高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响

乔永 周金星 王小平

乔永, 周金星, 王小平. Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响[J]. 北京林业大学学报, 2020, 42(4): 32-40. doi: 10.12171/j.1000-1522.20190244
引用本文: 乔永, 周金星, 王小平. Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响[J]. 北京林业大学学报, 2020, 42(4): 32-40. doi: 10.12171/j.1000-1522.20190244
Qiao Yong, Zhou Jinxing, Wang Xiaoping. Effects of lead and cadmium combined stress on seed germination and seedling growth of mulberry[J]. Journal of Beijing Forestry University, 2020, 42(4): 32-40. doi: 10.12171/j.1000-1522.20190244
Citation: Qiao Yong, Zhou Jinxing, Wang Xiaoping. Effects of lead and cadmium combined stress on seed germination and seedling growth of mulberry[J]. Journal of Beijing Forestry University, 2020, 42(4): 32-40. doi: 10.12171/j.1000-1522.20190244

Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响

doi: 10.12171/j.1000-1522.20190244
基金项目: 北京市科技计划项目(Z151100002115006)
详细信息
    作者简介:

    乔永,博士,副研究员。主要研究方向:森林土壤、土壤生态、土壤修复。Email:qiaoyong85@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号

    责任作者:

    王小平,教授级高级工程师。主要研究方向:森林培育、森林生态研究。Email:wangxp@bfdic.com 地址:100013 北京市东城区安外小黄庄北街1号

Effects of lead and cadmium combined stress on seed germination and seedling growth of mulberry

  • 摘要: 目的研究不同含量Pb、Cd单一及复合胁迫对桑树种子萌发、幼苗生长的影响,以及桑树对重金属Pb、Cd的富集和迁移,探索桑树对修复Pb、Cd污染土壤的潜能。方法以桑树种子和幼苗为实验材料,通过发芽实验和盆栽实验研究不同含量Pb(0、250、500、750、1 000、1 250 mg/kg)和Cd(0、0.2、1、25、75、100 mg/kg)单一及复合胁迫对桑树种子发芽率、幼苗株高、生物量等影响,以及Pb、Cd在桑树根、茎、叶中的富集和迁移。结果(1)不同含量Pb、Cd单一及复合胁迫均对桑树种子萌发产生抑制作用;(2)低含量Pb、Cd(250、0.2 mg/kg)对桑树幼苗株高、生物量产生促进作用,当含量升高时转为抑制作用。(3)Pb、Cd主要积累于桑树根系中,低含量的Pb(250 mg/kg)会促进桑树对Cd的富集和迁移;桑树对Cd的富集及迁移系数高于Pb,但富集系数和迁移系数最高值均 < 1。Pb、Cd复合胁迫下,桑树对Pb、Cd富集和迁移系数小于单一胁迫;当Pb、Cd含量升高时,Pb、Cd富集系数和迁移系数均呈现下降趋势。结论不同含量Pb、Cd均会不用程度的抑制桑树种子萌发,抑制作用随Pb、Cd含量升高而增强。桑树不属于超富集植物,但对低含量Pb、Cd富集及转移系数较高,并且低含量Pb、Cd会促进桑树生长,可在低含量Pb、Cd污染土壤中开展种桑养蚕模式进行土壤重金属污染修复。

     

  • 图  1  Pb、Cd对桑树生物量的影响

    不同小写字母代表不同处理差异显著(P < 0.05)。下同。Different small letters indicate significant difference among varied treatments at P < 0.05. The same below.

    Figure  1.  Effects of lead and cadmium on biomass of mulberry

    图  2  桑树各部分Pb含量

    Figure  2.  Concentrations of Pb in each part of mulberry

    图  3  桑树各部分Cd含量

    Figure  3.  Concentrations of Cd in each part of mulberry

    图  4  Pb、Cd富集系数

    Figure  4.  Enrichment coefficients of Pb and Cd

    图  5  Pb、Cd迁移系数

    Figure  5.  Transfer coefficients of Pb and Cd

    表  1  Pb、Cd复合胁迫含量

    Table  1.   Concentrations of Pb and Cd under combined stress

    Pb含量
    Pb content/
    (mg·kg− 1)
    Cd含量 Cd content/(mg·kg− 1)
    00.212575100
    0P1C1P1C2P1C3P1C4P1C5P1C6
    250P2C1P2C2P2C3P2C4P2C5P2C6
    500P3C1P3C2P3C3P3C4P3C5P3C6
    750P4C1P4C2P4C3P4C4P4C5P4C6
    1 000P5C1P5C2P5C3P5C4P5C5P5C6
    1 250P6C1P6C2P6C3P6C4P6C5P6C6
    注:、P1、P2、P3、P4、P5、P6表示重金属Pb含量分别为0、250、500、750、1 000、1 250 mg/kg,C1、C2、C3、C4、C5、C6表示重金属Cd含量分别为0、0.2、1、25、75、100 mg/kg。P1C1表示Pb含量为0 mg/kg且Cd含量为0 mg/kg,P1C2表示Pb含量为0 mg/kg且Cd含量为0.2 mg/kg,以此类推。下同。 Notes: P1, P2, P3, P4, P5 and P6 represent that the contents of heavy metal Pb are 0, 250, 500, 750, 1 000, 1 250 mg/kg, respectively; C1, C2, C3, C4, C5 and C6 represent that the contents of heavy metal Cd are 0, 0.2, 1, 25, 75, 100 mg/kg, respectively. P1C1 represents that the content of Pb is 0 mg/kg and the content of Cd is 0 mg/kg, P1C2 represents that the content of Pb is 0 mg/kg and the content of Cd is 0.2 mg/kg, and so on. The same below.
    下载: 导出CSV

    表  2  Pb、Cd对桑树种子发芽率的影响

    Table  2.   Effects of lead and cadmium on germination rate of mulberry seeds %

    项目 ItemC1C2C3C4C5C6
    P185.67 ± 3.15Aa57.33 ± 6.26Ba43.33 ± 2.36Ca37.67 ± 3.96CDa31.67 ± 5.69Da22.67 ± 4.26Ea
    P278.67 ± 3.07Ab48.67 ± 5.14Bab41.33 ± 3.16BCa36.33 ± 4.14Ca14.33 ± 6.24Db10.33 ± 3.95Db
    P365.67 ± 3.07Ac45.67 ± 1.25Bc23.67 ± 5.14Cb21.67 ± 5.23Cb10.33 ± 2.24Db5.67 ± 2.17Eb
    P461.33 ± 6.35Ac29.67 ± 5.23Bd8.33 ± 2.25Cc6.67 ± 2.64Cc3.67 ± 3.06Cc0
    P558.33 ± 6.54Acd29.33 ± 6.22Bd0000
    P648.33 ± 3.27Ad22.67 ± 4.17Be0000
    注:不同小写字母代表同一列差异显著(P < 0.05),不同大写字母表示同一行差异显著(P < 0.05)。下同。Notes: different lowercase letters indicate significant difference in the same column at P < 0.05 level, and different capital letters indicate significant difference in the same line at P < 0.05 level. The same below.
    下载: 导出CSV

    表  3  Pb、Cd对桑树株高的影响

    Table  3.   Effects of lead and cadmium on plant height of mulberry cm

    项目 ItemC1C2C3C4C5C6
    P1 83.64 ± 2.41bc85.99 ± 4.11b80.74 ± 1.59c65.13 ± 1.72d51.45 ± 2.17f38.54 ± 2.1h
    P291.71 ± 3.41a93.21 ± 3.86a81.56 ± 3.15c56.69 ± 2.36e46.25 ± 2.65g36.25 ± 2.23hi
    P386.76 ± 2.38b80.21 ± 3.37c78.63 ± 4.06c52.14 ± 2.73f41.28 ± 2.89h25.58 ± 2.71j
    P469.45 ± 2.08d73.02 ± 3.42d67.84 ± 3.34d39.23 ± 2.86h38.15 ± 2.71h22.15 ± 1.13k
    P562.71 ± 1.73d67.51 ± 1.45d58.67 ± 2.13e36.55 ± 1.34hi27.11 ± 3.06j0
    P646.18 ± 2.84g51.61 ± 2.04f45.32 ± 1.51g34.22 ± 0.67i00
    注:不同字母代表株高差异显著(P < 0.05)。Notes: different letters indicate significant difference between plant heights (P < 0.05).
    下载: 导出CSV
  • [1] Adrees M, Ali S, Rizwan M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review[J]. Ecotoxicology and Environmental Safety, 2015, 119(9): 186−197.
    [2] 姜礅, 王月月, 严善春. 银中杨各部位对Cd、Zn、Pb的富集特性[J]. 北京林业大学学报, 2018, 40(1):83−88.

    Jiang D, Wang Y Y, Yan S C. Accumulation characteristics in all parts of Populous alba ‘Berolinensis’ to cadmium, zinc, and lead[J]. Journal of Beijing Forestry University, 2018, 40(1): 83−88.
    [3] Jia X L, Hu B F, Marchant B P, et al. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: a case study in the Yangtze Delta, China[J]. Environmental Pollution, 2019, 250(4): 601−609.
    [4] 邹建美, 孙江, 戴伟, 等. 北京近郊耕作土壤重金属状况评价分析[J]. 北京林业大学学报, 2013, 35(1):132−138.

    Zou J M, Sun J, Dai W, et al. Evaluation and analysis of heavy metals in cultivated soils in the suburbs of Beijing[J]. Journal of Beijing Forestry University, 2013, 35(1): 132−138.
    [5] Perlatti F, Otero X L, Macias F, et al. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes[J]. Science of the Total Environment, 2014, 500: 91−102.
    [6] 陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报, 2018, 12(10):2845−2854. doi: 10.12030/j.cjee.201804192

    Chen X Y, Wu Y Q. Remediation mechanism of multi-heavy metal contaminated soil by using different chemical washing agents[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2845−2854. doi: 10.12030/j.cjee.201804192
    [7] Atafar Z, Mesdaghinia A, Nouri J, et al. Effect of fertilizer application on soil heavy metal concentration[J]. Environmental Monitoring & Assessment, 2010, 160(1): 83−89.
    [8] Zahran S, Lverson T, Shawn P, et al. The effect of leaded aviation gasoline on blood lead in children[J]. Journal of the Association of Environmental and Resource Economists, 2017, 2(4): 575−610.
    [9] Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science & Pollution Research, 2016, 23(13): 13128−13136.
    [10] 王琦, 李芳柏, 黄小追, 等. 一种基于风险管控的稻田土壤重金属污染分级方法[J]. 生态环境学报, 2018, 27(12):2321−2328.

    Wang Q, Li F B, Huang X Z, et al. A classification approach of heavy metal pollution of paddy soil based on risk management[J]. Ecology and Environmental Sciences, 2018, 27(12): 2321−2328.
    [11] Zia M H, Codling E E, Scheckel K G, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review[J]. Environmental Pollution, 2011, 159(10): 2320−2327. doi: 10.1016/j.envpol.2011.04.043
    [12] 杨文杰, 姚瑞华, 孙宏亮, 等. 添加剂对土壤镉的形态及油菜生长的影响[J]. 环境科学与技术, 2018, 41(增刊 2):9−13.

    Yang W J. Yao R H, Sun H L, et al. Effects of application of soil amendments in cadmium contaminated soil on rape growth and chemical form of cadmium[J]. Environmental Science & Technology, 2018, 41(Suppl. 2): 9−13.
    [13] 孙丽娟, 秦秦, 宋科, 等. 镉污染农田土壤修复技术及安全利用方法研究进展[J]. 生态环境学报, 2018, 27(7):1377−1386.

    Sun L Q, Qin Q, Song K, et al. The remediation and safety utilization techniques for Cd contaminated farmland soil: a review[J]. Ecology and Environmental Sciences, 2018, 27(7): 1377−1386.
    [14] Rehman M Z U, Rizwan M, Hussain A, et al. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil[J]. Environmental Pollution, 2018, 241(10): 557−565.
    [15] Mench M, Lepp N, Bert V, et al. Successes and limitations of phyto-technologies at field scale: outcomes, assessment and outlook from COST Action 859[J]. Journal of Soils and Sediments, 2010, 10(6): 1039−1070. doi: 10.1007/s11368-010-0190-x
    [16] 黄川, 李柳, 黄珊, 等. 重金属污染土壤的草酸和EDTA混合淋洗研究[J]. 环境工程学报, 2014, 8(8):3480−3486.

    Huang C, Li L, Huang S, et al. Study on mixture of OX and EDTA leaching heavy metals contaminated soil[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3480−3486.
    [17] 周东美, 仓龙, 邓昌芬. 过氧化氢对铬在黄棕壤中电动过程的影响[J]. 土壤学报, 2005, 42(1):59−63. doi: 10.3321/j.issn:0564-3929.2005.01.009

    Zhou D M, Cang L, Deng C F. Electro kinetic processes of chromium in yellow brown soil as affected by hydrogen peroxide[J]. Acta Pedological Sinica, 2005, 42(1): 59−63. doi: 10.3321/j.issn:0564-3929.2005.01.009
    [18] Xiao W, Wang H, Li T, et al. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredia associated with carbendazim-degrading bacterial strains[J]. Environmental Science and Pollution Research, 2013, 20(1):380−389.
    [19] 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(增刊 2):213−220.

    Li F Z, Teng Y T, Zhang Y P, et al. Research progress of disposal technology for heavy metal hyperaccumulator plants[J]. Environmental Science & Technology, 2018, 41(Suppl. 2): 213−220.
    [20] Pinto A P, Varennes A D, Fonseca R, et al. Phytoremediation of soils contaminated with heavy metals: techniques and strategies[J]. Phytoremediation, 2014, 10: 133−155.
    [21] Gaurav S, Diane P, Sikandar I M. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects[J]. Reviews of Environmental Contamination and Toxicology, 2019, 249(2): 71−131.
    [22] Michel M, Schwitzguébel J, Schroeder P, et al. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety[J]. Environmental Science and Pollution Research, 2009, 16(7): 876−900.
    [23] 曾鹏, 郭朝晖, 肖细元, 等. 芦竹和木本植物间种修复重金属污染土壤[J]. 环境科学, 2018, 39(11):5207−5216.

    Zeng P, Guo C H, Xiao X Y, et al. Intercropping arundo donax with woody plants to eemediate heavy metal-contaminated soil[J]. Environmental Science, 2018, 39(11): 5207−5216.
    [24] Prince W S, Senthilkumar P, Subburam V. Mulberry-silkworm food chain : a templet to assess heavy metal mobility in terrestrial ecosystems[J]. Environmental Monitoring and Assessment, 2001, 69(3): 231−238. doi: 10.1023/A:1010715606097
    [25] Zhao S, Shang X, Duo L. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4[J]. Environmental Science and Pollution Research, 2013, 20(2): 967−975. doi: 10.1007/s11356-012-0992-z
    [26] Si L, Peng X, Zhou J. The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: a new method for urban sludge disposal[J]. Environmental Science and Pollution Research, 2019, 26(2): 1379−1393. doi: 10.1007/s11356-018-3635-1
    [27] Zhou L, Zhao Y, Wang S. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential[J]. Environmental Science and Pollution Research, 2015, 22(22): 18031−18039. doi: 10.1007/s11356-015-5011-8
    [28] 廖希雯, 陈杰, 范天凤, 等. 地质聚合物固化稳定化重金属复合污染土壤[J]. 环境工程学报, 2018, 12(7):2056−2065. doi: 10.12030/j.cjee.201712077

    Liao X W, Chen J, Fan T F, et al. Soil of heavy metal composite pollution by geological polymer stabilization[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2056−2065. doi: 10.12030/j.cjee.201712077
    [29] Ma J F, Yamaji N, Mitani N, et al. Transporters of arenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931−9935. doi: 10.1073/pnas.0802361105
    [30] 李舒琦, 高卓, 臧飞, 等. 外源Cd在施污黄土-小麦系统中的富集迁移规律[J]. 干旱区资源与环境, 2017, 31(12):123−128.

    Li S Q, Gao Z, Zang F, et al. Enrichment and migration regularity of exogenous Cd in the applying sludge loess-wheat system[J]. Journal of Arid Land Resources and Environment, 2017, 31(12): 123−128.
    [31] 王波, 黄攀, 吕德雅, 等. 铅、镉对南荻种子萌发和幼苗生长的影响[J]. 生态环境学报, 2018, 27(9):1768−1773.

    Wang B, Huang P, Lü D Y, et al. Effects of Pb and Cd on the seed germination and seedling growth of Triarrhena lutarioriparia[J]. Ecology and Environmental Sciences, 2018, 27(9): 1768−1773.
    [32] 邹文桐. 铅镉复合胁迫对芥菜种子萌发、幼苗生长及光合色素含量的影响[J]. 种子, 2013, 32(3):41−45. doi: 10.3969/j.issn.1001-4705.2013.03.012

    Zou W T. Effects of combined lead and cadmium on seed germination, seedling growth and leaf photosynthetic pigment contents of Brassica juncea[J]. Seed, 2013, 32(3): 41−45. doi: 10.3969/j.issn.1001-4705.2013.03.012
    [33] 葛成军, 陈秋波, 俞花美, 等. Cd胁迫对2种热带牧草种子发芽与根伸长的抑制效应[J]. 热带作物学报, 2008, 29(5):567−571. doi: 10.3969/j.issn.1000-2561.2008.05.007

    Ge C J, Chen Q B, Yu H M, et al. Effect of Cd on germination and inhibition of root elongation of tropical forage plants[J]. Chinese Journal of Tropical Crops, 2008, 29(5): 567−571. doi: 10.3969/j.issn.1000-2561.2008.05.007
    [34] 冯鹏, 孙力, 申晓慧, 等. 多年生黑麦草对Pb、Cd胁迫的响应及富集能力研究[J]. 草业学报, 2016, 25(1):153−162.

    Feng P, Sun L, Shen X H, et al. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses[J]. Acta Prataculturae Sinica, 2016, 25(1): 153−162.
    [35] Wang L Y, Zheng S Y. Effect of cadmium, lead and their combined pollution on seed germination of wheat[J]. Journal of Triticeae Crops, 2009, 29(1): 146−148.
    [36] Saraswat S, Rai J P N. Phytoextraction potential of six plant species grown in multimetal contaminated soil[J]. Chemistry and Ecology, 2009, 25(1): 1−11. doi: 10.1080/02757540802657185
    [37] 黄仁志, 李一平, 蒋勇兵, 等. 镉铅复合胁迫对桑苗生长与桑叶重金属含量的影响[J]. 蚕业科学, 2018, 44(5):665−671.

    Huang R Z, Li Y P, Jiang Y B, et al. Effect of cadmium and lead combined stress on growth of mulberry saplings and contents of heavy metal in mulberry leaf[J]. Science of Sericulture, 2018, 44(5): 665−671.
    [38] 徐学华, 黄大庄, 王连芳, 等. 土壤铅、镉胁迫对红瑞木生长及生理生化特性的影响[J]. 水土保持学报, 2009, 23(1):213−216. doi: 10.3321/j.issn:1009-2242.2009.01.045

    Xu X H, Huang D Z, Wang L F, et al. Effects of Pb, Cd stress in soil on the growth and physiological and biochemical characteristics of Swida alba[J]. Journal of Soil and Water Conservation, 2009, 23(1): 213−216. doi: 10.3321/j.issn:1009-2242.2009.01.045
    [39] Hauck M, Paul A, Gross S. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus[J]. Environmental and Experimental Botany, 2003, 49(2): 181−191. doi: 10.1016/S0098-8472(02)00069-2
    [40] Pietrini F, Iori V, Cheremisina A, et al. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content[J]. Environmental Science and Pollution Research, 2015, 22(1): 482−494. doi: 10.1007/s11356-014-3349-y
    [41] Shu X, Yin L, Zhang Q, et al. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L.[J]. Environmental Science and Pollution Research, 2012, 19(3): 893−902. doi: 10.1007/s11356-011-0625-y
    [42] Yamaguchi H, Fukuoka H, Arao T. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum[J]. Journal of Experimental Botany, 2010, 61(2): 423−437. doi: 10.1093/jxb/erp313
    [43] 王新新, 吴亮, 朱生凤, 等. 镉胁迫对碱蓬种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2013, 32(2):238−243.

    Wang X X, Wu L, Zhu S F, et al. Effects of cadmium stress on seed germination and seedling growth of Suaeda glauca[J]. Journal of Agro-Environment Science, 2013, 32(2): 238−243.
    [44] Kuboi T, Noguchi A, Yazaki J. Relationship between tolerance and accumulation characteristics of cadmium in higher plants[J]. Plant and Soil, 1987, 104(2): 275−280. doi: 10.1007/BF02372542
    [45] 陈朝明, 龚惠群, 王凯荣, 等. 桑−蚕系统中镉的吸收、累积与迁移[J]. 生态学报, 1999, 19(5):76−81.

    Chen C M, Gong H Q, Wang K R, et al. The absorption, accumulation and migration of cadmium in the system of soil mulberry and silkworm[J]. Acta Ecological Sinica, 1999, 19(5): 76−81.
    [46] Shukla P, Reddy R A, Ponnuvel K M, et al. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in mulberry (Morus alba L.) under different abiotic stresses[J]. Molecular Biology Reports, 2019, 46(2): 1809−1817. doi: 10.1007/s11033-019-04631-y
    [47] 蒋诗梦, 颜新培, 龚昕, 等. 桑树品种间重金属镉的分布与富集规律研究[J]. 中国农学通报, 2016, 32(22):76−83. doi: 10.11924/j.issn.1000-6850.casb15120167

    Jiang S M, Yan X P, Gong X, et al. Distribution and enrichment regularity of cadmium of different mulberry varieties[J]. Chinese Agricultural Science Bulletin, 2016, 32(22): 76−83. doi: 10.11924/j.issn.1000-6850.casb15120167
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1079
  • HTML全文浏览量:  677
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2019-06-24
  • 网络出版日期:  2020-03-07
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回