高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同产地花楸无性系苗期田间耐热性评价研究

刘迪 孙操稳 王立宪 贾黎明

刘迪, 孙操稳, 王立宪, 贾黎明. 不同产地花楸无性系苗期田间耐热性评价研究[J]. 北京林业大学学报, 2020, 42(4): 21-31. doi: 10.12171/j.1000-1522.20190266
引用本文: 刘迪, 孙操稳, 王立宪, 贾黎明. 不同产地花楸无性系苗期田间耐热性评价研究[J]. 北京林业大学学报, 2020, 42(4): 21-31. doi: 10.12171/j.1000-1522.20190266
Liu Di, Sun Caowen, Wang Lixian, Jia Liming. Evaluation on field heat resistance of Sorbus pohuashanensis clonal seedlings introduced from different regions[J]. Journal of Beijing Forestry University, 2020, 42(4): 21-31. doi: 10.12171/j.1000-1522.20190266
Citation: Liu Di, Sun Caowen, Wang Lixian, Jia Liming. Evaluation on field heat resistance of Sorbus pohuashanensis clonal seedlings introduced from different regions[J]. Journal of Beijing Forestry University, 2020, 42(4): 21-31. doi: 10.12171/j.1000-1522.20190266

不同产地花楸无性系苗期田间耐热性评价研究

doi: 10.12171/j.1000-1522.20190266
基金项目: 城乡生态环境北京实验室-北京乔木类乡土植物筛选及高效繁育技术(200-67191003)
详细信息
    作者简介:

    刘迪。主要研究方向:树木栽培生理。Email:617548609@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学 林学院

    责任作者:

    贾黎明,教授,博士生导师。主要研究方向:生态林及城市森林培育。Email:jlm@bjfu.edu.cn 地址:同上

  • 中图分类号: S792.25

Evaluation on field heat resistance of Sorbus pohuashanensis clonal seedlings introduced from different regions

  • 摘要: 目的花楸是分布在我国山区海拔500 ~ 2 200 m的重要乡土树种,具有极高的观赏价值。本研究对不同花楸无性系的田间耐热性进行综合评价,为早期筛选出适应于北京高平原地区的优良品种提供科学依据。方法以来自5个种源的14个无性系花楸的2年生嫁接苗为材料,在北京延庆海拔500 m的田间条件下,对幼苗的苗高和地径的生长量、叶片丙二醛(MDA)、可溶性蛋白、可溶性糖和叶绿素含量以及SOD、POD的活性进行测定;利用基于主成分分析的隶属函数分析法对14个无性系花楸幼苗的耐热性进行了综合评价。结果各单项指标值在4个月之间的差异显著,且在不同无性系之间的差异也显著;WL1、WL2、SH1和SH2的苗高和地径的生长表现显著优于其他无性系。TB1和TB2的生长表现最差;TB1和TB2的MDA含量从5月到6月升高最显著,耐热性表现差。FN2和WL2的MDA含量从5月到6月反而下降,优于其他无性系;WL2、FN1和FN2的两种保护酶活性高,优于其他无性系;FN1和FN2的叶绿素含量受高温的影响下降最少,优于其他无性系;SS1、SS2、SS3和SS4的渗透调节物质含量较高,优于其他无性系。指标的相关性分析表明,叶绿素含量两两间呈显著正相关关系(P < 0.01);叶绿素含量变化与地径增长量间呈显著负相关关系(P < 0.05);苗高和地径之间呈显著正相关关系。10个单项指标经过主成分分析后,得到4个新的相互独立的综合指标;结论经过隶属函数综合评价,各无性系幼苗的田间耐热性从强到弱的顺序为:WL2、WL1、FN1、SH2、SH1、FN2、SS2、HS2、SS4、SS3、SS1、HS1、TB2、TB1。

     

  • 图  1  2018年5—8月延庆的最高气温和最低气温

    Figure  1.  The highest and lowest temperature of Yanqing District during May and August, 2018

    图  2  不同无性系幼苗的苗高和地径增长量

    不同大写字母表示不同无性系间差异显著(P < 0.05)。 Different capital letters indicate significant differences between different clones (P < 0.05).

    Figure  2.  Seedling height and ground diameter growth of different clonal seedlings

    图  3  不同无性系花楸的MDA含量

    不同大写字母表示同一无性系在5到8月间差异显著(P < 0.05),不同小写字母表示同月不同无性系间的差异显著(P < 0.05)。下同。 Different capital letters indicate significant differences for the same clones from May to August (P < 0.05), and different lowercase letters indicate significant differences between different clones in the same month (P < 0.05). The same below.

    Figure  3.  MDA content in different clones of Sorbus pohuashanensis

    图  4  不同无性系POD酶活性

    Figure  4.  POD enzyme activities of different clones

    图  5  不同无性系SOD酶活性

    Figure  5.  SOD enzyme activities of different clones

    图  6  不同无性系花楸的可溶性糖含量

    Figure  6.  Soluble sugar content in different clones of Sorbus pohuashanensis

    图  7  不同无性系花楸的可溶性蛋白含量

    Figure  7.  Soluble protein content in different clones of Sorbus pohuashanensis

    表  1  各参试种源地理位置与温度

    Table  1.   Geographical location and temperature of the tested provenances

    种源地
    Provenance
    东经
    East longitude
    北纬
    North latitude
    海拔
    Altitude/m
    年平均温度
    Annual average temperature/℃
    最热月平均温度
    Average temperature of the hotest month/℃
    年均降水量
    Average annual precipitation/mm
    北京松山 Songshan, Beijing 115°43′ ~ 115°50′ 40°29′ ~ 40°33′ 1 300 ~ 2 067 8.2 24.5 450 ~ 600
    河北雾灵山 Wulingshan, Hebei 117°27′ ~ 117°29′ 40°33′ ~ 40°35′ 1 042 ~ 1 847 7.6 18 600 ~ 800
    河北平顶山 Pingdingshan, Hebei 112°14′ ~ 113°45′ 33°08′ ~ 34°20′ 1 568 ~ 1 815 1 17.6 410 ~ 600
    安徽黄山 Huangshan, Anhui 118°08′ ~ 118°11′ 24°57′ ~ 31°19′ 1 154 ~ 1 864 7.8 17.7 1 500 ~ 2 394
    陕西太白山 Taibaishan, Shaanxi 107°22′ ~ 107°52′ 34°49′- ~ 34°08′ 1 028 ~ 2 771 6 15 650 ~ 1 100
    下载: 导出CSV

    表  2  供试花楸无性系品种及编号

    Table  2.   Varieties and No. of tested Sorbus pohuashanensis clones

    种源地 Provenance无性系 Clone品种 Variety种源地 Provenance无性系 Clone品种 Variety
    北京松山
    Songshan, Beijing
    SS1 花楸树
    Sorbus pohuashanensis
    陕西太白山
    Taibaishan, Shaanxi
    SHI 石灰花楸
    Sorbus folgneri
    SS2 SH2
    SS3 陕西太白山
    Taibaishan, Shaanxi
    TB1 太白花楸
    Sorbus tapashana
    SS4 TB2
    河北雾灵山
    Wulingshan, Hebei
    WL1 花楸树
    Sorbus pohuashanensis
    河北平顶山
    Pingdingshan, Hebei
    FN1 花楸树
    Sorbus pohuashanensis
    WL2 FN2
    安徽黄山
    Huangshan, Anhui
    HS1 水榆花楸
    Sorbus alnifolia
    HS2
    注:SS1. 松山1;SS2. 松山2;SS3. 松山3;SS4. 松山4;WL1. 雾灵1;WL2. 雾灵2;HS1. 黄山水榆1;HS2. 黄山水榆2;SH1. 石灰1;SH2. 石灰2;TB1. 太白1;TB2. 太白2;FN1. 丰宁1;FN2. 丰宁2。下同。Notes: SS1, Songshan1; SS2, Songshan2; SS3, Songshan3; SS4, Songshan4; WL1, Wuling1; WL2, Wuling2; HS1, Huangshan shuiyu1; HS2, Huangshan shuiyu2; SH1, Shihui1; SH2, Shihui2; TB1, Taibai1; TB2, Taibai2; FN1, Fengning1; FN2, Fengning2. The same below.
    下载: 导出CSV

    表  3  各无性系5月和6月平均叶绿素含量

    Table  3.   Average chlorophyll content of all clones in May and June

    无性系
    Clone
    叶绿素a Chlorophyll a/(mg·g− 1)叶绿素b Chlorophyll b/(mg·g− 1)总叶绿素 Total chlorophyll/(mg·g− 1)
    5月
    May
    6月
    June
    下降
    Decline/%
    5月
    May
    6月
    June
    下降
    Decline/%
    5月
    May
    6月
    June
    下降
    Decline/%
    FN1 1.27Ab 1.23Ac 2.64 0.41Ac 0.40Ac 1.33 1.69Ad 1.65Ac 2.32
    FN2 0.77Bf 0.81Af −5.75 0.25Bg 0.27Ag −7.78 1.02Ak 1.09Af −6.20
    WL1 1.07Ad 0.52Bj 51.15 0.38Ad 0.16Bk 59.15 1.46Af 0.68Bk 52.25
    WL2 0.77Af 0.70Bi 9.33 0.25Ag 0.22Bi 11.48 1.03Ak 0.93Bj 9.84
    TB1 0.94Ae 0.91Be 3.80 0.32Af 0.29Bf 8.28 1.27Aj 1.21Be 4.93
    TB2 0.95Ae 0.42Bk 55.79 0.34Ae 0.14Bl 58.96 1.30Ai 0.57Bl 56.36
    HS1 1.26Ab 1.41Aa −11.30 0.42Bc 0.50Aa −6.36 1.70Bc 1.87Aa −10.07
    HS2 1.43Aa 1.10Bd 23.34 0.50Aa 0.34Bd 30.71 1.94Aa 1.45Bd 25.23
    SH1 1.21Ac 0.75Bh 38.22 0.46Ab 0.32Be 31.02 1.69Ad 1.07Bg 36.26
    SH2 1.28Ab 1.28Ab 0.08 0.50Ba 0.57Aa −14.11 1.80Bb 1.86Ab −3.87
    SS1 1.19Ac 0.70Bi 41.7 0.39Ac 0.23Bi 42.48 1.60Ae 0.93Bj 41.87
    SS2 0.98Ae 0.81Bf 17.2 0.33Ae 0.21Bj 36.03 1.32Ah 1.03Bh 21.86
    SS3 0.63Bg 0.71Ai −12.3 0.21Ah 0.21Aj −0.05 0.85Bl 0.92Aj −9.32
    SS4 1.06Ad 0.76Bg 27.9 0.32Ae 0.24Bh 25.63 1.40Ag 1.01Bi 27.35
    注:同行不同大写字母表示同一无性系在5月与6月间差异显著(P < 0.05),同列不同小写字母表示不同无性系之间的差异显著(P < 0.05)。Notes: different capital letters in the same row indicate significant difference for the same clone between May and June (P < 0.05), and different lowercase letters in the same column indicate significant difference between varied clones (P < 0.05).
    下载: 导出CSV

    表  4  不同无性系花楸幼苗各指标的相关性分析

    Table  4.   Correlation analysis on seedling indexes of different Sorbus pohuashanensis clones

    指标
    Index
    相关系数 Correlation coefficient
    X1X2X3X4X5X6X7X8X9X10
    X11.00
    X20.001.00
    X3−0.27−0.271.00
    X4−0.28−0.530.421.00
    X5−0.10−0.02−0.210.171.00
    X60.22−0.14−0.230.030.051.00
    X70.22−0.05−0.290.020.110.95**1.00
    X80.21−0.12−0.250.030.060.99**0.97**1.00
    X90.45−0.08−0.22−0.210.11−0.42−0.41−0.431.00
    X100.170.05−0.14−0.33−0.24−0.67**−0.68**−0.68**0.66*1.00
    注:X1. POD 酶活性;X2. SOD 酶活性;X3. MDA含量;X4. 可溶性糖含量;X5. 可溶性蛋白含量;X6. 叶绿素a含量;X7. 叶绿素b含量;X8. 总叶绿素含量;X9. 苗高增长量;X10. 地径增长量。*. 在 0.05 水平上显著相关;**. 在 0.01 水平上显著相关。Notes: X1, POD enzyme activity; X2, SOD enzyme activity; X3, MDA content; X4, soluble sugar content; X5, soluble protein content; X6, chlorophyll a content; X7, chlorophyll b content; X8, total chlorophyll content; X9, seedling height growth; X10, ground diameter growth. * means significant correlation at the 0.05 level; ** means significant correlation at the 0.01 level.
    下载: 导出CSV

    表  5  花楸各单项指标的主成分分析

    Table  5.   Principal component analysis of each single index of Sorbus pohuashanensis

    各指标的特征向量 Eigenvector of each index主成分因子及载荷 Principal component factor and loading
    PC1PC2PC3PC4
    POD酶活性 POD enzyme activity 0.00 −0.46 −0.44 0.23
    SOD酶活性 SOD enzyme activity 0.00 −0.21 0.65 0.00
    MDA含量 MDA content 0.12 0.48 0.00 0.36
    可溶性糖含量 Soluble sugar content 0.00 0.42 −0.33 −0.14
    可溶性蛋白含量 Soluble protein content 0.00 0.00 −0.13 −0.84
    叶绿素a含量 Chlorophyll a content −0.48 0.00 0.00 0.12
    叶绿素b含量 Chlorophyll b content −0.48 −0.12 0.00 0.00
    总叶绿素含量 Total chlorophyll content −0.49 0.00 0.00 0.11
    苗高增长量 Seedling height growth 0.29 −0.33 −0.46 −0.16
    地径增长量 Ground diameter growth 0.42 −0.18 −0.15 0.19
    特征根 Eigenvalue 3.89 2.16 1.38 1.20
    方差贡献率 Variance contribution rate 0.39 0.22 0.14 0.12
    累积贡献率 Cumulative contribution rate 0.39 0.61 0.74 0.86
    注:PC1. 第1个主成分;PC2. 第2个主成分;PC3. 第3个主成分;PC4. 第4个主成分。Notes: PC1, principal component 1; PC2, principal component 2; PC3, principal component 3; PC4, principal component 4.
    下载: 导出CSV

    表  6  不同无性系花楸的综合评价值和排名

    Table  6.   Comprehensive evaluation value and the ranking of different Sorbus pohuashanensis clones

    无性系 CloneCI(1)CI(2)CI(3)CI(4)μ(X1)μ(X2)μ(X3)μ(X4)D排名 Rank
    FN1 1.95 0.47 −3.14 −0.34 0.34 0.39 0.95 1.00 0.54 3
    FN2 1.39 0.58 −2.43 −0.62 0.04 0.75 0.97 0.25 0.40 6
    WL1 13.75 0.40 −35.24 −0.57 1.00 0.18 0.00 0.39 0.55 2
    WL2 4.85 0.66 −9.72 −0.54 0.31 1.00 0.76 0.48 0.58 1
    TB1 0.82 0.35 −1.55 −0.66 0.00 0.03 1.00 0.15 0.19 14
    TB2 1.29 0.35 −2.84 −0.52 0.04 0.00 0.96 0.52 0.24 13
    HS1 1.41 0.43 −3.32 −0.65 0.05 0.26 0.95 0.15 0.26 12
    HS2 1.60 0.48 −3.20 −0.47 0.06 0.44 0.95 0.66 0.38 8
    SH1 7.84 0.36 −15.76 −0.53 0.54 0.04 0.58 0.49 0.41 5
    SH2 13.23 0.38 −33.72 −0.64 0.96 0.12 0.04 0.19 0.50 4
    SS1 3.37 0.40 −7.38 −0.69 0.20 0.16 0.83 0.06 0.27 11
    SS2 2.47 0.50 −5.33 −0.55 0.13 0.50 0.89 0.43 0.38 7
    SS3 2.74 0.48 −6.32 −0.65 0.15 0.44 0.86 0.16 0.34 10
    SS4 3.30 0.53 −7.90 −0.71 0.19 0.61 0.81 0.00 0.37 9
    wj/% 0.45 0.25 0.16 0.14
    注:CI(1). 第1个综合指标;CI(2). 第2个综合指标;CI(3). 第3个综合指标;CI(4). 第4个综合指标;μX1). 第1个隶属函数值;μX2). 第2个隶属函数值;μX3). 第3个隶属函数值;μX4). 第4个隶属函数值;wj. 权重;D. 综合评价值。Notes: CI(1), the first comprehensive index; CI(2), the second comprehensive index; CI(3), the third comprehensive index; CI(4), the fourth comprehensive index; μ(X1), the first subordinate function value; μ(X2), the second subordinate function value; μ(X3), the third subordinate function value; μ(X4), the fourth subordinate function value; wj, weight; D, comprehensive evaluation value.
    下载: 导出CSV
  • [1] 郑万钧. 中国树木志(第二卷)[M]. 北京: 中国林业出版社, 1985.

    Zheng W J. Tree records of China (volume 2)[M]. Beijing: China Forestry Publishing House, 1985.
    [2] Aldasoro J. The genus Sorbus (Maloideae, Rosaceae) in Europe and in North Africa: morphological analysis and systematics[J]. Systematic Botany, 1998, 23(2): 189−212. doi: 10.2307/2419588
    [3] 郑健. 花楸树的地理分布及天然更新方式[J]. 林业科学, 2007, 43(12):86−93. doi: 10.3321/j.issn:1001-7488.2007.12.015

    Zheng J. Geographical distribution and patterns of natural regeneration of Sorbus pohuashanensis[J]. Scientia Silvae Sinicae, 2007, 43(12): 86−93. doi: 10.3321/j.issn:1001-7488.2007.12.015
    [4] 郑健. 花楸树遗传资源评价、保存与利用[D]. 北京: 中国林业科学研究院, 2008.

    Zheng J. Evaluation, conservation and domestication of genetic resources of Sorbus pohuashanensis[D]. Beijing: Chinese Academy of Forestry, 2008.
    [5] Fu J, Huang B. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass[J]. Journal of Plant Nutrition, 2003, 26(1): 81−96. doi: 10.1081/PLN-120016498
    [6] Tang S, Zhang H X, Li L, et al. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period[J]. Functional Plant Biology, 2018, 45(9): 911−921. doi: 10.1071/FP17149
    [7] Peng S, Zheng Y Q, Miao M A, et al. Physiological adaptation of Sorbus pohuashanensis seedlings to heat stress[J]. Forest Research, 2011, 24(5): 602−608.
    [8] 彭松. 不同种源花楸树幼苗越夏能力的比较[J]. 生态学杂志, 2014, 33(2):321−327.

    Peng S. Comparision in thermotolerance over summer of seedlings among different provenances of Sorbus pohuashanensis[J]. Chinese Journal of Ecology, 2014, 33(2): 321−327.
    [9] 李合生, 孙辉, 赵世杰. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S, Sun H, Zhao S J. Experimental principles and techniques of plant physiology and biochemistry[M]. Beijing: Higher Education Press, 2000.
    [10] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2006.

    Chen J X, Wang X F. Experimental guidance for plant physiology[M]. Guangzhou: South China University of Technology Press, 2006.
    [11] 申惠翡, 赵冰. 杜鹃花品种耐热性评价及其生理机制研究[J]. 植物生理学报, 2018, 54(2):335−345.

    Shen H F, Zhao B. Study on evaluation of heat tolerance and its physiological mechanisms in Rhododendron cultivars[J]. Plant Physiology Journal, 2018, 54(2): 335−345.
    [12] Ismail A M, Hall A E. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea[J]. Crop Science, 1999, 39(6): 1762−1768. doi: 10.2135/cropsci1999.3961762x
    [13] 井大炜. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7):1809−1816.

    Jing D W. Effects of drought stress on the growth, photosynthetic characteristics and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1809−1816.
    [14] Xia Q, He B Y, Liu Y M. Effects of high temperature stress on the morphological and physiological characteristics in Scaevola albida cutting seedlings[J]. Acta Ecologica Sinica, 2010, 30(19): 5217−5224.
    [15] 史燕山, 骆建霞, 王煦, 等. 5种草本地被植物抗旱性研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(5):130−134.

    Shi Y S, Luo J X, Wang X, et al. Study on draught resistance of five herb ground cover plants[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2005, 33(5): 130−134.
    [16] Saebo A, Johnsen O. Growth and morphology differ between wind-exposed families of Sorbus aucuparia L.[J]. Journal of Arboriculture, 2000, 26(5): 255−263.
    [17] Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany, 2006, 58(1−3): 106−113. doi: 10.1016/j.envexpbot.2005.06.021
    [18] Song X L, Wang Y H. Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species from North China grasslands[J]. Ecology and Evolution, 2016, 6(6): 1871−1882. doi: 10.1002/ece3.1982
    [19] Das S, Krishnan P, Nayak M, et al. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes[J]. Environmental and Experimental Botany, 2014, 101: 36−46. doi: 10.1016/j.envexpbot.2014.01.004
    [20] Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408: 239−247. doi: 10.1038/35041687
    [21] 杜尧东. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响[J]. 生态学杂志, 2012, 31(10):2541−2548.

    Du Y D. Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice[J]. Chinese Journal of Ecology, 2012, 31(10): 2541−2548.
    [22] 任军. 花楸幼苗光合特性及其影响因子分析[J]. 东北师大学报(自然科学版), 2006, 38(2):96−100.

    Ren J. Study on photosynthesis of young Sorbus pohuashanensis Hedl and the effect of ecological factors[J]. Journal of Northeast Normal University (Natural Science Edition), 2006, 38(2): 96−100.
    [23] Yeh D M, Lin H F. Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum[J]. American Society for Horticultural Science, 2003, 128(5): 656−660. doi: 10.21273/JASHS.128.5.0656
    [24] 张会玲, Marian B, Katarina O, 等. 高温胁迫下不同热敏感性小麦光化学活性和能量分配差异[J]. 植物生理学报, 2015, 51(7):1142−1150.

    Zhang H L, Marian B, Katarina O, et al. Photochemical activity and energy distribution on wheat varieties with different heat-sensitivity under high temperature stress[J]. Plant Physiology Journal, 2015, 51(7): 1142−1150.
    [25] Ghannoum O, Conroy J P, Driscoll S P. Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses[J]. New Phytologist, 2003, 159(3): 599−608. doi: 10.1046/j.1469-8137.2003.00835.x
    [26] 张朝阳, 许桂芳. 利用隶属函数法对4种地被植物的耐热性综合评价[J]. 草业科学, 2009, 26(2):57−60. doi: 10.3969/j.issn.1001-0629.2009.02.010

    Zhang C Y, Xu G F. Comprehensive evaluation of heat tolerance of four ground covering plants by subordinate function values analysis[J]. Pratacultural Science, 2009, 26(2): 57−60. doi: 10.3969/j.issn.1001-0629.2009.02.010
    [27] Zhao F, Zhang D, Zhao Y, et al. The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses[J/OL]. Frontiers in Plant Science, 2016, 7(7): 1471 [2019−01−10]. http://journal.frontiersin.org/article/10.3389/fpls.2016.01471/ful.
    [28] 周亚峰, 许彦宾, 王艳玲, 等. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系[J]. 植物学报, 2017, 52(4):520−529. doi: 10.11983/CBB16138

    Zhou Y F, Xu Y B, Wang Y L, et al. Establishment of a comprehensive evaluation system for chilling tolerance in melon seedlings based on principal component analysis and cluster analysis[J]. Chinese Bulletin of Botany, 2017, 52(4): 520−529. doi: 10.11983/CBB16138
    [29] 高洁, 姜灵敏, 曾艳, 等. 上海耐热月季品种的田间筛选及其综合评价[J]. 生态学杂志, 2012, 31(7):1707−1713.

    Gao J, Jiang L M, Zeng Y, et al. Field screening and comprehensive evaluation of heat-resistant rose varieties in Shanghai[J]. Chinese Journal of Ecology, 2012, 31(7): 1707−1713.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  412
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2020-01-19
  • 网络出版日期:  2020-04-10
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回