高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施氮对1年生青钱柳生长和三萜类化合物积累的影响

张小燕 李雨菲 刘桂华 许早时 邓波

张小燕, 李雨菲, 刘桂华, 许早时, 邓波. 施氮对1年生青钱柳生长和三萜类化合物积累的影响[J]. 北京林业大学学报, 2020, 42(4): 60-68. doi: 10.12171/j.1000-1522.20190294
引用本文: 张小燕, 李雨菲, 刘桂华, 许早时, 邓波. 施氮对1年生青钱柳生长和三萜类化合物积累的影响[J]. 北京林业大学学报, 2020, 42(4): 60-68. doi: 10.12171/j.1000-1522.20190294
Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. doi: 10.12171/j.1000-1522.20190294
Citation: Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. doi: 10.12171/j.1000-1522.20190294

施氮对1年生青钱柳生长和三萜类化合物积累的影响

doi: 10.12171/j.1000-1522.20190294
基金项目: 国家自然科学基金项目(31800528)
详细信息
    作者简介:

    张小燕。主要研究方向:森林培育。Email:1247580584@qq.com 地址:230022 安徽省合肥市蜀山区长江西路130号安徽农业大学林学与园林学院

    责任作者:

    邓波,博士,讲师。主要研究方向:森林培育。Email:bdeng2008@sohu.com 地址:同上

  • 中图分类号: S792.12

Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus

  • 摘要: 目的研究施氮对青钱柳生长和三萜类积累的影响,为规范青钱柳药用人工林的栽培和提高药用植物单位面积的三萜产量提供理论依据。方法以1年生青钱柳苗为试材,共设置5个不同的施氮水平,包括:N1(0 g/株)、N2(1 g/株)、N3(3.4 g/株)、N4(6 g/株)和N5(10 g/株)。分别于5—8月的每月中下旬测定其苗高、地径、生物量,总三萜以及主要的3个三萜单体的含量。结果结果表明:(1)青钱柳苗高和地径的生长随着施N量的增加呈现先增加后减少的变化趋势,最大苗高和地径的净生长量在N4处理中获得,与对照N1相比,分别增加103.90%和57.58%;植株根系、茎杆、叶片生物量和总生物量积累的变化趋势与之相似,其中最大总生物量积累在N4处理中获得,达到7.24 g。(2)随着施氮量的增加,植株叶片中N含量出现线性增加(根系和茎杆较稳定),而C含量未发生明显变化,导致叶片中的C/N从20.42%线性下降到12.19%。(3)叶片是三萜积累的主要部位,叶片中阿江榄仁酸、青钱柳酸B、青钱柳甙Ⅰ及总三萜积累在各处理间呈现单峰变化趋势,均在相对低N条件下(N2)获得峰值,分别为2.45、0.73、0.44 、22.95 mg/g。另外,所检测的3个三萜单体中,含量最高的为阿江榄仁酸(0.73 mg/g,干质量),其后依次为青钱柳酸B(0.23 mg/g,干质量)和青钱柳甙I(0.12 mg/g,干质量)。(4)施氮显著影响了青钱柳中总三萜和三萜单体的单株产量,其中总三萜、阿江榄仁酸的单株产量的变化范围分别为95.21 ~ 279.45 mg/株、4.64 ~ 17.21 mg/株,均在相对低N条件下(N3)获得最高;总三萜和3个三萜单体的最低产量在N1或N5处理获得。结论施氮量在中等偏高水平时可以促进青钱柳幼苗的生长,而中等偏低的施氮量则能促进三萜类化合物的积累。

     

  • 图  1  不同施氮处理对青钱柳苗高(A)和地径(B)生长的影响

    不同小写字母表示在0.05水平上差异显著。下同。Different lowercase letters indicate significant difference at P < 0.05 level. The same below.

    Figure  1.  Effects of different nitrogen application treatments on growth of seedling height (A) and ground diameter (B) of Cyclocarya paliurus

    图  2  不同施氮处理对青钱柳不同营养器官的总三萜和3种三萜单体积累的影响

    Figure  2.  Effects of different nitrogen application treatments on the accumulation of total and individual triterpenoids in varied vegetative organs of Cyclocarya paliurus

    图  3  不同施氮处理对青钱柳叶和单株总三萜和3种三萜单体产量的影响

    Figure  3.  Effects of different nitrogen application treatments on yield of total and individual triterpenoids in leaves and plants of Cyclocarya paliurus

    表  1  不同施氮处理对青钱柳生物量积累的影响

    Table  1.   Effects of different nitrogen application treatments on biomass accumulation in different vegetative organs of Cyclocarya paliurus g

    处理 Treatment根系 Root茎杆 Stalk叶片 Leaf总生物量 Toal biomass
    N1 1.22 ± 0.56 a1.25 ± 0.38 a1.35 ± 0.56 a3.82 ± 1.60 a
    N21.85 ± 0.47 a1.77 ± 0.34 ab2.33 ± 0.47 b5.95 ± 1.19 b
    N31.92 ± 0.64 a2.15 ± 0.67 b2.30 ± 0.64 b6.37 ± 1.84 b
    N43.54 ± 0.60 b2.08 ± 0.11 b1.62 ± 0.26 ab7.24 ± 0.93 b
    N51.30 ± 0.42 a1.15 ± 0.35 a0.95 ± 0.35 a3.40 ± 0.42 a
    注:同列相同小写字母表示处理间差异不显著,不同小写字母表示处理间差异显著(P < 0.05)。下同。Notes: the same lowercase letters in the same column indicate no significant difference between treatments, different lowercase letters indicate significant difference (P < 0.05). The same below.
    下载: 导出CSV

    表  2  不同施氮水平下青钱柳苗不同部位的碳、氮及碳氮比(C/N)的变化

    Table  2.   Variations of carbon, nitrogen, and carbon-to-nitrogen ratio (C/N) in different components of Cyclocarya paliurus seedlings under varied nitrogen application levels %

    处理 Treatment根系 Root茎杆 Stalk叶片 Leaf
    CNC/NCNC/NCNC/N
    N142.31 a1.11 b38.14 a41.90 a0.62 c68.05 a42.48 a2.09 c20.42 a
    N241.63 a1.54 b27.28 b41.89 a0.87 b48.33 b43.24 a2.78 b15.59 b
    N341.28 a1.81 ab23.36 bc42.06 a1.07 b40.58 bc42.39 a2.72 b15.59 b
    N439.31 a2.17 a18.16 c41.55 a1.39 a30.20 c42.57 a2.85 b14.95 b
    N541.04 a2.11 a19.91 c42.22 a1.38 a30.97 c39.22 b3.23 a12.19 c
    下载: 导出CSV
  • [1] 方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1):95−100. doi: 10.3969/j.issn.1000-2006.2007.01.023

    Fang S Z, Fu X X. Research progress on cultivation, development and utilization of Cyclocarya paliurus resources[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2007, 31(1): 95−100. doi: 10.3969/j.issn.1000-2006.2007.01.023
    [2] 舒任庚, 徐昌瑞, 黎莲娘. 青钱柳甜味成分的研究[J]. 药学学报, 1995, 30(10):757−761. doi: 10.3321/j.issn:0513-4870.1995.10.009

    Shu R G, Xu C R, Li L N. Study on sweet cmponents of Cyclocarya paliurus[J]. Actapharmsin, 1995, 30(10): 757−761. doi: 10.3321/j.issn:0513-4870.1995.10.009
    [3] 洑香香, 方升佐. 青钱柳次生代谢产物及其生理功能[J]. 安徽农业科学, 2009, 37(28):3612−3614.

    Fu X X, Fang S Z. Secondary metabolites of Cyclocarya paliurus and their physiological functions[J]. Journal of Anhui Agricultural Sciences, 2009, 37(28): 3612−3614.
    [4] Wang Q, Jiang C, Fan S, et al. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type2 diabetic rats[J]. Journal of Ethnopharmacology, 2013, 150: 1119−1127. doi: 10.1016/j.jep.2013.10.040
    [5] 李夏蕾. 青钱柳化学成分研究[D]. 长春: 长春中医药大学, 2012.

    Li X L. Studies on chemical constituents of Cyclocarya paliurus[D]. Changchun: Changchun University of Traditional Chinese Medicine, 2012.
    [6] Shu R, Xu C, Li L, et al. Cyclocariosides II and III: two secodammarane triterpenoid saponins from Cyclocarya paliurus[J]. Planta Medica, 1995, 61: 551−553. doi: 10.1055/s-2006-959369
    [7] 谢雪姣, 刘国华, 武青庭, 等. 青钱柳主要化学成分研究进展[J]. 江西中医药, 2017, 48(12):78−80.

    Xie X J, Liu G H, Wu Q T, et al. Advances in main chemical constituents of Cyclocarya paliurus[J]. Jiangxi Traditional Chinese Medicine, 2017, 48(12): 78−80.
    [8] 王晓敏, 舒任庚, 蔡永红, 等. 青钱柳水提液对糖尿病小鼠胰岛细胞的保护作用[J]. 时珍国医国药, 2010, 21(12):3146−3147. doi: 10.3969/j.issn.1008-0805.2010.12.050

    Wang X M, Shu R G, Cai Y H, et al. Protective effect of water extract of Cyclocarya paliurus on islet cells of diabetic mice[J]. Lishizhen Medicine and Materia Medica Research, 2010, 21(12): 3146−3147. doi: 10.3969/j.issn.1008-0805.2010.12.050
    [9] Fang Z, Shen S, Wang J, et al. Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes[J/OL]. Molecules, 2019, 24(1): 187[2019−08−04]. https://doi.org/10.3390/molecules24010187.
    [10] 杨万霞, 方升佐. 青钱柳种子综合处理过程中内源激素的动态变化[J]. 南京林业大学学报: 自然科学版, 2008, 32(5):85−88.

    Yang W X, Fang S Z. Dynamic changes of endogenous hormones in Cyclocarya paliurus seeds during comprehensive treatment[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2008, 32(5): 85−88.
    [11] Carlsen S C K, Fomsgaard I S. Biologically active secondary metabolites in white clover (Trifolium repens L.): a review focusing on contents in the plant, plant-pest interactions and transformation[J]. Chemoecology, 2008, 18: 129−170. doi: 10.1007/s00049-008-0402-7
    [12] Szakiel A, Paczkowski C, Henry M. Influence of environmental abiotic factors on the content of saponins in plants[J]. Phytochemistry Rviews, 2011, 10(4): 471−491. doi: 10.1007/s11101-010-9177-x
    [13] 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2012: 171−179.

    Pan R C. Plant physiology[M]. Beijing: Higher Education Press, 2012: 171−179.
    [14] Morcuende R, Bari R P, Gibon Y, et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus[J]. Plant Cell and Environment, 2007, 30(1): 85−112. doi: 10.1111/j.1365-3040.2006.01608.x
    [15] Cronin G, Lodge M D. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes[J]. Oecologia, 2003, 137(1): 32−41. doi: 10.1007/s00442-003-1315-3
    [16] Groenbaek M, Jensen S, Neugart S, et al. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica)[J]. Food Chemistry, 2016, 197: 530−538. doi: 10.1016/j.foodchem.2015.10.108
    [17] Deng B, Li Y, Lei G, et al. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus[J]. Plant Physiology and Biochemistry, 2019, 135: 111−118. doi: 10.1016/j.plaphy.2018.12.001
    [18] Huang W, Xue A, Niu H, et al. Optimised ultrasonicassisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro[J]. Food Chemistry, 2009, 114: 1147−1154. doi: 10.1016/j.foodchem.2008.10.079
    [19] 舒任庚, 刘玉凤, 舒积成. 比色法测定青钱柳中三萜类成分的含量[J]. 中国现代应用药学, 2006, 23(5):406−408. doi: 10.3969/j.issn.1007-7693.2006.05.027

    Shu R G, Liu Y F, Shu J C. Determination of triterpenoids in Cyclocarya paliurus by colorimetry[J]. Chinese Journal of Modern Applied Pharmacy, 2006, 23(5): 406−408. doi: 10.3969/j.issn.1007-7693.2006.05.027
    [20] 苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药杂志, 2005, 36(9):139−142.

    Su W H, Zhang G F, Li X H, et al. The relationship between the accumulation of secondary metabolites of plant medicinal materials and environment[J]. Chinese Traditional and Herbal Drugs, 2005, 36(9): 139−142.
    [21] 李双喜, 杨曾奖, 徐大平, 等. 施氮量对檀香幼苗生长及养分积累的影响[J]. 植物营养与肥料学报, 2015, 21(3):807−814. doi: 10.11674/zwyf.2015.0329

    Li S X, Yang Z J, Xu D P, et al. Effects of nitrogen application on growth and nutrient accumulation of sandalwood seedlings[J]. Plant Nutrition and Fertilizer Science, 2015, 21(3): 807−814. doi: 10.11674/zwyf.2015.0329
    [22] 梁峥, 郑光植. 高等植物的次生代谢[J]. 植物生理学通讯, 1981, 1(1):14−21.

    Liang Z, Zheng G Z. Secondary metabolism in higher plants[J]. Plant Physiological Communication, 1981, 1(1): 14−21.
    [23] 邓波, 刘桂华, 余云云, 等. 遮荫和种源对青钱柳三萜类化合物积累的影响[J]. 生态学杂志, 2018, 37(2):383−390.

    Deng B, Liu G H, Yu Y Y, et al. Effects of shading and provenance on triterpenoid accumulation in leaves of Cyclocarya paliurus[J]. Chinese Journal of Ecology, 2018, 37(2): 383−390.
    [24] Deng B, Shang X L, Fang S Z, et al. Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 6286−6292. doi: 10.1021/jf301525s
    [25] 曾波, 钟章成. 四川大头茶黄酮类化合物的聚酰胺薄膜层析分析[J]. 植物生态学报, 1997, 21(1):90−96. doi: 10.3321/j.issn:1005-264X.1997.01.013

    Zeng B, Zhong Z C. Analysis of flavonoids in Sichuan Datou tea by polyamide film chromatography[J]. Journal of Plant Ecology, 1997, 21(1): 90−96. doi: 10.3321/j.issn:1005-264X.1997.01.013
    [26] 金则新, 李钧敏, 丁军敏. 青钱柳叶片次生代谢产物含量分析[J]. 福建林业科技, 2007, 34(3):6−9. doi: 10.3969/j.issn.1002-7351.2007.03.002

    Jin Z X, Li J M, Ding J M. Analysis of secondary metabolites in Cyclocarya paliurus leaves[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(3): 6−9. doi: 10.3969/j.issn.1002-7351.2007.03.002
    [27] Nguyen P M, Niemeyer E D. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.)[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8685−8691. doi: 10.1021/jf801485u
    [28] Coruzzi G, Bush D R. Nitrogen and carbon nutrient and metabolite signaling in plants[J]. Plant Physiology, 2001, 125: 61−64. doi: 10.1104/pp.125.1.61
    [29] Grechi I, Vivin P, Hilbert G, et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine[J]. Environmental and Experimental Botany, 2007, 59(2): 139−149. doi: 10.1016/j.envexpbot.2005.11.002
    [30] 杨蓓芬, 金则新, 李钧敏. 七子花叶片次生代谢产物含量的动态分析[J]. 西北林学报, 2008, 23(6):155−158.

    Yang B F, Jin Z X, Li J M. Dynamic analysis of secondary metabolites content in leaves of Heptacodium miconioides Rehd[J]. Journal of Northwest Forestry, 2008, 23(6): 155−158.
    [31] Larbat R, Robin C, Lillo C, et al. Modeling the diversion of parmary carbon flux into secondary metabolism under variable nitrate and light/dark conditions[J]. Journal of Theoretical Biology, 2016, 402: 144−157. doi: 10.1016/j.jtbi.2016.05.008
    [32] Paul M J, Driscoll S P. Sugar repression of photosynthesis: the role of carbohydrates in signaling nitrogen deficiency through source: sink imbalance[J]. Plant Cell and Environment, 1997, 20: 110−116. doi: 10.1046/j.1365-3040.1997.d01-17.x
    [33] Stamp N. Out of the quagmire of plant defense hypotheses[J]. The Quarterly Review of Biology, 2003, 78: 23−55. doi: 10.1086/367580
    [34] Stamp N. Can the growth-differentiation balance hypothesis be tested rigorously?[J]. Oikos, 2004, 107: 439−448. doi: 10.1111/j.0030-1299.2004.12039.x
    [35] Buer C S, Muday G K, Djordjevic M A. Flavonoids are differentially taken up and transported long distances in Arabidopsis[J]. Plant Physiology, 2007, 145(2): 478−490. doi: 10.1104/pp.107.101824
    [36] Poutaraud A, Girardin P. Improvement of medicinal plant quality: a Hypericum perforatum literature review as an example[J]. Plant Genetic Resources, 2005, 3: 178−189. doi: 10.1079/PGR200567
    [37] Cai Z Q, Wang W H, Yang J, et al. Growth, photosynthesis and root reserpine concentrations of two Rauvolfia species in response to a light gradient[J]. Industrial Crops and Products, 2009, 30(2): 220−226. doi: 10.1016/j.indcrop.2009.03.010
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  471
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-12
  • 修回日期:  2019-09-03
  • 网络出版日期:  2020-04-11
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回