高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响

乔永 周金星 王小平

引用本文:
Citation:

Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响

    作者简介: 乔永,博士,副研究员。主要研究方向:森林土壤、土壤生态、土壤修复。Email:qiaoyong85@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号.
    通讯作者: 王小平,教授级高级工程师。主要研究方向:森林培育、森林生态研究。Email:wangxp@bfdic.com 地址:100013 北京市东城区安外小黄庄北街1号

Effects of lead and cadmium combined stress on seed germination and seedling growth of mulberry

  • 摘要: 目的 研究不同含量Pb、Cd单一及复合胁迫对桑树种子萌发、幼苗生长的影响,以及桑树对重金属Pb、Cd的富集和迁移,探索桑树对修复Pb、Cd污染土壤的潜能。方法 以桑树种子和幼苗为实验材料,通过发芽实验和盆栽实验研究不同含量Pb(0、250、500、750、1 000、1 250 mg/kg)和Cd(0、0.2、1、25、75、100 mg/kg)单一及复合胁迫对桑树种子发芽率、幼苗株高、生物量等影响,以及Pb、Cd在桑树根、茎、叶中的富集和迁移。结果 (1)不同含量Pb、Cd单一及复合胁迫均对桑树种子萌发产生抑制作用;(2)低含量Pb、Cd(250、0.2 mg/kg)对桑树幼苗株高、生物量产生促进作用,当含量升高时转为抑制作用。(3)Pb、Cd主要积累于桑树根系中,低含量的Pb(250 mg/kg)会促进桑树对Cd的富集和迁移;桑树对Cd的富集及迁移系数高于Pb,但富集系数和迁移系数最高值均 < 1。Pb、Cd复合胁迫下,桑树对Pb、Cd富集和迁移系数小于单一胁迫;当Pb、Cd含量升高时,Pb、Cd富集系数和迁移系数均呈现下降趋势。结论 不同含量Pb、Cd均会不用程度的抑制桑树种子萌发,抑制作用随Pb、Cd含量升高而增强。桑树不属于超富集植物,但对低含量Pb、Cd富集及转移系数较高,并且低含量Pb、Cd会促进桑树生长,可在低含量Pb、Cd污染土壤中开展种桑养蚕模式进行土壤重金属污染修复。
  • 图 1  Pb、Cd对桑树生物量的影响

    Figure 1.  Effects of lead and cadmium on biomass of mulberry

    图 2  桑树各部分Pb含量

    Figure 2.  Concentrations of Pb in each part of mulberry

    图 3  桑树各部分Cd含量

    Figure 3.  Concentrations of Cd in each part of mulberry

    图 4  Pb、Cd富集系数

    Figure 4.  Bioconcentration coefficients of Pb and Cd

    图 5  Pb、Cd迁移系数

    Figure 5.  Transfer coefficients of Pb and Cd

    表 1  Pb、Cd复合胁迫含量

    Table 1.  Concentrations of Pb and Cd under combined stress

    Pb含量
    Content of
    Pb/(mg·kg− 1)
    Cd含量 Content of Cd/(mg·kg− 1)
    00.212575100
    0P1C1P1C2P1C3P1C4P1C5P1C6
    250P2C1P2C2P2C3P2C4P2C5P2C6
    500P3C1P3C2P3C3P3C4P3C5P3C6
    750P4C1P4C2P4C3P4C4P4C5P4C6
    1 000P5C1P5C2P5C3P5C4P5C5P5C6
    1 250P6C1P6C2P6C3P6C4P6C5P6C6
    注:P1、P2、P3、P4、P5、P6表示重金属Pb含量分别为0、250、500、750、1 000、1 250 mg/kg,C1、C2、C3、C4、C5、C6表示重金属Cd含量分别为0、0.2、1、25、75、100 mg/kg。P1C1表示Pb含量为0 mg/kg且Cd含量为0 mg/kg,P1C2表示Pb含量为0 mg/kg且Cd含量为0.2 mg/kg,P6C6表示Pb含量为1 250 mg/kg且Cd含量为100 mg/kg,下同。 Notes: P1、P2、P3、P4、P5、P6 indicate contents of Pb are 0、250、500、750、1 000、1 250 mg/kg,C1、C2、C3、C4、C5、C6 indicate contents of Cd are 0、0.2、1、25、75、100 mg/kg. P1C1 indicate content of Pb is 0 mg/kg and content of Cd is 0 mg/kg,P1C2 indicate content of Pb is 0 mg/kg and content of Cd is 0.2 mg/kg,P6C6 indicate content of Pb is 1 250 mg/kg and content of Cd is 100 mg/kg, The same below.
    下载: 导出CSV

    表 2  Pb、Cd对桑树种子发芽率的影响

    Table 2.  Effects of lead and cadmium on germination of mulberry seeds %

    项目 ItemC1C2C3C4C5C6
    P185.67 ± 3.15Aa57.33 ± 6.26Ba43.33 ± 2.36Ca37.67 ± 3.96CDa31.67 ± 5.69Da22.67 ± 4.26Ea
    P278.67 ± 3.07Ab48.67 ± 5.14Bab41.33 ± 3.16BCa36.33 ± 4.14Ca14.33 ± 6.24Db10.33 ± 3.95Db
    P365.67 ± 3.07Ac45.67 ± 1.25Bc23.67 ± 5.14Cb21.67 ± 5.23Cb10.33 ± 2.24Db5.67 ± 2.17Eb
    P461.33 ± 6.35Ac29.67 ± 5.23Bd8.33 ± 2.25Cc6.67 ± 2.64Cc3.67 ± 3.06Cc0
    P558.33 ± 6.54Acd29.33 ± 6.22Bd0000
    P648.33 ± 3.27Ad22.67 ± 4.17Be0000
    注:不同小写字母代表同一列差异显著(P < 0.05),不同大写字母表示同一行差异显著(P < 0.05)。下同。Notes: different small letters indicate significant difference in the same column at 0.05 level, and different capital letters indicate significant difference in the same line at 0.05 level. The same below.
    下载: 导出CSV

    表 3  Pb、Cd对桑树株高的影响

    Table 3.  Effects of lead and cadmium on plant height of mulberry cm

    项目 ItemC1C2C3C4C5C6
    P183.64 ± 2.41bc85.99 ± 4.11b80.74 ± 1.59c65.13 ± 1.72d51.45 ± 2.17f38.54 ± 2.1h
    P291.71 ± 3.41a93.21 ± 3.86a81.56 ± 3.15c56.69 ± 2.36e46.25 ± 2.65g36.25 ± 2.23hi
    P386.76 ± 2.38b80.21 ± 3.37c78.63 ± 4.06c52.14 ± 2.73f41.28 ± 2.89h25.58 ± 2.71j
    P469.45 ± 2.08d73.02 ± 3.42d67.84 ± 3.34d39.23 ± 2.86h38.15 ± 2.71h22.15 ± 1.13k
    P562.71 ± 1.73d67.51 ± 1.45d58.67 ± 2.13e36.55 ± 1.34hi27.11 ± 3.06j0
    P646.18 ± 2.84g51.61 ± 2.04f45.32 ± 1.51g34.22 ± 0.67i00
    下载: 导出CSV
  • [1] Adrees M, Ali S, Rizwan M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review[J]. Ecotoxicology and Environmental Safety, 2015, 119(9): 186−197.
    [2] 姜礅, 王月月, 严善春. 银中杨各部位对Cd、Zn、Pb的富集特性[J]. 北京林业大学学报, 2018, 40(1):83−88.Jiang D, Wang Y Y, Yan S C. Accumulation characteristics in all parts of Populous alba ‘Berolinensis’ to cadmium, zinc, and lead[J]. Journal of Beijing Forestry University, 2018, 40(1): 83−88.
    [3] Jia X L, Hu B F, Marchant B P, et al. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: a case study in the Yangtze Delta, China[J]. Environmental Pollution, 2019, 250(4): 601−609.
    [4] 邹建美, 孙江, 戴伟, 等. 北京近郊耕作土壤重金属状况评价分析[J]. 北京林业大学学报, 2013, 35(1):132−138.Zou J M, Sun J, Dai W, et al. Evaluation and analysis of heavy metals in cultivated soils in the suburbs of Beijing[J]. Journal of Beijing Forestry University, 2013, 35(1): 132−138.
    [5] Perlatti F, Otero X L, Macias F, et al. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes[J]. Science of the Total Environment, 2014, 500(12): 91−102.
    [6] 陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报, 2018, 12(10):2845−2854. doi: 10.12030/j.cjee.201804192Chen X Y, Wu Y Q. Remediation mechanism of multi-heavy metal contaminated soil by using different chemical washing agents[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2845−2854. doi: 10.12030/j.cjee.201804192
    [7] Atafar Z, Mesdaghinia A, Nouri J, et al. Effect of fertilizer application on soil heavy metal concentration[J]. Environmental Monitoring & Assessment, 2010, 160(1): 83−89.
    [8] Zahran S, Lverson T, Shawn P, et al. The effect of leaded aviation gasoline on blood lead in children[J]. Journal of the Association of Environmental and Resource Economists, 2017, 2(4): 575−610.
    [9] Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science & Pollution Research, 2016, 23(13): 13128−13136.
    [10] 王琦, 李芳柏, 黄小追, 等. 一种基于风险管控的稻田土壤重金属污染分级方法[J]. 生态环境学报, 2018, 27(12):2321−2328.Wang Q, Li F B, Huang X Z, et al. A classification approach of heavy metal pollution of paddy soil based on risk management[J]. Ecology and Environmental Sciences, 2018, 27(12): 2321−2328.
    [11] Zia M H, Codling E E, Scheckel K G, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review[J]. Environmental Pollution, 2011, 159(10): 2320−2327. doi: 10.1016/j.envpol.2011.04.043
    [12] 杨文杰, 姚瑞华, 孙宏亮, 等. 添加剂对土壤镉的形态及油菜生长的影响[J]. 环境科学与技术, 2018, 41(S2):9−13.Yang W J. Yao R H, Sun H L, et al. Effects of application of soil amendments in cadmium contaminated soil on rape growth and chemical form of cadmium[J]. Environmental Science & Technology, 2018, 41(S2): 9−13.
    [13] 孙丽娟, 秦秦, 宋科, 等. 镉污染农田土壤修复技术及安全利用方法研究进展[J]. 生态环境学报, 2018, 27(7):1377−1386.Sun L Q, Qin Q, Song K, et al. The remediation and safety utilization techniques for Cd contaminated farmland soil: a review[J]. Ecology and Environmental Sciences, 2018, 27(7): 1377−1386.
    [14] Rehman M Z U, Rizwan M, Hussain A, et al. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil[J]. Environmental Pollution, 2018, 241(10): 557−565.
    [15] Mench M, Lepp N, Bert V, et al. Successes and limitations of phyto-technologies at field scale: outcomes, assessment and outlook from COST Action 859[J]. Journal of Soils and Sediments, 2010, 10(6): 1039−1070. doi: 10.1007/s11368-010-0190-x
    [16] 黄川, 李柳, 黄珊, 等. 重金属污染土壤的草酸和EDTA混合淋洗研究[J]. 环境工程学报, 2014, 8(8):3480−3486.Huang C, Li L, Huang S, et al. Study on mixture of OX and EDTA leaching heavy metals contaminated soil[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3480−3486.
    [17] 周东美, 仓龙, 邓昌芬. 过氧化氢对铬在黄棕壤中电动过程的影响[J]. 土壤学报, 2005, 42(1):59−63. doi: 10.3321/j.issn:0564-3929.2005.01.009Zhou D M, Cang L, Deng C F. Electro kinetic processes of chromium in yellow brown soil as affected by hydrogen peroxide[J]. Acta Pedological Sinica, 2005, 42(1): 59−63. doi: 10.3321/j.issn:0564-3929.2005.01.009
    [18] Xiao W, Wang H, Li T, et al. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum Alfredia associated with carbendazim-degrading bacterial strains[J]. Environmental Science and Pollution Research, 2013, 20(1):380−389.
    [19] 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(增刊 2):213−220.Li F Z, Teng Y T, Zhang Y P, et al. Research progress of disposal technology for heavy metal hyperaccumulator plants[J]. Environmental Science & Technology, 2018, 41(Suppl. 2): 213−220.
    [20] Pinto A P, Varennes A D, Fonseca R, et al. Phytoremediation of soils contaminated with heavy metals: techniques and strategies[J]. Phytoremediation, 2014(10): 133−155.
    [21] Gaurav S, Diane P, Sikandar I M. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects[J]. Reviews of Environmental Contamination and Toxicology, 2019, 249(2): 71−131.
    [22] Michel M, Schwitzguébel J, Schroeder P, et al. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety[J]. Environmental Science and Pollution Research, 2009, 16(7): 876−900.
    [23] 曾鹏, 郭朝晖, 肖细元, 等. 芦竹和木本植物间种修复重金属污染土壤[J]. 环境科学, 2018, 39(11):5207−5216.Zeng P, Guo C H, Xiao X Y, et al. Intercropping arundo donax with woody plants to eemediate heavy metal-contaminated soil[J]. Environmental Science, 2018, 39(11): 5207−5216.
    [24] Prince W S, Senthilkumar P, Subburam V. Mulberry-silkworm food chain : a templet to assess heavy metal mobility in terrestrial ecosystems[J]. Environmental Monitoring and Assessment, 2001, 69(3): 231−238. doi: 10.1023/A:1010715606097
    [25] Zhao S, Shang X, Duo L. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4[J]. Environmental Science and Pollution Research, 2013, 20(2): 967−975. doi: 10.1007/s11356-012-0992-z
    [26] Si L, Peng X, Zhou J. The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: a new method for urban sludge disposal[J]. Environmental Science and Pollution Research, 2019, 26(2): 1379−1393. doi: 10.1007/s11356-018-3635-1
    [27] Zhou L, Zhao Y, Wang S. Cadmium transfer and detoxification mechanisms in a soil–mulberry–silkworm system: phytoremediation potential[J]. Environmental Science and Pollution Research, 2015, 22(22): 18031−18039. doi: 10.1007/s11356-015-5011-8
    [28] 廖希雯, 陈杰, 范天凤, 等. 地质聚合物固化稳定化重金属复合污染土壤[J]. 环境工程学报, 2018, 12(7):2056−2065. doi: 10.12030/j.cjee.201712077Liao X W, Chen J, Fan T F, et al. Soil of heavy metal composite pollution by geological polymer stabilization[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2056−2065. doi: 10.12030/j.cjee.201712077
    [29] Ma J F, Yamaji N, Mitani N, et al. Transporters of arenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931−9935. doi: 10.1073/pnas.0802361105
    [30] 李舒琦, 高卓, 臧飞, 等. 外源Cd在施污黄土-小麦系统中的富集迁移规律[J]. 干旱区资源与环境, 2017, 31(12):123−128.Li S Q, Gao Z, Zang F, et al. Enrichment and migration regularity of exogenous Cd in the applying sludge loess-wheat system[J]. Journal of Arid Land Resources and Environment, 2017, 31(12): 123−128.
    [31] 王波, 黄攀, 吕德雅, 等. 铅、镉对南荻种子萌发和幼苗生长的影响[J]. 生态环境学报, 2018, 27(9):1768−1773.Wang B, Huang P, Lü D Y, et al. Effects of Pb and Cd on the seed germination and seedling growth of triarrhena lutarioriparia[J]. Ecology and Environmental Sciences, 2018, 27(9): 1768−1773.
    [32] 邹文桐. 铅镉复合胁迫对芥菜种子萌发、幼苗生长及光合色素含量的影响[J]. 种子, 2013, 32(3):41−45. doi: 10.3969/j.issn.1001-4705.2013.03.012Zou W T. Effects of combined lead and cadmium on seed germination, seedling growth and leaf photosynthetic pigment contents of Brassica juncea[J]. Seed, 2013, 32(3): 41−45. doi: 10.3969/j.issn.1001-4705.2013.03.012
    [33] 葛成军, 陈秋波, 俞花美, 等. Cd胁迫对2种热带牧草种子发芽与根伸长的抑制效应[J]. 热带作物学报, 2008, 29(5):567−571. doi: 10.3969/j.issn.1000-2561.2008.05.007Ge C J, Chen Q B, Yu H M, et al. Effect of Cd on Germination and Inhibition of Root Elongation of Tropical Forage Plants[J]. Chinese Journal of Tropical Crops, 2008, 29(5): 567−571. doi: 10.3969/j.issn.1000-2561.2008.05.007
    [34] 冯鹏, 孙力, 申晓慧, 等. 多年生黑麦草对Pb、Cd胁迫的响应及富集能力研究[J]. 草业学报, 2016, 25(1):153−162.Feng P, Sun L, Shen X H, et al. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses[J]. Acta Prataculturae Sinica, 2016, 25(1): 153−162.
    [35] Wang L Y, Zheng S Y. Effect of cadmium, lead and their combined pollution on seed germination of wheat[J]. Journal of Triticeae Crops, 2009, 29(1): 146−148.
    [36] Saraswat S, Rai J P N. Phytoextraction potential of six plant species grown in multimetal contaminated soil[J]. Chemistry and Ecology, 2009, 25(1): 1−11. doi: 10.1080/02757540802657185
    [37] 黄仁志, 李一平, 蒋勇兵, 等. 镉铅复合胁迫对桑苗生长与桑叶重金属含量的影响[J]. 蚕业科学, 2018, 44(5):665−671.Huang R Z, Li Y P, Jiang Y B, et al. Effect of cadmium and lead combined stress on growth of mulberry saplings and contents of heavy metal in mulberry leaf[J]. Science of Sericulture, 2018, 44(5): 665−671.
    [38] 徐学华, 黄大庄, 王连芳, 等. 土壤铅、镉胁迫对红瑞木生长及生理生化特性的影响[J]. 水土保持学报, 2009, 23(1):213−216. doi: 10.3321/j.issn:1009-2242.2009.01.045Xu X H, Huang D Z, Wang L F, et al. Effects of Pb, Cd stress in soil on the growth and physiological and biochemical characteristics of Swida alba[J]. Journal of Soil and Water Conservation, 2009, 23(1): 213−216. doi: 10.3321/j.issn:1009-2242.2009.01.045
    [39] Hauck M, Paul A, Gross S. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus[J]. Environmental and Experimental Botany, 2003, 49(2): 181−191. doi: 10.1016/S0098-8472(02)00069-2
    [40] Pietrini F, Iori V, Cheremisina A, et al. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content[J]. Environmental Science and Pollution Research, 2015, 22(1): 482−494. doi: 10.1007/s11356-014-3349-y
    [41] Shu X, Yin L, Zhang Q, et al. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L.[J]. Environmental Science and Pollution Research, 2012, 19(3): 893−902. doi: 10.1007/s11356-011-0625-y
    [42] Yamaguchi H, Fukuoka H, Arao T. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum[J]. Journal of Experimental Botany, 2010, 61(2): 423−437. doi: 10.1093/jxb/erp313
    [43] 王新新, 吴亮, 朱生凤, 等. 镉胁迫对碱蓬种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2013, 32(2):238−243.Wang X X, Wu L, Zhu S F, et al. Effects of cadmium stress on seed germination and seedling growth of Suaeda glauca[J]. Journal of Agro-Environment Science, 2013, 32(2): 238−243.
    [44] Kuboi T, Noguchi A, Yazaki J. Relationship between tolerance and accumulation characteristics of cadmium in higher plants[J]. Plant and Soil, 1987, 104(2): 275−280. doi: 10.1007/BF02372542
    [45] 陈朝明, 龚惠群, 王凯荣, 等. 桑−蚕系统中镉的吸收、累积与迁移[J]. 生态学报, 1999, 19(5):76−81.Chen C M, Gong H Q, Wang K R, et al. The absorption, accumulation and migration of cadmium in the system of soil mulberry and silkworm[J]. Acta Ecological Sinica, 1999, 19(5): 76−81.
    [46] Shukla P, Reddy R A, Ponnuvel K M, et al. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in mulberry (Morus alba L.) under different abiotic stresses[J]. Molecular Biology Reports, 2019, 46(2): 1809−1817. doi: 10.1007/s11033-019-04631-y
    [47] 蒋诗梦, 颜新培, 龚昕, 等. 桑树品种间重金属镉的分布与富集规律研究[J]. 中国农学通报, 2016, 32(22):76−83. doi: 10.11924/j.issn.1000-6850.casb15120167Jiang S M, Yan X P, Gong X, et al. Distribution and enrichment regularity of cadmium of different mulberry varieties[J]. Chinese Agricultural Science Bulletin, 2016, 32(22): 76−83. doi: 10.11924/j.issn.1000-6850.casb15120167
  • [1] 张嘉桐关颖慧司莉青彭霞薇孟丙南周金星 . Pb2+、Cd2+复合胁迫对桑树光合作用的影响. 北京林业大学学报, doi: 10.13332/j.1000-1522.20170332
    [2] 张会慧张秀丽朱文旭许楠李鑫岳冰冰王良再孙广玉 . 桑树叶片光系统Ⅱ对NaCl和Na2CO3胁迫的响应. 北京林业大学学报,
    [3] 李海兴孙晓新满秀玲王清波李东胡艳玲 . 恢复湿地土壤重金属含量变化及污染评价. 北京林业大学学报, doi: 10.12171/j.1000-1522.20190338
    [4] 张思冲叶华香张敏 . 大庆北二十里泡湿地沉积物重金属污染物吸附与释放的研究. 北京林业大学学报,
    [5] 张茹琴唐明张峰峰黄继川 . 酸碱度和重金属对3种外生菌根真菌生长的影响. 北京林业大学学报,
    [6] 杨洁蔡体久汪群慧王琪 . 直接与间接生物淋滤法去除城市生活垃圾焚烧飞灰中重金属的研究. 北京林业大学学报,
    [7] 黄小辉冯大兰刘芸朱恒星陈道静耿养会 . 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性. 北京林业大学学报, doi: 10.13332/j.1000-1522.20150324
    [8] 姜礅王月月严善春 . 银中杨各部位对Cd、Zn、Pb的富集特性. 北京林业大学学报, doi: 10.13332/j.1000-1522.20170191
    [9] 孙亚杰赵天琪张春雷付玉杰李淑君马艳丽 . 糠醛渣木质素接枝聚丙烯酸水凝胶对Pb2+、Cu2+、Cd2+吸附性能研究. 北京林业大学学报, doi: 10.13332/j.1000-1522.20170309
    [10] 邹建美孙江戴伟姚志斌杨添刘娜丽 . 北京近郊耕作土壤重金属状况评价分析. 北京林业大学学报,
    [11] 王晓佳王百田李德宁曹远博 . 聚丙稀酰胺高吸附树脂与重金属离子的相互作用. 北京林业大学学报, doi: 10.13332/j.1000-1522.20150362
    [12] 王爱霞张敏方炎明贾恒周楠楠 . 行道树对重金属污染的响应及其功能型分组. 北京林业大学学报,
    [13] 柴媛傅峰梁善庆 . 木基金属功能复合材料研究进展. 北京林业大学学报, doi: 10.13332/j.1000-1522.20180382
    [14] 王月月董效文姜礅狄贵秋王沫刘晓霞孟昭军严善春 . 镉、锌复合胁迫对银中杨化学防御的影响. 北京林业大学学报, doi: 10.13332/j.1000-1522.20190008
    [15] 王卿平曹金珍张景朋蒋明亮 . 含三唑复合防腐剂及其竹处理材的金属腐蚀性能. 北京林业大学学报, doi: 10.13332/j.1000-1522.20190232
    [16] 李子忠吕国华赵炳祥赖娜娜井立军 , . 颐和园园林绿地复合系统耗水规律初步研究. 北京林业大学学报,
    [17] 王兰珍党文杰刘剑锋HUALi_zhong李雪华韦艳葵李义良李国雷李生宇刘鹏举王旭王立海张冬梅耿玉清薛康吴丽娟任强朱小龙方升佐汪杭军1赵铁珍段文霞周传艳杨慧敏杨娅周亮何茜周宇飞尹光彩朱波JIANGXi_dian宋永明李建章高岚周国逸李振基刘勇韩士杰黎明雷加强崔同林苏晓华刘勇方陆明余新晓阎秀峰王清文孙向阳虞木奎周国逸柯水发唐小明赖志华刘锐徐新文王新杰HEXiu_bin鹿振友徐扬王春林沈熙环宗文君喻理飞程云清张冰玉李吉跃宋爱琴齐涛李俊清李晓兰陈培金王伟宏李丙文孙阁陈实陈峻崎茹广欣周晓梅国庆温亚利张志毅3郭蓓唐旭利张可栋姚永刚长山刘志明王晓静蒋德明王旭王建林周玉平宋湛谦赵双荣王春林关少华陈放闫俊华杨伟伟郑凌峰 . 木纤维/岩棉纤维复合材料的研究 . 北京林业大学学报,
    [18] 熊瑾李景文饶良懿侯亚南殷亚方詹亚光李全发马文辉杨海龙张秋英杜华强李景文杨晓晖龙玲李慧黄国胜刘震符韵林
    王保平
    王明枝李梅宋小双张一平耿晓东范文义吕建雄窦军霞尹立辉朱金兆陈晓阳李发东张克斌王洁瑛王雪军徐峰李俊清李妮亚李吉跃赵敏梁机朱金兆陆熙娴韩海荣刘文耀秦瑶李俊清慈龙骏唐黎明赵宪文李云于贵瑞乔杰倪春孙玉军齐实陈素文沈有信毕华兴李凤兰李黎康峰峰刘桂丰陈晓阳刘雪梅秦素玲欧国强王玉成李伟黎昌琼魏建祥朱国平王雪马钦彦赵双菊宋献方文瑞钧蒋建平韦广绥刘伦辉张桂芹李伟任海青丁霞杨谦张万军孙涛周海江李慧宋清海孙晓敏孙志强刘莹李宗然
    , . 木材纤维复合材料的工艺及性能. 北京林业大学学报,
    [19] 孙迪关德新袁凤辉王安志金昌杰吴家兵 . 辽西农林复合系统中杨树水分耗散规律. 北京林业大学学报,
    [20] 郭文静鲍甫成王正 . 复合方式对木纤维聚乳酸生物质复合材料结构与性能的影响. 北京林业大学学报,
  • 加载中
图(5)表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  61
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 录用日期:  2019-06-24
  • 网络出版日期:  2020-03-07

Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响

    通讯作者: 王小平, wangxp@bfdic.com
    作者简介: 乔永,博士,副研究员。主要研究方向:森林土壤、土壤生态、土壤修复。Email:qiaoyong85@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号
  • 1. 北京林业大学林学院,北京 100083
  • 2. 北京林业大学水土保持学院,北京 100083
  • 3. 北京市园林绿化局,北京 100013

摘要: 目的研究不同含量Pb、Cd单一及复合胁迫对桑树种子萌发、幼苗生长的影响,以及桑树对重金属Pb、Cd的富集和迁移,探索桑树对修复Pb、Cd污染土壤的潜能。方法以桑树种子和幼苗为实验材料,通过发芽实验和盆栽实验研究不同含量Pb(0、250、500、750、1 000、1 250 mg/kg)和Cd(0、0.2、1、25、75、100 mg/kg)单一及复合胁迫对桑树种子发芽率、幼苗株高、生物量等影响,以及Pb、Cd在桑树根、茎、叶中的富集和迁移。结果(1)不同含量Pb、Cd单一及复合胁迫均对桑树种子萌发产生抑制作用;(2)低含量Pb、Cd(250、0.2 mg/kg)对桑树幼苗株高、生物量产生促进作用,当含量升高时转为抑制作用。(3)Pb、Cd主要积累于桑树根系中,低含量的Pb(250 mg/kg)会促进桑树对Cd的富集和迁移;桑树对Cd的富集及迁移系数高于Pb,但富集系数和迁移系数最高值均 < 1。Pb、Cd复合胁迫下,桑树对Pb、Cd富集和迁移系数小于单一胁迫;当Pb、Cd含量升高时,Pb、Cd富集系数和迁移系数均呈现下降趋势。结论不同含量Pb、Cd均会不用程度的抑制桑树种子萌发,抑制作用随Pb、Cd含量升高而增强。桑树不属于超富集植物,但对低含量Pb、Cd富集及转移系数较高,并且低含量Pb、Cd会促进桑树生长,可在低含量Pb、Cd污染土壤中开展种桑养蚕模式进行土壤重金属污染修复。

English Abstract

  • 近年来,随着工业技术的飞速发展和化工用品在农业中的不断应用,各种重金属随人类活动不断的进入到土壤中,而这些重金属不仅会对生态环境和植物造成破坏,还能通过食物链给人类造成健康危害[1-2]。土壤重金属污染已经成为亟待解决的问题[3-5]。2014年,原国土资源部和环保部联合发布了《全国土壤污染调查公报》,全国土壤重金属Pb、Cd的超标率为1.5%和7.0%[6]。土壤中的Pb主要来源于农药化肥、污水灌溉[7]、汽车尾气[8]和采矿冶炼[9]等,有研究表明土壤中的Pb会造成植物生长受损和土壤肥力退化[10],进入人体后会造成大脑、肾脏、脾脏等部位的损伤[11]。Cd主要来源于电子化工产业[12],土壤中的Cd毒性强、难降解,容易被植物吸收,影响植物生长[13];同时Cd不是人体必须微量元素,并具有较强的致癌性,进入人体后会造成骨骼、肝脏及免疫系统损伤,如“骨痛病”等[14]。Pb、Cd来源广泛、毒性强,所造成的土壤污染应引起重视。

    目前针对土壤重金属污染修复方法主要有钝化[15]、淋洗[16]、电化学修复[17]、微生物修复[18]和植物修复等,其中植物修复具有环境扰动小、成本低、效率高等优点,成为重金属污染修复研究和应用热点[19-20]。但当前植物修复的研究主要集中超富集植物,偏注重其生态效益方面,但大部分超富集植物生物量小,经济效益低,因而在实际生产中不能兼顾经济效益[21-22]

    桑树(Morus alba)生长速度快,生物量大,种植范围广,经济价值高,耐寒耐旱[23],并且有研究表明桑树对Cd、Cu、Ni具有较强富集潜力和转移能力[24-26]。目前针对桑树的研究主要集中在抗旱抗寒性及其对单一重金属胁迫抗性研究上[27],针对重金属复合胁迫下桑树研究相对较少,但重金属在土壤中并不是单一存在,而是与其他重金属产生协同或拮抗作用而形成复合污染[28]。本研究利用盆栽实验,研究不同含量Pb、Cd复合胁迫下,桑树种子萌发和生长特性,以及Pb、Cd的富集和迁移,以期对种植桑树修复重金属Pb、Cd复合污染土壤的生态经济模式提供科学依据。

    • 实验用土取自北京林业大学实验林场(鹫峰),土壤类型为普通简育干润雏形土。采集0 ~ 20 cm表层土壤,除去枯枝落叶、石块等杂物,置于室内通风处阴干20 d后过筛备用,供试土壤pH值为7.54,重金属Pb含量为15.59 mg/kg、镉含量为0.017 9 mg/kg(与添加Pb、Cd含量差异较大,可忽略不计),有机质含量为31.27 g/kg,全磷含量为269 mg/kg,全氮含量为291 mg/kg,全钾含量为178 mg/kg,阳离子交换量(CEC)为30.68 cmol(+)/kg。

      桑树种子,采摘自河南省,采摘后置于− 4 ℃环境下保存。桑树幼苗,在营养基质中(未添加重金属)培育桑树幼苗,统一选取株高为5 cm长势均一的幼苗用于盆栽实验。

      重金属试剂:Pb(NO32、Cd Cl2·2.5H2O。

    • 发芽实验采用二因素随机区组设计,设置Pb、Cd含量各6种不同水平,每个处理3个重复,采用随机区组排列(表1)。Pb、Cd溶液采用蒸馏水(pH = 7)统一配制。培养皿底部铺上3层滤纸,加入5 mL蒸馏水使其湿润,将50粒桑树种子放入培养皿中,用纯净水浸泡24 h后加入10 mL重金属溶液,培养皿放置在恒温箱中(25 ℃,2 000 lx,12 h/d),每隔2 d更换一次滤纸和溶液,待所有处理发芽数没有变化时,实验结束。

      表 1  Pb、Cd复合胁迫含量

      Table 1.  Concentrations of Pb and Cd under combined stress

      Pb含量
      Content of
      Pb/(mg·kg− 1)
      Cd含量 Content of Cd/(mg·kg− 1)
      00.212575100
      0P1C1P1C2P1C3P1C4P1C5P1C6
      250P2C1P2C2P2C3P2C4P2C5P2C6
      500P3C1P3C2P3C3P3C4P3C5P3C6
      750P4C1P4C2P4C3P4C4P4C5P4C6
      1 000P5C1P5C2P5C3P5C4P5C5P5C6
      1 250P6C1P6C2P6C3P6C4P6C5P6C6
      注:P1、P2、P3、P4、P5、P6表示重金属Pb含量分别为0、250、500、750、1 000、1 250 mg/kg,C1、C2、C3、C4、C5、C6表示重金属Cd含量分别为0、0.2、1、25、75、100 mg/kg。P1C1表示Pb含量为0 mg/kg且Cd含量为0 mg/kg,P1C2表示Pb含量为0 mg/kg且Cd含量为0.2 mg/kg,P6C6表示Pb含量为1 250 mg/kg且Cd含量为100 mg/kg,下同。 Notes: P1、P2、P3、P4、P5、P6 indicate contents of Pb are 0、250、500、750、1 000、1 250 mg/kg,C1、C2、C3、C4、C5、C6 indicate contents of Cd are 0、0.2、1、25、75、100 mg/kg. P1C1 indicate content of Pb is 0 mg/kg and content of Cd is 0 mg/kg,P1C2 indicate content of Pb is 0 mg/kg and content of Cd is 0.2 mg/kg,P6C6 indicate content of Pb is 1 250 mg/kg and content of Cd is 100 mg/kg, The same below.
    • 实验在北京林业大学实验林场(鹫峰)牡丹园1号温室进行,实验采用二因素随机区组设计,设置Pb、Cd含量各6种不同水平(具体见表1),每组处理重复3次;盆栽实验采用统一规格(上直径35 cm、底直径30 cm、高30 cm)、下垫托盘的塑料花盆进行,每盆添加6 kg土壤,并分别加入相应含量重金属溶液,稳定30 d后开始进行实验。每盆移栽5株长势均一(株高5 cm)的桑苗,之后每天上午08:00采用均匀喷洒方式浇水500 mL,盆内保持湿润状态,实验持续90 d,待实验结束时测量株高,根、茎、叶生物量和重金属Pb、Cd含量。

    • 胚根长度达到种子纵径长度一半发芽数记为1;发芽率 = 发芽种子数/供试种子数 × 100%;株高:桑苗移栽90 d时测量株高,每盆取各株平均高;生物量:90 d时,对桑树进行破坏性取样,将所有桑树幼苗全部挖出,根茎叶各自分开,用自来水冲洗干净后再用去离子水清洗一遍,置于105 ℃烘箱中杀青2 h后,置于80 ℃下烘至恒质量后进行称质量;重金属含量:90 d采集桑苗根茎叶,去离子水冲洗干净。杀青5 min(105 ℃),烘干至恒质量(70 ℃),研磨过尼龙筛(100目)。微波消解法消煮,用ICP-AES测定Pb、Cd含量;转移系数 = 地上部分重金属含量/地下部分重金属含量;富集系数 = 植物中的重金属含量/土壤中重金属含量。

    • 采用SPSS19.0进行数据处理;用Origin 9.2进行图表绘制。

    • 表2所示,在Pb单一胁迫下,发芽率随Pb含量增加而降低,最低值出现在P6C1处理(48.33%),相比较对照(85.67%)降低43.59%;在Cd单一胁迫下,发芽率同样随Cd含量增加而降低,最低值出现在P1C6(22.67%),相比对照(P1C1)下降了73.54%;在Pb-Cd复合胁迫下,发芽率随Pb、Cd含量上升而降低,且降低速率高于Pb、Cd单一胁迫,并且P4C6、P5(C3 ~ C6)、P6(C3 ~ C6)处理发芽率为0,Pb、Cd在对桑树种子发芽胁迫中表现为协同作用。

      表 2  Pb、Cd对桑树种子发芽率的影响

      Table 2.  Effects of lead and cadmium on germination of mulberry seeds %

      项目 ItemC1C2C3C4C5C6
      P185.67 ± 3.15Aa57.33 ± 6.26Ba43.33 ± 2.36Ca37.67 ± 3.96CDa31.67 ± 5.69Da22.67 ± 4.26Ea
      P278.67 ± 3.07Ab48.67 ± 5.14Bab41.33 ± 3.16BCa36.33 ± 4.14Ca14.33 ± 6.24Db10.33 ± 3.95Db
      P365.67 ± 3.07Ac45.67 ± 1.25Bc23.67 ± 5.14Cb21.67 ± 5.23Cb10.33 ± 2.24Db5.67 ± 2.17Eb
      P461.33 ± 6.35Ac29.67 ± 5.23Bd8.33 ± 2.25Cc6.67 ± 2.64Cc3.67 ± 3.06Cc0
      P558.33 ± 6.54Acd29.33 ± 6.22Bd0000
      P648.33 ± 3.27Ad22.67 ± 4.17Be0000
      注:不同小写字母代表同一列差异显著(P < 0.05),不同大写字母表示同一行差异显著(P < 0.05)。下同。Notes: different small letters indicate significant difference in the same column at 0.05 level, and different capital letters indicate significant difference in the same line at 0.05 level. The same below.
    • 表3所示,在Pb单一胁迫下,桑树株高随Pb含量升高表现出先升后降趋势,最高值为P2C1处理(91.71 cm),比对照处理株高(83.64 cm)升高9.69%,最低值为P6C1处理(46.18 cm),显著低于对照(P < 0.05)。在在Cd单一胁迫下,低含量Cd(0.2 mg/kg)P1C2处理株高与对照差异不显著,但随Cd含量升高,株高开始显著降低,最低值为P1C6处理(38.54 cm),比对照处理株高降低了53.92%。在Pb-Cd复合胁迫下,P2C2处理株高(93.21 cm)显著高于对照,P2C3和P3C2处理株高与对照差异不显著,其余全部复合胁迫处理全部显著低于对照(P < 0.05),除C2处理组(Cd含量0.2 mg/kg)外,其余复合胁迫处理随重金属含量上升而导致的株高降低速率高于对照处理,并在P6C5、P5C6、P6C6处理中出现桑树死亡。

      表 3  Pb、Cd对桑树株高的影响

      Table 3.  Effects of lead and cadmium on plant height of mulberry cm

      项目 ItemC1C2C3C4C5C6
      P183.64 ± 2.41bc85.99 ± 4.11b80.74 ± 1.59c65.13 ± 1.72d51.45 ± 2.17f38.54 ± 2.1h
      P291.71 ± 3.41a93.21 ± 3.86a81.56 ± 3.15c56.69 ± 2.36e46.25 ± 2.65g36.25 ± 2.23hi
      P386.76 ± 2.38b80.21 ± 3.37c78.63 ± 4.06c52.14 ± 2.73f41.28 ± 2.89h25.58 ± 2.71j
      P469.45 ± 2.08d73.02 ± 3.42d67.84 ± 3.34d39.23 ± 2.86h38.15 ± 2.71h22.15 ± 1.13k
      P562.71 ± 1.73d67.51 ± 1.45d58.67 ± 2.13e36.55 ± 1.34hi27.11 ± 3.06j0
      P646.18 ± 2.84g51.61 ± 2.04f45.32 ± 1.51g34.22 ± 0.67i00
    • 图1所示,在Pb单一胁迫下,桑树根、茎、叶生物量随Pb含量上升而一致表现出先升高后降低趋势,根茎叶生物量最高值同时出现在P2C1处理(36.95、42.99、20.04 g),均显著高于对照处理,分别比对照增加了7.99%、8.81%、8.79%;生物量最低值出现在P6C1处理,根茎叶生物量均显著低于对照处理;P4C1处理桑树地上生物量(43.47 g)比对照处理(57.93 g)下降了25%;在Cd单一胁迫下,根茎叶生物量随Cd浓度升高同样呈现出先升高后降低现象,最高值为P1C2处理,但与对照处理差异不显著;最低值出现在P1C6处理,各部位生物量均显著低于对照处理;P1C4处理地上生物量(38.27 g)比对照处理下降了34%;在Pb-Cd复合胁迫下,桑树各部位生物量最高值出现在P2C2处理,显著高于对照处理;随Pb、Cd含量升高,各部位生物量均呈现下降趋势,其中P3C3处理地上生物量(42.27%)比对照处理下降了27%,P6C5、P5C6、P6C6处理出现桑树幼苗致死现象。

      图  1  Pb、Cd对桑树生物量的影响

      Figure 1.  Effects of lead and cadmium on biomass of mulberry

    • Pb单一胁迫下,桑树根、茎、叶Pb含量随土壤中Pb浓度提升而增加,各部位Pb含量大小关系为根 > 茎 > 叶,Pb主要赋存在根系当中(图2);Pb-Cd复合胁迫下各部位的Pb含量随Cd含量上升呈现下降趋势,Cd离子的存在抑制了桑树对Pb的吸收。在Cd单一胁迫下,C1 ~ C5处理组桑树根、茎、叶Cd含量随土壤中Cd含量提升而增加(图3),C6(100 mg/kg)处理组桑树各部位Cd含量低于C5处理组,可能是过高含量的Cd离子严重影响了桑树的生长,抑制了对Cd吸收;Pb-Cd复合胁迫下,P2处理组各部位Cd含量高于对照组(P < 0.05),低含量的Pb(250 mg/kg)促进了桑树对Cd的吸收,但Pb含量达到500 mg/kg之后,桑树各部位Cd含量迅速下降。

      图  2  桑树各部分Pb含量

      Figure 2.  Concentrations of Pb in each part of mulberry

      图  3  桑树各部分Cd含量

      Figure 3.  Concentrations of Cd in each part of mulberry

    • 富集系数(BCF)是反映植物对重金属吸收能力的标志性指标。富集系数等于植物中的重金属含量与土壤中的重金属含量的比值,比值越大表示该植物对重金属的富集能力越强[29]。Pb单一胁迫下,Pb富集系数为0.06 ~ 0.14(图4),富集系数随土壤中Pb含量升高而降低;Pb-Cd复合胁迫下,同一Pb含量下,Pb富集系数随Cd含量升高而降低;Cd单一胁迫下,Cd富集系数为0.09 ~ 0.48(图4),富集系数随土壤中Cd含量升高而降低;Pb-Cd复合胁迫下,P2处理组(200 mg/kg)Cd富集系数高于所有处理组,其余处理组Cd富集系数随Cd含量升高而降低。迁移系数(TF)是指植物地上部重金属含量与根系中重金属含量的比值,用来评价植物对重金属的输送能力,系数越大说明输送能力越强[30]。在单一胁迫下,Pb的迁移系数(0.12 ~ 0.18)Cd的迁移系数(0.09 ~ 0.48)分别随土壤中Pb、Cd的含量升高而下降(图5);Pb-Cd复合胁迫下,Pb的迁移系数随Cd的含量升高而下降,Cd的迁移系数随Pb含量的升高先升后降,低含量的Pb促进Cd向地上部转移(图5)。

      图  4  Pb、Cd富集系数

      Figure 4.  Bioconcentration coefficients of Pb and Cd

      图  5  Pb、Cd迁移系数

      Figure 5.  Transfer coefficients of Pb and Cd

    • 本研究发现不同含量的Pb、Cd单一或复合胁迫均会抑制桑树种子萌发,复合胁迫抑制作用强于单一胁迫。王波等[31]研究发现,南荻(Triarrhena lutarioriparia)种子发芽率与铅、镉处理含量呈极显著负相关(P < 0.01);邹文桐通过研究发现,随着Pb、Cd复合含量的增加,宽杆芥菜(Brassica juncea)种子发芽率显著下降,Pb、Cd复合胁迫不利于芥菜种子的萌发[32],与本文研究结果相一致。分析原因可能是由于Pb、Cd降低了种子蛋白酶和淀粉酶活性,进而抑制种子内蛋白质和淀粉分解,导致种子萌发供能不足[33]。冯鹏等对黑麦草研究发现,低含量Pb对生黑麦草(Lolium perenne)种子发芽影响不显著,低含量Cd对黑麦草种子发芽势及发芽率具有促进作用[34];Wang等[35]通过研究发现,低含量的Pb、Cd对小麦(Triticum aestivum)种子萌发具有一定促进作用,与本文的研究结果不相同,说明在Pb、Cd复合胁迫下不同植物种子的生理机制和响应程度不同。

      研究表明,当Pb、Cd在植物中积累到一定含量时,会影响植物生长,严重时会导致植物死亡[36]。在本研究中,低含量Pb、Cd(250、0.2 mg/kg)会促进桑树株高生长各部位生物量积累,但随Pb、Cd含量升高转为抑制桑树生长,复合胁迫抑制作用强于单一胁迫。Si 等人通过研究发现,低含量的重金属环境会提高桑树株高、总生物量和冠幅[26];黄仁志等同样发现低含量的Pb、Cd能够明显促进桑苗生长[37];徐学华等对通过研究发现低含量的Pb、Cd会促进红瑞木的株高生长生物量积累,但高含量的重金属会抑制红瑞木的生长[38],上述研究与本实验结果相一致。分析原因可能是因为(1)低含量的重金属会促进叶绿素的合成,促进植物光合作用,高含量的重金属会替代Mg2+,破坏叶绿体的结构和功能[39];(2)高含量重金属会导致活性氧代谢系统失调,破坏植物的膜系统,降低光合作用[40-41];(3)低含量重金属诱导植物产生活性氧自由基,诱导某些基因表达,提高植物代谢速率,促进植物生长[42];高含量重金属会导致活性氧自由基产生过多,降低植物体内多种保护酶活性,导致植物代谢紊乱,抑制物质生长[43]

      在以往研究中,通常将植物地上部分生物量下降25%时土壤中的重金属含量定义为植物的重金属耐受上限[44]。在本研究中,Pb、Cd单一胁迫下,桑树对Pb的耐受值为1 000 mg/kg,对Cd的耐受值为25 mg/kg,这与陈朝明等的当土壤镉含量 ≥ 25.8 mg/kg后,地上部分生物量才明显下降的研究结果相一致[45],表明桑树对Pb、Cd具有较强的耐受性。在Pb-Cd复合胁迫下,桑树对Pb、Cd的耐受值上限分别降至500 mg/kg和1 mg/kg,表明Pb、Cd在对桑树的胁迫中表现为协同作用。

      陈朝明对桑−蚕系统Cd的吸收、富集和迁移研究[45]以及Zhou等人对桑蚕系统对土壤中镉的转移和解毒机制的研究[27]发现,桑树各部分Cd含量大小关系为根 > 茎 > 叶片,与本研究土壤中的Pb、Cd进入桑树后主要富集在根系中的研究结果相一致。本研究中桑树对Cd的富集和迁移能力高于Pb,与黄仁志等对不同重金属胁迫对桑树生长的影响研究结果相一致[37];本研究中,Cd富集系数最高值为0.32,迁移系数最高值为0.51,没有达到超富集植物(BCF > 1、TF > 1)的标准,但桑树生物量大、生长迅速、耐寒耐旱,抗盐碱,耐贫瘠[46],经济价值高[47],能够通过种桑养蚕模式在修复土壤重金属污染的同时带来较高的经济收益。我们还发现Pb、Cd单一和复合胁迫下,随Pb、Cd含量的增加,Pb、Cd富集系数整体呈现降低趋势,说明桑树对低含量Pb、Cd污染土壤修复效果优于高含量污染土壤。

    • (1)Pb、Cd单一及复合胁迫均对桑树种子萌发具有抑制作用,复合胁迫抑制作用强于单一胁迫。

      (2)低含量Pb(< 250 mg/kg)、Cd(< 1 mg/kg)胁迫会促进桑树生长和生物量累积,高含量则转为抑制作用。

      (3)土壤中的Pb、Cd进入桑树后主要富集在根系中,桑树对低含量的Pb、Cd具有较高的富集系数,桑树对Pb、Cd富集及迁移系数均小于1,不属于超富集植物。可在Pb、Cd含量较低的土壤中开展种桑养蚕污染修复模式,同时实现经济效益和生态效益。

参考文献 (47)

目录

    /

    返回文章
    返回