高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性

吴义远 董文渊 刘培 张孟楠 谢泽轩 田发坤

吴义远, 董文渊, 刘培, 张孟楠, 谢泽轩, 田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性[J]. 北京林业大学学报, 2020, 42(4): 80-90. doi: 10.12171/j.1000-1522.20190290
引用本文: 吴义远, 董文渊, 刘培, 张孟楠, 谢泽轩, 田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性[J]. 北京林业大学学报, 2020, 42(4): 80-90. doi: 10.12171/j.1000-1522.20190290
Wu Yiyuan, Dong Wenyuan, Liu Pei, Zhang Mengnan, Xie Zexuan, Tian Fakun. Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions[J]. Journal of Beijing Forestry University, 2020, 42(4): 80-90. doi: 10.12171/j.1000-1522.20190290
Citation: Wu Yiyuan, Dong Wenyuan, Liu Pei, Zhang Mengnan, Xie Zexuan, Tian Fakun. Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions[J]. Journal of Beijing Forestry University, 2020, 42(4): 80-90. doi: 10.12171/j.1000-1522.20190290

不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性

doi: 10.12171/j.1000-1522.20190290
基金项目: 林业公益性行业科研专项(201204103),中央财政林业科技推广示范项目(【2018】TG14号)
详细信息
    作者简介:

    吴义远。主要研究方向:森林生态。Email:1148311123@qq.com 地址:650224 云南省昆明市盘龙区白龙寺300号西南林业大学筇竹研究院

    责任作者:

    董文渊,博士,教授。主要研究方向:竹类无性系种群生态学。Email:wydong6839@sina.com 地址:同上

  • 中图分类号: S759.1+5;S718.51+6

Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions

  • 摘要: 目的为探究筇竹秆对不同土壤水分和养分条件的适应策略,本论文研究了不同土层厚度生境中的天然筇竹林竹秆解剖结构变化规律,旨在为筇竹工艺材用林培育提供理论指导。方法采用冗余分析与蒙特卡洛检验方法,分析了3种土层深度0 ~ 40 cm、0 ~ 80 cm和0 ~ 120 cm筇竹林竹秆解剖结构特征与土壤养分、水分的关系。结果(1)随着土壤水分和养分含量的递增,筇竹竹秆基本组织比量、维管束密度呈现显著递减的趋势(P < 0.05);而输导组织比量,纤维组织比量,维管束长、宽表现出明显递增的趋势(P < 0.05)。即与中土层及厚土层生境相比较,薄土层竹秆维管束产生了形状小、密度大的重要适应特征。(2)3种土层厚度生境中,薄土层生境筇竹竹秆组织比量和维管束大小的变异系数及可塑性指数均为最大。即与中土层及厚土层生境相比较,薄土层生境中竹秆维管束以更强的调节能力来适应低水分、养分的环境。(3)土壤水分和养分因子对筇竹秆解剖结构有着显著影响(P < 0.05),单一土壤因子对筇竹竹秆解剖结构影响的重要性大小排序为全K > 水解N > 速效K > 有效P > 全P > 全N > 含水量 > 有机碳 > 酸碱度。结论土壤水分和养分含量的不同是影响筇竹竹秆的解剖结构可塑性的根本原因,解剖结构可塑性使得筇竹在不同土层厚度生境中形成适应性差异,竹秆维管束的大小和密度呈现的明显可塑性,是筇竹对土壤因子产生的重要适应特征。竹秆解剖特征及其适应可塑性对筇竹适应土层厚度异质性具有重要生态作用。

     

  • 图  1  不同生境筇竹竹秆解剖结构

    A、B 为薄土层筇竹竹秆横切面,×4、×10; C、D 为中土层筇竹竹秆横切面,×4、×10;E、F厚土层筇竹竹秆横切面,×4、×10。ec为表皮细胞;c为皮层;fb为纤维束;gt为基本组织;vb为维管束;ph为韧皮部;mV为后生木质部导管。A, B, transvers section of Qiongzhuea tumidinoda stalk in thin soil, ×4, ×10; C, D, the transvers section of Qiongzhuea tumidinoda stalk in moderate soil, ×4, ×10; E, F, transvers section of Qiongzhuea tumidinoda stalk in thick soil, ×4, ×10; ec, epidermis; c, cortex; fb, fiber bundle; gt, ground tissue; vb, vascular bundle; ph: phloem, mV: main xylem vessel.

    Figure  1.  Anatomy of Qiongzhuea tumidinoda stalk under different habitats

    图  2  筇竹竹秆解剖结构与土壤因子的冗余度分析

    Gtp 为基本组织比量;Ftp 为纤维组织比量;Ctp 为输导组织比量;Vbd 为维管束密度;Vbl 为维管束长度;Vbw 为维管束宽度;WC 为含水量;pH 为酸碱度;SOC 为有机碳;TN 为全氮;HN 为水解氮;TP 为全磷;AP 为有效磷;TK 为全钾;AK 为速效钾。Gtp,ground tissue proportion; Ftp,fiber tissue proportion;Ctp,conducting tissue proportion;Vbd,vascular bundle density;Vbl,vascular bundle length;Vbw,vascular bundle width;WC,water content;pH,degree of acid or alkali;SOC,soil organic carbon;TN,total nitrogen;HN,hydrolyzed nitrogen;TP,total phosphorus;AP,available phosphorus;TK,total potassium;AK,available potassium.

    Figure  2.  Redundancy analysis on anatomy of Qiongzhuea tumidinoda stalk and soil factors

    表  1  3种生境的立地条件

    Table  1.   Site conditions of the three habitats

    样地类型 Sample plot type海拔 Elevation/m坡位 Slope position坡向 Slope aspect坡度 Slope degree/(°)土层深度 Soil depth/cm
    A1薄土层 Thin soil layer 1 330坡下部 Lower slope半阳坡 Semi-sunny slope28°0 ~ 40
    A2中土层 Medium soil layer1 326坡下部 Lower slope半阳坡 Semi-sunny slope31°0 ~ 80
    A3厚土层 Thick soil layer 1 320坡下部 Lower slope半阳坡 Semi-sunny slope 29°0 ~ 120
    下载: 导出CSV

    表  2  不同生境筇竹竹秆组织比量及维管束解剖结构形态比较

    Table  2.   Comparison of tissue proportion and vascular bundle morphology and anatomical feature of Qiongzhuea tumidinoda stalk under different habitats

    样地类型
    Sample plot type
    基本组织比量
    Ground tissue proportion/%
    纤维组织比量
    Fiber tissue proportion/%
    输导组织比量
    Conducting tissue proportion/%
    维管束密度/(个∙mm− 2
    Vascular bundle density/(number ∙mm− 2)
    维管束长度
    Vascular bundle length/μm
    维管束宽度
    Vascular bundle width/μm
    维管束长宽比
    Vascular bundle length-width ratio
    A173.57 ± 1.06a20.49 ± 0.91b5.94 ± 0.39c6.20 ± 0.83a293.70 ± 21.35b264.98 ± 18.73b1.11 ± 0.09a
    A271.40 ± 1.03b22.13 ± 1.04a6.47 ± 0.42b4.99 ± 0.55b313.13 ± 16.42b270.63 ± 14.03ab1.15 ± 0.05a
    A370.46 ± 1.81b22.73 ± 1.79a6.81 ± 0.43a4.87 ± 0.63b324.49 ± 21.92a280.26 ± 17.92a1.16 ± 0.10a
    注:不同小写字母表示同一指标在不同类型样地的P < 0.05水平上差异显著。Note: different lowercase letters indicate that the difference of same index in different sample plot types is significant at P < 0.05 level.
    下载: 导出CSV

    表  3  不同生境筇竹解剖结构变异系数和可塑性指数

    Table  3.   Variation coefficients and plasticity indexes of Qiongzhuea tumidinoda under different habitats

    指标
    Index
    A1A2A3
    变异系数
    Variation coefficient
    可塑性指标
    Plasticity index
    变异系数
    Variation coefficient
    可塑性指标
    Plasticity index
    变异系数
    Variation coefficient
    可塑性指标
    Plasticity index
    基本组织比量
    Ground tissue proportion
    0.013 0.051 0.014 0.053 0.026 0.068
    纤维组织比量
    Fiber tissue proportion
    0.045 0.144 0.047 0.162 0.080 0.196
    输导组织比量
    Conducting tissue proportion
    0.066 0.212 0.065 0.184 0.063 0.182
    维管束密度
    Vascular bundle density
    0.134 0.426 0.110 0.275 0.129 0.318
    维管束长度
    Vascular bundle length
    0.073 0.252 0.052 0.210 0.066 0.206
    维管束宽度
    Vascular bundle width
    0.071 0.246 0.052 0.164 0.064 0.212
    下载: 导出CSV

    表  4  不同生境0 ~ 30 cm土层的土壤水分、养分含量

    Table  4.   Contents of soil moisture and nutrients in 0−30 cm soil layer under different habitats

    样地类型
    Sample plot type
    土层厚度
    Soil thickness/cm
    pH含水率
    Water content/%
    有机质
    Organic matter/(g∙kg− 1)
    全氮
    Total nitrogen/(g∙kg− 1)
    水解氮
    Hydrolyzed nitrogen/(mg∙kg− 1)
    全磷
    Total phosphorus/(g∙kg− 1)
    有效磷
    Available phosphorus/(mg∙kg− 1)
    全钾
    Total potass-ium/(g∙kg− 1)
    速效钾
    Available potassium/(mg∙kg− 1)
    A1 0 ~ 10 3.53 ± 0.09Cb 16.32 ± 0.70Ab 47.17 ± 1.46Ac 4.23 ± 0.04Ac 226.10 ± 16.00Ac 0.29 ± 0.01Ab 2.79 ± 0.03Ac 21.15 ± 1.94Ab 107.08 ± 1.39Ac
    10 ~ 20 3.90 ± 0.19Aa 11.70 ± 1.28Bb 39.67 ± 0.45Bb 3.40 ± 0.11Bb 179.20 ± 3.40Bb 0.25 ± 0.02Bc 2.52 ± 0.03Bb 20.05 ± 0.84Ac 72.62 ± 4.61Bc
    20 ~ 30 3.78 ± 0.04Bc 10.77 ± 0.35Bb 19.58 ± 1.78Cb 2.92 ± 0.19Cb 130.20 ± 4.30Cc 0.18 ± 0.01Cc 2.04 ± 0.01Cc 18.64 ± 0.75Ab 60.31 ± 1.62Cc
    A2 0 ~ 10 3.68 ± 0.03Ca 19.89 ± 0.24Aa 53.81 ± 0.57Ab 4.62 ± 0.09Ab 288.40 ± 6.40Ab 0.35 ± 0.03Ab 3.45 ± 0.03Ab 27.03 ± 1.40Ab 169.85 ± 2.71Ab
    10 ~ 20 3.89B ± 0.03Ba 13.25 ± 0.60Bb 50.98 ± 2.63Ba 3.62 ± 0.18Ba 233.80 ± 6.20Ba 0.30 ± 0.02Bb 3.22 ± 0.11Ba 23.97 ± 0.98Bb 158.77 ± 8.41Bb
    20 ~ 30 4.03 ± 0.02Aa 11.09 ± 0.70Ca 26.48 ± 0.64Ba 3.19 ± 0.05Ca 148.40 ± 1.70Cb 0.21 ± 0.02Cb 3.11 ± 0.09Bb 21.49 ± 0.68Ca 98.46 ± 1.15Cb
    A3 0 ~ 10 3.74 ± 0.6Ca 20.61 ± 0.94Aa 59.37 ± 0.06Aa 4.92 ± 0.04Aa 319.20 ± 16.30Aa 0.39 ± 0.03Aa 3.55 ± 0.40Aa 29.31 ± 4.66Aa 222.57 ± 3.25Aa
    10 ~ 20 4.09 ± 0.02Aa 17.56 ± 0.57Ba 52.69 ± 0.34Ba 3.83 ± 0.05Ba 280.70 ± 1.10Ba 0.33 ± 0.02Ba 3.45 ± 0.04Aa 26.44 ± 1.43ABa 211.74 ± 10.82Aa
    20 ~ 30 3.90 ± 0.04Bb 11.22 ± 1.36Ca 28.67 ± 1.02Ca 3.41 ± 0.12Ca 237.30 ± 6.50Ca 0.25 ± 0.01Ca 3.30 ± 0.11Ba 22.72 ± 0.97Ba 108.31 ± 2.01Ba
    注:不同大写字母表明同一样地不同土层之间差异显著(P < 0.05),不同小写字母表明不同样地同一土层之间差异显著(P < 0.05)。Notes: different capital letters indicate significant difference in different soil layers of the same sample plot at P < 0. 05 level, different lowercase letters indicate significant difference in different sample plots for the same soil layer at P < 0. 05 level.
    下载: 导出CSV

    表  5  筇竹竹秆解剖结构RDA排序的特征值及累积解释量

    Table  5.   Eigenvalues and cumulative interpretation quantity of RDA ordination of anatomy of Qiongzhuea tumidinoda stalk

    排序轴 Sorting axis第Ⅰ轴 First axis第Ⅱ轴 Second axis第Ⅲ轴 Third axis第Ⅳ轴 Fourth axis
    特征解释量 Characteristic interpretation quantity 0.965 0.032 0.002 0.000
    特征与土壤因子相关系数 Correlation coefficients between characteristics and soil factors 1.000 1.000 1.000 1.000
    特征累计解释量 Accumulative interpretation characteristics/% 96.5 99.8 100.0 100.0
    特征一土壤因子关系累计解释量 Accumulative interpretation of characteristics-soil factor correlaton/% 96.5 99.8 100.0 100.0
    典范特征值 Canonical eigenvalue 1.000
    总特征值 Total eigenvalue 1.000
    下载: 导出CSV

    表  6  土壤因子变量解释的重要性排序和显著性检验结果

    Table  6.   Importance sort and significance test results of variable interpretation for soil factors

    土壤因子 Soil factor重要性排序 Order of importance解释量 Interpretation quantity/%FP
    全K Total K 1 85.3 40.647 0.002
    水解N Hydrolyzed N 2 83.6 35.748 0.002
    速效K Available K 3 80.9 29.642 0.002
    有效P Available P 4 80.7 29.316 0.002
    全P Total P 5 71.5 17.519 0.006
    全N Total N 6 58.9 10.043 0.010
    含水量 Water content 7 56.0 8.919 0.012
    有机碳 Organic carbon 8 53.8 8.315 0.024
    酸碱度 pH 9 1.60 0.117 0.818
    下载: 导出CSV
  • [1] 史刚荣. 七种阔叶常绿植物叶片的生态解剖学研究[J]. 广西植物, 2004, 24(4):334−338. doi: 10.3969/j.issn.1000-3142.2004.04.009

    Shi G R. A study on ecological anatomy of leaves in 7 broad-leaved evergreen plants[J]. Guihaia, 2004, 24(4): 334−338. doi: 10.3969/j.issn.1000-3142.2004.04.009
    [2] Niu S L, Jiang G M, Wan S Q, et al. Ecophysiological acclimation to different soil moistures in plants from a semi-arid sandland[J]. Journal of Arid Environments, 2005, 63(2): 353−365.
    [3] 钟悦鸣, 董芳宇, 王文娟, 等. 不同生境胡杨叶片解剖特征及其适应可塑性[J]. 北京林业大学学报, 2017, 39(10):53−61.

    Zhong Y M, Dong F Y, Wang W J, et al. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53−61.
    [4] 木巴热克·阿尤普, 伊丽米努尔, 荆卫民. 不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征[J]. 北京林业大学学报, 2017, 39(10):42−52.

    Ayup M, Yiliminuer, Jing W M. Xlem anatomical features and native xylem embolism of several Tamarix spp. species seedlings under different water treatments[J]. Journal of Beijing Forestry University, 2017, 39(10): 42−52.
    [5] 史刚荣, 程雪莲, 刘蕾, 等. 扁担木叶片和次生木质部解剖和水分生理特征的可塑性[J]. 应用生态学报, 2006, 17(10):1801−1806. doi: 10.3321/j.issn:1001-9332.2006.10.006

    Shi G R, Cheng X L, Liu L, et al. Response of morphological and anatomical characteristics of Kobreasia humilis to different habitats in watershed in alpine meadow in the Yellow River source zone[J]. Chinese Journal of Applied Ecology, 2006, 17(10): 1801−1806. doi: 10.3321/j.issn:1001-9332.2006.10.006
    [6] 李积兰, 张海燕, 李希来. 黄河上游高寒草甸矮嵩草形态解剖特征对流域生境的响应[J]. 中国草地学报, 2018, 40(1):99−104.

    Li J L, Zhang H Y, Li X L. Response of morphological and anatomical characteristics of Kobreasia humilis to the different habitats in watershed in alpine meadow in the Yellow River source[J]. Chinese Journal of Grassland, 2018, 40(1): 99−104.
    [7] 辛桂亮, 郑俊鸣, 叶志勇, 等. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6):792−800. doi: 10.11913/PSJ.2095-0837.2015.60792

    Xin G L, Zheng J M, Ye Z Y, et al. Ecological anatomical characteristics of secondary xylem in Kandelia obovata Sheueet al[J]. Plant Science Journal, 2015, 33(6): 792−800. doi: 10.11913/PSJ.2095-0837.2015.60792
    [8] Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491: 752−755. doi: 10.1038/nature11688
    [9] 李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究[J]. 植物生态学报, 2015, 39(8):838−848. doi: 10.17521/cjpe.2015.0080

    Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of wood plants[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 838−848. doi: 10.17521/cjpe.2015.0080
    [10] Cochard H, Tyree M T. Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism[J]. Tree Physiology, 1990, 6(4): 393−407. doi: 10.1093/treephys/6.4.393
    [11] 张海昕, 李姗, 张硕新, 等. 4个杨树无性系木质部导管与栓塞脆弱性的关系[J]. 林业科学, 2013, 49(5):54−61. doi: 10.11707/j.1001-7488.20130508

    Zhang H X, Li S, Zhang S X, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones[J]. Sci Silva Sin, 2013, 49(5): 54−61. doi: 10.11707/j.1001-7488.20130508
    [12] 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3):255−263. doi: 10.17521/cjpe.2015.0260

    Li R, Dang W, Cai J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance[J]. Chinese Journal of Plant Ecology, 2016, 40(3): 255−263. doi: 10.17521/cjpe.2015.0260
    [13] Mcelrone A J, Pockman W T, Martínez-Vilalta J, et al. Variation in xylem structure and function in stems and roots of trees to 20 m depth[J]. New Phytologist, 2010, 163(3): 507−517.
    [14] Domec J C, Warren J M, Meinzer F C, et al. Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees[J]. Iawa Journal, 2009, 30(2): 101−120. doi: 10.1163/22941932-90000207
    [15] 施建敏, 叶学华, 陈伏生, 等. 竹类植物对异质生境的适应:表型可塑性[J]. 生态学报, 2014, 34(20):5687−5695.

    Shi J M, Ye X H, Chen F S, et al. Adaptation of bamboo to heterogeneous habitat:phenotypic plasticity[J]. Acta Ecologica Sinica, 2014, 34(20): 5687−5695.
    [16] 陶建平, 宋利霞. 亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性[J]. 生态学报, 2006, 26(12):4019−4026. doi: 10.3321/j.issn:1000-0933.2006.12.013

    Tao J P, Song L X. Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest[J]. Acta Ecologica Sinica, 2006, 26(12): 4019−4026. doi: 10.3321/j.issn:1000-0933.2006.12.013
    [17] 杨佳俊, 董文渊, 唐海龙, 等. 坡向对水竹天然林形态可塑性的影响[J]. 西南林业大学学报, 2015, 35(3):20−24.

    Yang J J, Dong W Y, Tang H L, et al. The effect of slope directions morphological plasticity of Phyllostachys heteroclada natural forest[J]. Journal of Southwest Forestry College, 2015, 35(3): 20−24.
    [18] 黄慧敏, 董蓉, 钱凤, 等. 紫耳箭竹克隆形态可塑性对典型冠层结构及光环境的响应[J]. 生态学报, 2018, 38(19):52−62.

    Huang H M, Dong R, Qian F, et al. Response of clonal morphological plasticity of Fargesia decurvata to different forest canopy structures and light conditions[J]. Acta Ecologica Sinica, 2018, 38(19): 52−62.
    [19] 应叶青, 魏建芬, 解楠楠, 等. 自然低温胁迫对毛竹生理生化特性的影响[J]. 南京林业大学学报(自然科学版), 2011, 31(3):133−136.

    Ying Y Q, Wei J F, Xie N N, et al. Effects of natural low temperature stress on physiological and biochemical properties of Phyllostachys edulis[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2011, 31(3): 133−136.
    [20] 刘玉芳, 陈双林, 李迎春, 等. 竹子生理可塑性的环境胁迫效应研究进展[J]. 浙江农林大学学报, 2014, 31(3):473−480. doi: 10.11833/j.issn.2095-0756.2014.03.022

    Liu Y F, Chen S L, Li Y C, et al. Environmental stress on physiological plasticity of bamboo:a review[J]. Journal of Zhejiang A&F University, 2014, 31(3): 473−480. doi: 10.11833/j.issn.2095-0756.2014.03.022
    [21] 王丽华, 高景, 刘尉, 等. 四川慈竹生理生化指标对SO2胁迫的响应[J]. 四川农业大学学报, 2017, 35(4):547−554.

    Wang L H, Gao J, Liu W, et al. Physio-biochemical responses of Neosinocalamus affinis to SO2 stress[J]. Journal of Sichuan Agricultural University, 2017, 35(4): 547−554.
    [22] 张令峰, 许海峰, 汪佑宏, 等. 不同海拔高度及坡向对毛竹解剖特征影响及其与物理力学性质关系[J]. 安徽农业大学学报, 2009, 36(1):77−80.

    Zhang L F, Xu H F, Wang Y H, et al. Impact on bamboo anatomical characteristics of different altitudes and slope and the relationship between them and the main physical & mechanical properties[J]. Journal of Anhui Agricultural University, 2009, 36(1): 77−80.
    [23] Saha S, Holbrook N M, Montti L, et al. Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina1[J]. Plant Physiology, 2009, 149(4): 1992−1999. doi: 10.1104/pp.108.129015
    [24] 潘少安. 三种刚竹属竹子木质部结构及光合—水分关系研究[D]. 金华: 浙江师范大学, 2016.

    Pan S A. The xylme structure and relationship between water relations and photosynthesis in three Phyllostachys bamboo[D]. Jinhua: Zhejiang Normal Uiversity, 2016.
    [25] 董文渊, 黄宝龙, 谢泽轩, 等. 筇竹生长发育规律的研究[J]. 南京林业大学学报(自然科学版), 2002,26(3):43−47.

    Dong W Y, Huang B L, Xie Z X, et al. The study on the growth and development rhythm of Qiongzhuea tumidinoda[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2002,26(3): 43−47.
    [26] 董文渊, 黄宝龙, 谢泽轩, 等. 筇竹开花结实特性的研究[J]. 南京林业大学学报(自然科学版), 2001, 25(6):30−32. doi: 10.3969/j.issn.1000-2006.2001.06.008

    Dong W Y, Huang B L, Xie Z X, et al. Studies on the characters of blossoming and seed bearing of Qiongzhuea tumidinoda[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2001, 25(6): 30−32. doi: 10.3969/j.issn.1000-2006.2001.06.008
    [27] 杨奕, 董文渊, 邱月群, 等. 筇竹笋生长过程中营养成分的变化[J]. 东北林业大学学报, 2015, 43(1):80−82. doi: 10.3969/j.issn.1000-5382.2015.01.019

    Yang Y, Dong W Y, Qiu Y Q, et al. Transformation of nutritional compositions in Chimonobambusa tumidissinoda shoots during growth process[J]. Journal of Northeast Forestry University, 2015, 43(1): 80−82. doi: 10.3969/j.issn.1000-5382.2015.01.019
    [28] 董文渊, 邱月群, 王逸之, 等. 天然筇竹居群形态遗传多样性[J]. 东北林业大学学报, 2016, 44(5):101−103. doi: 10.3969/j.issn.1000-5382.2016.05.023

    Dong W Y, Qiu Y Q, Wang Y Z, et al. Morphological genetic diversity of natural Qiongzhuea tumidinoda populations[J]. Journal of Northeast Forestry University, 2016, 44(5): 101−103. doi: 10.3969/j.issn.1000-5382.2016.05.023
    [29] 毛闻君, 董文渊. 筇竹生长立地类型划分及立地质量评价研究[D]. 昆明: 西南林学院, 2009.

    Mao W J, Dong W Y. Qiongzhuea tumidinoda site type classification and site quality evaluation study[D]. Kunming: Southwest Forestry College, 2009.
    [30] 董文渊, 黄宝龙, 谢泽轩, 等. 不同水分条件下筇竹无性系的生态适应性研究[J]. 南京林业大学学报(自然科学版), 2002, 26(6):21−24.

    Dong W Y, Hung B L, Xie Z X, et al. The ecological strategy of clonal growth of Qiongzhuea tumidinoda under different levels of water resource supply[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2002, 26(6): 21−24.
    [31] 唐海龙, 董文渊, 王林昊, 等. 容器材质规格和缓释肥量对筇竹容器育苗生长的影响[J]. 西南林业大学学报, 2016, 36(3):38−43.

    Tang H L, Dong W Y, Wang L H, et al. Effect of different container material, container size andslow release fertilizer on the growth of container seedlings of Qiongzhuea tumidinoda[J]. Journal of Southwest Forestry College, 2016, 36(3): 38−43.
    [32] 中国科学院南京土壤所. 土壤理化性质分析[M]. 上海: 上海科技出版社, 1987.

    Nanjing Institute of Soil Science, Chinese Academy of Sciences. Analysis of soil physical and chemical properties[M]. Shanghai: Shanghai Science and Technology Press, 1987.
    [33] 国家林业局. 森林土壤有机质的测定及碳氮比的计算: LY/T1237—1999[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio: LY/T1237−1999[S]. Beijing: China Standard Press, 1999.
    [34] Ashton P M S, Olander L P, Berlyn G P, et al. Changes in leaf structure in relation to crown position and tree size[J]. Canadian Journal of Botany, 2011, 76(7): 1180−1187.
    [35] 云雷, 毕华兴, 马雯静, 等. 晋西黄土区林草复合系统土壤养分分布特征及边界效应[J]. 北京林业大学学报, 2011, 33(2):37−42.

    Yun L, Bi H X, Ma W J, et al. Distribution characteristics and boundary effects of soil nutrient in silvopastoral system in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2011, 33(2): 37−42.
    [36] 刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2):33−44.

    Liu G H, Li B Y, Gong D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 33−44.
    [37] 李晓莎, 许中旗, 赵娱, 等. 冀北山地干旱阳坡土壤厚度及土壤养分的空间异质性[J]. 河北农业大学学报, 2018, 41(1):24−30, 48.

    Li X S, Xu Z Q, Zhao Y, et al. Spatial heterogeneity of surface soil nutrient and soil depth in dry south-slope of North Mountain of Heibei[J]. Journal of Hebei Agricultural University, 2018, 41(1): 24−30, 48.
    [38] Willigen C V, sherwin H W, Pammenter N W. Xylem hydraulic characteristics of subtropical trees from constrasting habitats grown under identical environmental conditions[J]. New Physiologist, 2000, 145(1): 51−59. doi: 10.1046/j.1469-8137.2000.00549.x
    [39] 林鹏, 林益明, 林建辉. 桐花树和海桑次生木质部的生态解剖[J]. 林业科学, 2000, 36(2):125−128. doi: 10.3321/j.issn:1001-7488.2000.02.021

    Lin P, Lin Y M, Lin J H, et al. Ecological anatomical characterstics of secondary xylem in Aegiceras corniculatum and Sonneratia caseolaris[J]. Scientia Silvae Sinicae, 2000, 36(2): 125−128. doi: 10.3321/j.issn:1001-7488.2000.02.021
    [40] 解丽娜, 贡路, 朱美玲, 等. 塔里木盆地南缘绿洲土壤酶活性与理化因子相关性[J]. 环境科学研究, 2014, 27(11):1306−1313.

    Xie L N, Gong L, Zhu M L, et al. Soil enzyme activities and their correlation with physicochemical factors in the oasis of southern margin of Tarim Basin[J]. Research of Environmental Sciences, 2014, 27(11): 1306−1313.
    [41] 孙刚, 邓文鑫, 王陆军, 等. 安徽肖坑天然毛竹林生产力及其土壤养分特点[J]. 经济林研究, 2009, 27(3):28−32. doi: 10.3969/j.issn.1003-8981.2009.03.006

    Sun G, Deng W X, Wang L J, et al. Productivity and soil nutrient characteristics of natural bamboo forest in Xiaokeng, Anhui Province[J]. Economic Forest Rresearch, 2009, 27(3): 28−32. doi: 10.3969/j.issn.1003-8981.2009.03.006
    [42] 李卉, 李宝珍, 邹冬生, 等. 水稻秸秆不同处理方式对亚热带农田土壤微生物生物量碳、氮及氮素矿化的影响[J]. 农业现代化研究, 2015, 36(2):303−308.

    Li H, Li B Z, Zou D S, et al. Effects of different treatments of rice straw on soil microbial biomass carbon, nitrogen and nitrogen mineralization in subtropical farmland[J]. Agricultural Modernization Research, 2015, 36(2): 303−308.
    [43] 闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J][J]. 北京林业大学学报, 2016, 38(4):36−43.

    Yan G Y, Wang X C, Xing Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36−43.
    [44] 王力, 邵明安, 侯庆春. 水、氮、磷对杨树生物量的耦合效应[J]. 北京林业大学学报, 2000, 22(3):19−22. doi: 10.3321/j.issn:1000-1522.2000.03.005

    Wang L, Shao M A, Hou Q C. Coupling effect of water, N and P to poplar biomass[J]. Journal of Beijing Forestry University, 2000, 22(3): 19−22. doi: 10.3321/j.issn:1000-1522.2000.03.005
    [45] Kering M K, Butler T J, Biermacher J T, et al. Effect of potassium and nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest systems on a low potassium soil[J]. Bioenergy Research, 2013, 6(1): 329−335. doi: 10.1007/s12155-012-9261-8
    [46] 杜彩艳, 杜建磊, 包立, 等. 不同施钾水平对土壤速效钾含量和三七养分吸收及产量的影响[J]. 中国土壤与肥料, 2017(6):105−112. doi: 10.11838/sfsc.20170616

    Du C Y, Du J L, Bao L, et al. Effect of different potassium application levels on available potassium content in soi, nutrient absorption and yield of Panax notoginseng[J]. China Soil and Fertilizer, 2017(6): 105−112. doi: 10.11838/sfsc.20170616
    [47] 邱莉萍, 刘军, 王益权, 等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报, 2004, 10(3):277−280. doi: 10.3321/j.issn:1008-505X.2004.03.011

    Qiu L P, Liu J, Wang Y Q, et al. Relationship between soil enzyme activity and soil fertility[J]. Chinese Journal of Plant Nutrition and Fertilizer, 2004, 10(3): 277−280. doi: 10.3321/j.issn:1008-505X.2004.03.011
    [48] Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925−1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
    [49] Abrams M D, Kubiske M E, Mostoller S A. Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species[J]. Ecology, 1994, 75(1): 123−133. doi: 10.2307/1939389
    [50] 耿宇鹏, 张文驹, 李博, 等. 表型可塑性与外来植物的入侵能力[J]. 生物多样性, 2004, 12(4):447−455. doi: 10.3321/j.issn:1005-0094.2004.04.009

    Geng Y P, Zhang W J, Li B, et al. Phenotypic plastictiy and invasiveness of alien plants[J]. Biodiversity Science, 2004, 12(4): 447−455. doi: 10.3321/j.issn:1005-0094.2004.04.009
    [51] 徐飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报, 2010, 32(1):24−30.

    Xu F, Guo W H, Xu W H, et al. Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24−30.
    [52] Callaway R M, Richards P C L. Phenotypic plasticity and interactions among plants[J]. Ecology, 2003, 84(5): 1115−1128. doi: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
    [53] 周朝彬, 辛慧慧, 宋于洋. 梭梭次生木质部解剖特征及其可塑性研究[J]. 西北林学院学报, 2014, 29(2):207−212. doi: 10.3969/j.issn.1001-7461.2014.02.37

    Zhou C B, Xin H H, Song Y Y. Secondary xylem anatomical structure and its plasticity of Halaxylon ammodendron[J]. Journal of Northwest Forestry University, 2014, 29(2): 207−212. doi: 10.3969/j.issn.1001-7461.2014.02.37
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  1255
  • HTML全文浏览量:  478
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2019-09-21
  • 网络出版日期:  2020-04-10
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回