-arid regions[J]. Journal of Beijing Normal University (Natural Science), 2018, 54(4): 104−112.
    [32] Zanne A E, Westoby M, Falster D S, et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity[J]. American Journal of Botany, 2010, 97(2): 207−215. doi: 10.3732/ajb.0900178
    [33] Fan D Y, Xie Z Q. Several controversial viewpoints in studying the cavitation of xylem vessels[J]. Acta Phytoecologica Sinica, 2004, 28(1): 126−132.
    [34] Schulte P J, Gibson A C. Hydraulic conductance and tracheid anatomy in six species of extant seed plants[J]. Canadian Journal of Botany, 1988, 66(6): 1073−1079. doi: 10.1139/b88-153
    [35] Aparecido L M T, Santos J D, Higuchi N, et al. Relevance of wood anatomy and size of Amazonian trees in the determination and allometry of sapwood area[J]. Acta Amazonica, 2019, 49(1): 1−10. doi: 10.1590/1809-4392201800961
    [36] Köstner B, Falge E, Tenhunen J D. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany[J]. Tree Physiology, 2002, 22(8): 567−574. doi: 10.1093/treephys/22.8.567
    [37] Gebauer T, Horna V, Leuschner C. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species[J]. Tree Physiology, 2008, 28(12): 1821−1830. doi: 10.1093/treephys/28.12.1821
    [38] Meinzer F C, Bond B J, Warren J M, et al. Does water transport scale universally with tree size?[J]. Functional Ecology, 2005, 19(4): 558−565. doi: 10.1111/j.1365-2435.2005.01017.x
    [39] Bass P, Ewers F W, Davis S D, et al. Evolution of xylem physiology[M]// Hemsle A R, Poole I. The evolution of plant physiology. New York: Academic Press, 2004.
    [40] Jean-Christophe D, Barbara L, Meinzer F C. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii, Pinaceae) trees[J]. American Journal of Botany, 2006, 93(11): 1588−1600. doi: 10.3732/ajb.93.11.1588
    [41] Cochard H, Holtta T, Herbette S, et al. New insights into the mechanisms of water-stress-induced cavitation in conifers[J]. Plant Physiology, 2009, 151(2): 949−954. doi: 10.1104/pp.109.138305
    [42] Delzon S, Douthe C, Sala A, et al. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding[J]. Plant, Cell & Environment, 2010, 33(12): 2101−2111.
    [43] 木巴热克·阿尤普, 荆卫民, 伊丽米努尔, 等. 柽柳属6种植物侧枝木质部导水率与纹孔数量特征关系[J]. 西北林学院学报, 2017, 32(2):106−111. doi: 10.3969/j.issn.1001-7461.2017.02.18

    Mubarek A, Jing W M, Yiliminuer, et al. Relations between xylem hydraulic efficiency and inter-vessel pit features of six Tamarix L. species[J]. Journal of Northwest Forestry University, 2017, 32(2): 106−111. doi: 10.3969/j.issn.1001-7461.2017.02.18
    [44] Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 2005, 28(6): 800−812.
    [45] Christman M A, Sperry J S, Adler F R. Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer[J]. New Phytologist, 2009, 182(3): 664−674. doi: 10.1111/j.1469-8137.2009.02776.x
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2148
  • HTML全文浏览量:  503
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2019-09-02
  • 网络出版日期:  2019-12-30
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回