高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究

涂郡成 赵东 赵健

涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142-148. doi: 10.12171/j.1000-1522.20190276
引用本文: 涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142-148. doi: 10.12171/j.1000-1522.20190276
Tu Juncheng, Zhao Dong, Zhao Jian. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142-148. doi: 10.12171/j.1000-1522.20190276
Citation: Tu Juncheng, Zhao Dong, Zhao Jian. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142-148. doi: 10.12171/j.1000-1522.20190276

应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究

doi: 10.12171/j.1000-1522.20190276
基金项目: 北京市自然科学基金项目(2182045)
详细信息
    作者简介:

    涂郡成,博士生。主要研究方向:木材力学性能与无损检测。Email:tutuworking@163.com 地址:100083 北京市海淀区清华东路 35号北京林业大学工学院

    责任作者:

    赵东,教授,博士生导师。主要研究方向:工程力学与仿真、农林机械。Email:zhaodong68@bjfu.edu.cn 地址:同上

  • 中图分类号: S781.2

Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation

  • 摘要: 目的含横纹裂纹木构件的缺陷会使其在弯曲载荷下发生横纹断裂,研究含横纹裂纹木构件在载荷作用下微裂纹的萌生和扩展规律,对含横纹裂纹木构件断裂损伤的预判和评估具有重要的意义。方法以杉木为研究对象,基于声发射(AE)技术和数字图像相关法(DIC)对已预制横纹裂纹的木试件三点弯曲损伤过程进行了实时原位监测,采用声发射参数分析法研究了加载过程中微裂纹萌生和失稳扩展的声发射特征,同时结合裂尖区域的应变和位移变化信息分析木试件表面裂纹起裂和扩展的应变特征。结果含预制横纹裂纹木试件的损伤演变过程中的声发射和数字图像测量结果,所反映的微裂纹萌生、扩展规律一致,验证了声发射振铃计数、能量和幅度对裂纹损伤过程的预判。其中声发射振铃计数、能量、幅度可有效预报木试件微裂纹的萌生,木试件表面应变的变化可以有效观测裂纹萌生和扩展区域的演变。结论建立了木材微裂纹萌生、扩展行为与声发射参数和表面应变之间的对应关系,并成功地构建了基于声发射技术和数字图像相关法的原位监测含横纹裂纹木构件裂纹损伤演化的测量和评价体系,试验结果为进一步研究含横纹裂纹木构件裂纹演变行为的损伤机理和原位监测方法提供了参考依据。

     

  • 图  1  试验装置

    F为载荷;D为声发射传感器距离;a为预制裂缝长度;T为木试件高度;R为木试件厚度;L为木试件长度;S为支座间距。F is force, D is the distance between AE sensor 1 and AE sensor 2, a is the length of prefabricated crack, T is the height of wooden test piece, R is the thickness of wooden test piece, L is the length of wooden test piece, and S is the distance between two supports.

    Figure  1.  Experimental device

    图  2  声发射参数历程图

    P为木梁起裂点,Q为木梁韧性断裂点。P is the point of crack initiation; Q is the point of instability and fracture.

    Figure  2.  Acoustic emission parameter history

    图  3  声发射参数历程图(0 ~ 350 s)

    a、b、c、d、e点分别对应的加载时间为100、150、200、250和300 s。a, b, c, d and e points reprent loading time of 100, 150, 200, 250 and 300 s, respectively.

    Figure  3.  Acoustic emission parameter history map during 0 − 350 s

    图  4  木试件表面应变云图

    Figure  4.  Specimen surface strain cloud

    图  5  试件A点位置处木梁表面应变

    O~B为弹性阶段;B~C为应变突变阶段;B点为应变变化拐点。O−B is elasticity stage, B−C is strain mutation stage, and B is the inflection point in the strain change.

    Figure  5.  Relative deformation of the surface of the wooden beam at the point A of the test piece

  • [1] 王丽宇, 鹿振友, 张明辉, 等. 木材干燥后的裂纹与断裂[J]. 木材工业, 2002, 16(2):26−28. doi: 10.3969/j.issn.1001-8654.2002.02.008

    Wang L Y, Lu Z Y, Zhang M H, et al. Cracks and fractures after wood drying[J]. Wood Industry, 2002, 16(2): 26−28. doi: 10.3969/j.issn.1001-8654.2002.02.008
    [2] 王丽宇. 木材裂纹扩展及其断裂行为的研究[D]. 北京: 北京林业大学, 2002.

    Wang L Y. Research on crack propagation and fracture behavior of wood[D]. Beijing: Beijing Forestry University, 2002.
    [3] 费本华, 张东升. 木材断裂裂纹及应力场的分形研究[J]. 木材工业, 2003, 17(3):7−12. doi: 10.3969/j.issn.1001-8654.2003.03.003

    Fei B H, Zhang D S. Fractal study on crack and stress field of wood[J]. Wood Industry, 2003, 17(3): 7−12. doi: 10.3969/j.issn.1001-8654.2003.03.003
    [4] 孙艳玲, 张青, 赵东. 木材裂纹尖端应力、应变场的数值分析[J]. 北京林业大学学报, 2010, 32(1):103−107.

    Sun Y L, Zhang Q, Zhao D. Numerical analysis of stress and strain fields at the crack tip of wood[J]. Journal of Beijing Forestry University, 2010, 32(1): 103−107.
    [5] 邵卓平. 木材和竹材的断裂与损伤[D]. 合肥: 安徽农业大学, 2009.

    Shao Z P. Fracture and damage of wood and bamboo[D]. Hefei: Anhui Agricultural University, 2009.
    [6] 鹿振友. 断裂力学在木材加上的应用[J]. 北京林业大学学报, 1988, 10(3):49−56.

    Lu Z Y. Application of fracture mechanics in wood addition[J]. Journal of Beijing Forestry University, 1988, 10(3): 49−56.
    [7] Wu E M. Application of fracture mechanics to anisotropic plates[J]. Journal of Applied Mechanics, 1967, 34(4): 967−974. doi: 10.1115/1.3607864
    [8] 鹿振友, 王丽宇, 刘艳. 白桦材断裂韧度的各向异性性质[J]. 力学与实践, 2004, 26(4):47−49. doi: 10.3969/j.issn.1000-0879.2004.04.014

    Lu Z Y, Wang L Y, Liu Y. Anisotropic properties of fracture toughness of white birch[J]. Mechanics and Engineering, 2004, 26(4): 47−49. doi: 10.3969/j.issn.1000-0879.2004.04.014
    [9] 邵卓平, 任海青, 江泽慧. 木材横纹理断裂及强度准则[J]. 林业科学, 2003, 39(1):119−125. doi: 10.3321/j.issn:1001-7488.2003.01.020

    Shao Z P, Ren H Q, Jiang Z H. Fracture and strength criterion of wood horizontal texture[J]. Scientia Silvae Sinicae, 2003, 39(1): 119−125. doi: 10.3321/j.issn:1001-7488.2003.01.020
    [10] 范文英, 徐虹, 龚蒙. 木材断裂韧性KIC测定方法的研究[J]. 南京林业大学学报(自然科学版), 1993, 17(3):80−82.

    Fan W Y, Xu H, Gong M. Study on the determination method of wood fracture toughness KIC[J]. Journal of Nanjing Forestry University (Natural Science Edition), 1993, 17(3): 80−82.
    [11] 林兰英, 何盛, 傅峰, 等. 基于图像处理微波处理材裂纹评价[J]. 林业科学, 2014, 50(4):84−89.

    Lin L Y, He S, Fu F, et al. Evaluation of cracks in microwave processing materials based on image processing[J]. Scientia Silvae Sinicae, 2014, 50(4): 84−89.
    [12] Choi D, Thorpe J L, Hanna R B. Image analysis to measure strain in wood and paper[J]. Wood Science & Technology, 1991, 25(4): 251−262.
    [13] Yates J R, Zanganeh M, Tai Y H. Quantifying crack tip displacement fields with DIC[J]. Engineering Fracture Mechanics, 2010, 77(11): 2063−2076. doi: 10.1016/j.engfracmech.2010.03.025
    [14] Strojecki M, Łukomski M, Colla C, et al. Acoustic emission as a non-destructive method for tracing damage: from laboratory testing to monitoring historic structures[J]. RILEM Bookseries, 2012, 6: 1131−1136.
    [15] 张志研. 木材损伤的声发射特征及裂纹扩展机理研究[D]. 北京: 北京林业大学, 2009.

    Zhang Z Y. Study on acoustic emission characteristics and crack propagation mechanism of wood damage[D]. Beijing: Beijing Forestry University, 2009.
    [16] Hu M, Johansson M, Olsson A, et al. Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation[J]. European Journal of Wood and Wood Products, 2015, 73(1): 17−27. doi: 10.1007/s00107-014-0851-3
    [17] Nagai H, Murata K, Nakano T. Strain analysis of lumber containing a knot during tensile failure[J]. Journal of Wood Science, 2011, 57(2): 114−118. doi: 10.1007/s10086-010-1154-x
    [18] Keunecke D, Novosseletz K, Lanvermann C, et al. Combination of X-ray and digital image correlation for the analysis of moisture-induced strain in wood: opportunities and challenges[J]. European Journal of Wood and Wood Products, 2012, 70(4): 407−413. doi: 10.1007/s00107-011-0573-8
    [19] 王丽宇, 鹿振友, 赵东, 等. 白桦材LT型裂纹的演化与增长行为的研究[J]. 北京林业大学学报, 2002, 24(2):61−63.

    Wang L Y, Lu Z Y, Zhao D, et al. Study on evolution and growth behavior of LT cracks in white birch[J]. Journal of Beijing Forestry University, 2002, 24(2): 61−63.
    [20] 张喆. 数字散斑相关法测量木材断裂韧性的应用研究[D]. 北京: 北京林业大学, 2013.

    Zhang Z. Application of digital scattered work correlation method to measure fracture toughness of wood[D]. Beijing: Beijing Forestry University, 2013.
    [21] Beall F C. Overview of the use of ultrasonic technologies in research on wood properties[J]. Wood Science & Technology, 2002, 36(3): 197−212.
    [22] Aicher S, HoFflin L, Dill-Langer G. Damage evolution and acoustic emission of wood at tension perpendicular to fiber[J]. Holz als Roh-und Werkstoff, 2001, 59(1−2): 104−116. doi: 10.1007/s001070050482
    [23] Booker J D. Acoustic emission related to instantaneous strain in Tasmanian eucalypt timber during seasoning[J]. Wood Science & Technology, 1994, 28(4): 249−259.
    [24] Ardalany M, Deam B, Fragiacomo M. Experimental results of fracture energy and fracture toughness of radiata pine laminated veneer lumber (LVL) in model I (opening)[J]. Materials and Structures, 2012, 45(8): 1189−1205. doi: 10.1617/s11527-012-9826-1
    [25] 邵卓平, 陈品, 查朝生, 等. 木材损伤断裂过程的声发射特性与Felicity效应[J]. 林业科学, 2009, 45(2):86−91. doi: 10.3321/j.issn:1001-7488.2009.02.016

    Shao Z P, Chen P, Zha C S, et al. Acoustic emission characteristics and felicity effect of wood damage and fracture process[J]. Scientia Silvae Sinicae, 2009, 45(2): 86−91. doi: 10.3321/j.issn:1001-7488.2009.02.016
    [26] Diakhate M, Bastidas-Arteaga E, Moutou P R, et al. Cluster analysis of acoustic emission activity within wood material: towards a real-time monitoring of crack tip propagation[J]. Engineering Fracture Mechanics, 2017, 180: 254−267. doi: 10.1016/j.engfracmech.2017.06.006
    [27] Zhang H, Fu D H, Song H P, et al. Damage and fracture investigation of three-point bending notched sandstone beams by DIC and AE techniques[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1297−1303. doi: 10.1007/s00603-014-0635-4
    [28] Lu Y L, Li W S, Wang L G, et al. In-situ microscale visualization experiments on microcracking and microdeformation behaviour around a pre-crack tip in a three-point bending sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 175−185. doi: 10.1016/j.ijrmms.2019.01.002
    [29] Farhidzadeh A, Mpalaskas A C, Matikas T E, et al. Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features[J]. Construction and Building Materials, 2014, 67: 129−138. doi: 10.1016/j.conbuildmat.2014.05.015
    [30] Wildemann V E, Spaskova E V, Shilova A I. Research of the damage and failure processes of composite materials based on acoustic emission monitoring and method of digital image correlation[J]. Solid State Phenomena, 2015, 243: 8.
    [31] Malumbela G, Alexander M, Moyo P. Lateral deformation of RC beams under simultaneous load and steel corrosion[J]. Construction and Building Materials, 2010, 24: 17−24. doi: 10.1016/j.conbuildmat.2009.08.005
  • 加载中
图(5)
计量
  • 文章访问数:  8345
  • HTML全文浏览量:  526
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-09-03
  • 网络出版日期:  2019-10-09
  • 刊出日期:  2020-01-14

目录

    /

    返回文章
    返回