高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北落叶松不同代际人工林土壤养分及细菌群落变化特征

张健飞 王淳 徐雯雯 黄选瑞 张志东

张健飞, 王淳, 徐雯雯, 黄选瑞, 张志东. 华北落叶松不同代际人工林土壤养分及细菌群落变化特征[J]. 北京林业大学学报, 2020, 42(3): 36-45. doi: 10.12171/j.1000-1522.20190256
引用本文: 张健飞, 王淳, 徐雯雯, 黄选瑞, 张志东. 华北落叶松不同代际人工林土壤养分及细菌群落变化特征[J]. 北京林业大学学报, 2020, 42(3): 36-45. doi: 10.12171/j.1000-1522.20190256
Zhang Jianfei, Wang Chun, Xu Wenwen, Huang Xuanrui, Zhang Zhidong. Changes in soil nutrients and bacterial communities of Larix principis-rupprechtii plantations of different generations[J]. Journal of Beijing Forestry University, 2020, 42(3): 36-45. doi: 10.12171/j.1000-1522.20190256
Citation: Zhang Jianfei, Wang Chun, Xu Wenwen, Huang Xuanrui, Zhang Zhidong. Changes in soil nutrients and bacterial communities of Larix principis-rupprechtii plantations of different generations[J]. Journal of Beijing Forestry University, 2020, 42(3): 36-45. doi: 10.12171/j.1000-1522.20190256

华北落叶松不同代际人工林土壤养分及细菌群落变化特征

doi: 10.12171/j.1000-1522.20190256
基金项目: 国家重点研发计划项目(2017YFD0600403),林业公益性行业科研专项(20150430304),国家自然科学基金项目(31971651)
详细信息
    作者简介:

    张健飞。主要研究方向:森林土壤养分。Email:627611546@qq.com 地址:071000 河北省保定市莲池区乐凯南大街2596号河北农业大学林学院

    责任作者:

    张志东,博士,副教授。主要研究方向:森林多功能经营。Email:zhzhido@163.com 地址:同上

  • 中图分类号: S714.3; S714.8; S792.99

Changes in soil nutrients and bacterial communities of Larix principis-rupprechtii plantations of different generations

  • 摘要: 目的探究不同代际华北落叶松人工林土壤养分及细菌变化有助于了解地力维持机制。为华北落叶松人工林可持续经营提供参考。方法本研究以塞罕坝地区华北落叶松不同代际人工林(一代林(17和37年生)、二代林(14年生))为研究对象,分析了不同代际林及不同土层土壤养分、土壤细菌群落组成和多样性的变异规律及土壤养分与细菌群落的耦合关系。结果(1)在0 ~ 10 cm和10 ~ 20 cm土层,一代林(17年生)和二代林(14年生)的速效钾和有效磷显著高于一代林(37年生)(P < 0.05),但一代林(17年生)和二代林(14年生)间差异不明显(P > 0.05)。随着土壤深度增加,各代际林土壤养分均呈现降低趋势。(2)在门水平上,3个林分的优势菌群均为变形菌门、放线菌门、疣微菌门和酸杆菌门。随着土层深度的增加,3个林分的变形菌门和放线菌门呈迅速下降趋势。(3)一代林(37年生)的ACE和Chao1细菌丰富度指数在3个代际林中最低,且在0 ~ 10 cm和20 ~ 30 cm土层代际林间差异显著(P < 0.05)。在3个土层深度,土壤细菌多样性指数在一代林(17年生)和二代林(14年生)中相对较高,而在一代林(37年生)中相对较低。(4)相关分析表明,速效钾与变形菌门和放线菌门显著正相关,而与硝化螺旋菌门显著负相关(P < 0.05)。随着有效磷含量的增加,变形菌门数量呈显著增加趋势(P < 0.05)。结论华北落叶松二代林在早期发育阶段不存在地力衰退问题,随着林龄的增加,应加强速效钾、有效磷和碱解氮的调控,并重视特定细菌群落的变化以维持土壤肥力。

     

  • 图  1  不同代际华北落叶松林土壤细菌稀释曲线

    Figure  1.  Rarefaction curves for soil bacterial community in different generations of Larix principis-rupprechtii plantations

    图  2  不同代际华北落叶松林门水平土壤细菌群落相对丰度

    数字表示土层厚度(0为0 ~ 10 cm,10为10 ~ 20 cm,20为20 ~ 30 cm)。Fir. 厚壁菌门;Pro. 变形菌门;Ver. 疣微菌门;Act. 放线菌门;Aci. 酸杆菌门;Tha. 奇古菌门;Gem. 芽单胞菌门;Bac. 拟杆菌门;Chl. 绿弯菌门;Nit. 硝化螺旋菌门;Pla. 浮霉菌门;Oth. 其他。 下同。Number indicates soil thickness(0, 0−10 cm; 10, 10−20 cm; 20, 20−30 cm). Fir, Firmicutes;Pro, Proteobacteria;Ver, Verrucomicrobia; Act, Actinobacteria; Aci, Acidobacteria; Tha, Thaumarchaeota; Gem, Gemmatimonadetes; Bac, Bacteroidetes; Chl, Chloroflexi; Nit, Nitrospirae; Pla, Planctomycetes; Oth, others. The same below.

    Figure  2.  Relative abundance of soil bacterial communities at the phylum level in different generations of Larix principis-rupprechtii plantations

    图  3  华北落叶松各代际林不同土层深度土壤细菌多样性指数

    Figure  3.  Soil bacterial diversity indices among different generations of Larix principis-rupprechtii plantations at three soil depths

    图  4  不同代际华北落叶松林在门水平土壤细菌群落与土壤理化性质的RDA排序图

    Figure  4.  Redundancy analyses for soil bacterial communities based on physicochemical properties at phylum level in different generations of Larix principis-rupprechtii plantations

    表  1  华北落叶松林分基本情况

    Table  1.   Description of different Larix principis-rupprechtii stands

    林分
    Stand
    海拔
    Altitude/m
    坡度
    Slope degree/(°)
    坡向
    Slope aspect
    平均树高
    Mean tree height/m
    平均胸径
    Mean DBH/cm
    密度/(株·hm− 2)
    Density/(tree·ha− 1)
    Y1 653.678西南 Southwest12.112.52 489
    E1 622.678西南 Southwest21.128.31 461
    J1 642.538西南 Southwest15.618.41 603
    注:Y为一代林(17年生),E为二代林(14年生),J为一代林(37年生)。下同。Notes: Y, first generation (17 years old), E, second generation (14 years old), J, first generation (37 years old). The same below.
    下载: 导出CSV

    表  2  华北落叶松各代际林不同土层深度土壤养分特征

    Table  2.   Soil nutrient properties under different generations at three soil depths

    林分
    Stand
    土层
    Soil layer/cm
    有机碳
    DOC/(g·kg− 1)
    全氮
    TN/(g·kg− 1)
    全磷
    TP/(g·kg− 1)
    全钾
    TK/(g·kg− 1)
    碱解氮
    AN/(mg·kg− 1)
    有效磷
    AP/(mg·kg− 1)
    速效钾
    AK/(mg·kg− 1)
    pH
    Y0 ~ 1019.75±3.14Aa1.72±0.24Aa0.22±0.02Aa23.85±0.09Aa173.28±19.72Aa4.93±0.27Aa156.29±9.33Aa5.58±0.03Aa
    10 ~ 2015.50±1.34Aa1.40±0.08Aa0.21±0.01Aa24.10±0.36Aa168.30±10.00Aa3.68±0.17Bb91.17±9.26Ba5.63±0.05Aa
    20 ~ 3013.20±0.51Aa1.22±0.07Aa0.22±0.01Aa23.86±0.22Aa156.85±11.41Aa3.93±0.33Ba67.22±5.72Ba5.65±0.07Aa
    E0 ~ 1030.78±3.18Aa2.32±0.34Aa0.33±0.08Aa23.43±0.26Aa256.93±35.04Aa5.63±1.36Aa157.55±14.60Aa5.64±0.02Aa
    10 ~ 2026.80±6.48Aa2.06±0.49Aa0.32±0.10Aa24.02±0.13Aa251.45±49.50Aa4.80±0.52Aa121.67±21.41ABa5.64±0.02Aa
    20 ~ 3020.85±5.42Aa1.79±0.47Aa0.32±0.10Aa24.03±0.99Aa209.63±38.27Aa3.42±0.17Aa94.33±14.52Ba5.73±0.02Ba
    J0 ~ 1021.84±6.46Aa2.09±0.36Aa0.29±0.06Aa23.02±1.38Aa206.14±21.18Aa4.74±0.23Aa125.30±13.83Aa5.53±0.04Aa
    10 ~ 2019.05±5.10Aa1.73±0.29Aa0.29±0.05Aa23.12±1.46Aa189.21±16.91Aa3.61±0.27Bb98.66±18.59ABa5.55±0.01ABa
    20 ~ 3017.38±4.39Aa1.48±0.27Aa0.29±0.04Aa23.36±1.15Aa168.30±18.44Aa3.73±0.38Ba75.22±4.68Ba5.62±0.01Ba
    注:不同大写字母代表相同代际林不同土层之间差异显著(P < 0.05);不同小写字母表示相同土层不同代际林之间差异显著(P < 0.05)。下同。Notes: different capital letters indicate significant differences in the same generation plantations among varied soil layers (P < 0.05); different lowercase letters indicate significant differences in the same soil depth among plantations of different generations (P < 0.05). DOC, organic carbon; TN, total nitrogen; TP, total phosphorous; TK, total potassium; AN, alkali hydrolyzable nitrogen; AP, available phosphorous; AK, readily available potassium. The same below.
    下载: 导出CSV

    表  3  门水平下土壤细菌群落与土壤养分相关系数

    Table  3.   Correlation coefficients between soil bacterial community and soil nutrients under phylum level

    因子 FactorOCTNTPTKANAPAKpH
    Fir− 0.106− 0.202− 0.0450.127− 0.152− 0.083− 0.0150.013
    Pro0.2160.2760.0500.0670.2460.3020.470**− 0.041
    Ver0.0690.0290.086− 0.489**0.1220.046− 0.1480.256
    Act0.1700.123− 0.0680.2610.1010.2830.372*− 0.052
    Aci0.0550.1680.142− 0.407*0.1400.045− 0.245− 0.044
    Tha− 0.0140.0140.1420.198− 0.081− 0.120− 0.091− 0.343*
    Gem− 0.471**− 0.450**− 0.390*0.051− 0.397*− 0.133− 0.1780.188
    Bac− 0.0650.027− 0.1380.1050.1410.1470.322− 0.124
    Chl0.2660.3220.262− 0.1990.3290.003− 0.0010.126
    Nit− 0.339*− 0.283− 0.075− 0.101− 0.226− 0.504**− 0.362*0.381*
    Pla− 0.034− 0.086− 0.097− 0.100− 0.0430.058− 0.2870.233
    注:*和**分别表示P < 0.05相关性显著和P < 0.01相关性极显著。Notes: * and** indicate significant correlations at P < 0.05 and P < 0.01 level,respectively.
    下载: 导出CSV
  • [1] 许坛, 王华田, 王延平, 等. 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[J]. 应用与环境生物学报, 2014, 20(3):491−498.

    Xu T, Wang H T, Wang Y P, et al. Correlation between soil nutrient availability and bacteria community succession in poplar plantations[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 491−498.
    [2] 陈莉莎, 张金池, 陆茜, 等. 杨树多代连作对土壤养分特征和生物活性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(5):85−90.

    Chen L S, Zhang J C, Lu Q, et al. Effects of continuous planting of poplars on soil biological activity and nutrients[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(5): 85−90.
    [3] 张鼎华, 叶章发, 李宝福, 等. 杉木、马尾松轮作对林地土壤肥力和林木生长的影响[J]. 林业科学, 2001, 37(5):10−15. doi: 10.3321/j.issn:1001-7488.2001.05.003

    Zhang D H, Ye Z F, Li B F, et al. The effects of rotating plantation on the soil fertility of forest land and the growth of stand[J]. Scientia Silvae Sinicae, 2001, 37(5): 10−15. doi: 10.3321/j.issn:1001-7488.2001.05.003
    [4] 阎德仁, 王晶莹, 杨茂仁, 等. 落叶松人工林土壤衰退趋势[J]. 生态学杂志, 1997, 16(2):63−67.

    Yan D R, Wang J Y, Yang M R, et al. Tendency of soil degradation in the pure larch plantations[J]. Chinese Journal of Ecology, 1997, 16(2): 63−67.
    [5] 王洪君, 宫芳, 郑宝仁, 等. 落叶松人工林的土壤理化性质[J]. 东北林业大学学报, 1997, 25(3):76−80.

    Wang H J, Gong F, Zheng B R, et al. Physical and chemical properties of the soil for larch plantations[J]. Journal of Northeast Forestry University, 1997, 25(3): 76−80.
    [6] 席苏桦, 张忠山, 于化春, 等. 落叶松二代更新对地力影响及林木生长的研究[J]. 东北林业大学学报, 1999, 27(5):15−19. doi: 10.3969/j.issn.1000-5382.1999.05.004

    Xi S H, Zhang Z S, Yu H C, et al. Study on the effect of the second generation for larch plantations on the soil fertility and the growth of standing trees[J]. Journal of Northeast Forestry University, 1999, 27(5): 15−19. doi: 10.3969/j.issn.1000-5382.1999.05.004
    [7] 郭雄飞. 生物炭对间作体系中刨花润楠生长及土壤养分年际变化的影响[J]. 生态学报, 2019, 39(13):1−11.

    Guo X F. Effect of biochar on Machilus pauhoi growth and soil nutrient interannual variation in an intercropping system[J]. Acta Ecologica Sinica, 2019, 39(13): 1−11.
    [8] 马云波, 许中旗, 张岩, 等. 冀北山区华北落叶松人工林对土壤化学性质的影响[J]. 水土保持学报, 2015, 29(4):165−170.

    Ma Y B, Xu Z Q, Zhang Y, et al. Impact of larch plantation on soil chemical property in north mountain of Hebei[J]. Journal of Soil and Water Conservation, 2015, 29(4): 165−170.
    [9] Ochoa-Hueso R, Collins S L, Delgado-Baquerizo M, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents[J]. Global Change Biology, 2018, 24(7): 2818−2827. doi: 10.1111/gcb.14113
    [10] Zhu H, He X, Wang K, et al. Interactions of vegetation succession, soil bio-chemical properties and bacterial communities in a Karst ecosystem[J]. European Journal of Soil Biology, 2012, 51: 1−7.
    [11] 盛炜彤, 杨承栋, 范少辉, 等. 杉木人工林的土壤性质变化[J]. 林业科学研究, 2003, 16(4):377−385. doi: 10.3321/j.issn:1001-1498.2003.04.001

    Sheng W T, Yang C D, Fan S H, et al. Variation of soil properties of Chinese fir plantation[J]. Forest Research, 2003, 16(4): 377−385. doi: 10.3321/j.issn:1001-1498.2003.04.001
    [12] 杨安娜, 陆云峰, 张俊红, 等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1):119−127. doi: 10.11707/j.1001-7488.20190114

    Yang A N, Lu Y F, Zhang J H, et al. Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations[J]. Scientia Silvae Sinicae, 2019, 55(1): 119−127. doi: 10.11707/j.1001-7488.20190114
    [13] 牛红榜, 刘万学, 万方浩, 等. 紫茎泽兰入侵对土壤微生物群落和理化性质的影响[J]. 生态学报, 2007, 27(7):3051−3060. doi: 10.3321/j.issn:1000-0933.2007.07.047

    Niu H B, Liu W X, Wan F H, et al. Invasive effects of Ageratina adenophora on soil bacterial community and physical and chemical properties[J]. Acta Ecologica Sinica, 2007, 27(7): 3051−3060. doi: 10.3321/j.issn:1000-0933.2007.07.047
    [14] 杨立宾, 隋心, 朱道光, 等. 寒温带兴安落叶松林土壤细菌微生物量和群落组成研究[J]. 中南林业科技大学学报, 2018, 38(8):67−75.

    Yang L B, Sui X, Zhu D G, et al. Study on soil bacterial biomass and community composition of Larix gmelinii in cold temperate zone[J]. Journal of Central South University of Forestry & Technology, 2018, 38(8): 67−75.
    [15] 于洋, 王海燕, 丁国栋, 等. 华北落叶松人工林土壤微生物数量特征及其与土壤性质的关系[J]. 东北林业大学学报, 2011, 39(3):76−80. doi: 10.3969/j.issn.1000-5382.2011.03.023

    Yu Y, Wang H Y, Ding G D, et al. Quantitative characteristics of soil microbe and its relationship with soil properties in Larix principis-rupprechtii plantations[J]. Journal of Northeast Forestry University, 2011, 39(3): 76−80. doi: 10.3969/j.issn.1000-5382.2011.03.023
    [16] Zhang Y M, Zhou G Y, Wu N, et al. Soil enzyme activity changes in different-aged spruce forests of the eastern Qinghai-Tibetan Plateau[J]. Pedosphere, 2004, 14(3): 305−312.
    [17] 赵海燕, 徐福利, 王渭玲, 等. 秦岭地区华北落叶松人工林地土壤养分和酶活性变化[J]. 生态学报, 2015, 35(4):1086−1094.

    Zhao H Y, Xu F L, Wang W L, et al. Soil nutrients and enzyme activities in Larix principis-rupprechtii plantations in the Qinling Mountains, China[J]. Acta Ecologica Sinica, 2015, 35(4): 1086−1094.
    [18] 陈钦程, 徐福利, 王渭玲, 等. 秦岭北麓不同林龄华北落叶松土壤速效钾变化规律[J]. 植物营养与肥料学报, 2014, 20(5):1243−1249. doi: 10.11674/zwyf.2014.0521

    Chen Q C, Xu F L, Wang W L, et al. Seasonal dynamics of available K in soil for different ages of Larix principis-rupprechtii in the northern foot of the Qinling[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1243−1249. doi: 10.11674/zwyf.2014.0521
    [19] 张庆费, 由文辉, 宋永昌, 等. 浙江天童植物群落演替对土壤化学性质的影响[J]. 应用生态学报, 1999, 10(1):21−24.

    Zhang Q F, You W H, Song Y C, et al. Effect of plant community succession on soil chemical properties in Tiantong, Zhejiang Province[J]. Chinese Journal of Applied Ecology, 1999, 10(1): 21−24.
    [20] 杨菁, 周国英, 田媛媛, 等. 降香黄檀不同混交林土壤细菌多样性差异分析[J]. 生态学报, 2015, 35(24):8117−8127.

    Yang J, Zhou G Y, Tian Y Y, et al. Differential analysis of soil bacteria diversity in different mixed forests of Dalbergia odorifera[J]. Acta Ecologica Sinica, 2015, 35(24): 8117−8127.
    [21] Stefano F, Stefano A, Jakob P, et al. Bacterial communities associated with benthic organic matter in headwater stream microhabitats[J]. Environmental Microbiology, 2010, 7(10): 1633−1640.
    [22] Kirchman D L. The ecology of Cytophaga-Flavobacteria in aquatic environments[J]. FEMS Microbiology Ecology, 2002, 39 (2): 91−100.
    [23] Noah F, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6): 1354−1364. doi: 10.1890/05-1839
    [24] Liu J, Sui Y, Yu Z, et al. Diversity and distribution patterns of Acidobacterial communities in the black soil zone of northeast China[J]. Soil Biology & Biochemistry, 2016, 95: 212−222.
    [25] Zhang C, Liu G, Xue S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology & Biochemistry, 2016, 97: 40−49.
    [26] Noah F, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626−631. doi: 10.1073/pnas.0507535103
    [27] Mohamed H, Miloud B, Zohra F, et al. Isolation and characterization of Actinobacteria from Algerian Sahara soils with antibacterial activities[J]. International Journal of Molecular and Cellular Medicine, 2017, 6(2): 109−120.
    [28] 丁新景, 黄雅丽, 敬如岩, 等. 基于高通量测序的黄河三角洲4种人工林土壤细菌结构及多样性研究[J]. 生态学报, 2018, 38(16):5857−5864.

    Ding X J, Huang Y L, Jing R Y, et al. Bacterial structure and diversity of four plantations in the Yellow River Delta by high-throughput sequencing[J]. Acta Ecologica Sinica, 2018, 38(16): 5857−5864.
    [29] 杨涛, 徐慧, 李慧, 等. 樟子松人工林土壤养分、微生物及酶活性的研究[J]. 水土保持学报, 2005, 19(3):50−53. doi: 10.3321/j.issn:1009-2242.2005.03.013

    Yang T, Xu H, Li H, et al. Soil nutrient, microorganism and enzyme activity in Pinus sylvestris plantations[J]. Journal of Soil and Water Conservation, 2005, 19(3): 50−53. doi: 10.3321/j.issn:1009-2242.2005.03.013
    [30] 毛瑢, 崔强, 赵琼, 等. 不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性[J]. 应用生态学报, 2009, 20(9):2079−2084.

    Mao R, Cui Q, Zhao Q, et al. Soil bacterial biomass and activity in relation to stand age of poplar shelterbelts[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2079−2084.
    [31] Zhou Z C, Shangguan Z P. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant & Soil, 2007, 291(1/2): 119−129.
    [32] 王光华, 金剑, 徐美娜, 等. 植物、土壤及土壤管理对土壤微生物群落结构的影响[J]. 生态学杂志, 2006, 25(5):550−556. doi: 10.3321/j.issn:1000-4890.2006.05.017

    Wang G H, Jin J, Xu M N, et al. Effects of plant, soil and soil management on soil bacterial community diversity[J]. Chinese Journal of Ecology, 2006, 25(5): 550−556. doi: 10.3321/j.issn:1000-4890.2006.05.017
    [33] 吴凤芝, 王学征. 设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J]. 中国农业科学, 2007, 40(10):2274−2280. doi: 10.3321/j.issn:0578-1752.2007.10.021

    Wu F Z, Wang X Z. Effect of monocropping and rotation on soil bacterial community diversity and cucumber yield, quality under protected cultivation[J]. Scientia Agricultura Sinica, 2007, 40(10): 2274−2280. doi: 10.3321/j.issn:0578-1752.2007.10.021
    [34] 孟会生, 洪坚平, 杨毅, 等. 配施磷细菌肥对复垦土壤细菌多样性及磷有效性的影响[J]. 应用生态学报, 2016, 27(9):3016−3022.

    Meng H S, Hong J P, Yang Y, et al. Effect of applying phosphorus bacteria fertilizer on bacterial diversity and phosphorus availability in reclaimed soil[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 3016−3022.
    [35] 李明, 马飞, 肖国举. 稻作条件下不同施肥模式对盐碱化土壤细菌和古菌群落结构的影响[J]. 农业环境科学学报, 2018, 37(3):495−504. doi: 10.11654/jaes.2017-1107

    Li M, Ma F, Xiao G J. Effect of varying fertilization patterns on bacteria and Archaea communities in saline-alkali soil under rice cultivation[J]. Journal of Agro-Environment Science, 2018, 37(3): 495−504. doi: 10.11654/jaes.2017-1107
    [36] 李晓莎, 李倩茹, 许中旗, 等. 冀北山地华北落叶松人工林与杨桦次生林的土壤养分差异[J]. 中南林业科技大学学报, 2017, 37(9):20−26.

    Li X S, Li Q R, Xu Z Q, et al. Difference of Larix principis-rupprechtii plantations and secondary poplar-birch forests in soil nutrients in northern Yanshan Mountain[J]. Journal of Central South University of Forestry & Technology, 2017, 37(9): 20−26.
    [37] 隋心, 张荣涛, 钟海秀, 等. 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究[J]. 土壤, 2015, 47(5):919−925.

    Sui X, Zhang R T, Zhong H X, et al. Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high-throughput sequencing technology in Sanjiang Plain[J]. Soils, 2015, 47(5): 919−925.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  684
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-21
  • 修回日期:  2019-11-20
  • 网络出版日期:  2020-03-19
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回