高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫椴次生林枯立木与活立木数量及空间结构特征分析

刘月 许丽颖 王玉娇 于江波 杨立学

刘月, 许丽颖, 王玉娇, 于江波, 杨立学. 紫椴次生林枯立木与活立木数量及空间结构特征分析[J]. 北京林业大学学报, 2020, 42(6): 68-79. doi: 10.12171/j.1000-1522.20190305
引用本文: 刘月, 许丽颖, 王玉娇, 于江波, 杨立学. 紫椴次生林枯立木与活立木数量及空间结构特征分析[J]. 北京林业大学学报, 2020, 42(6): 68-79. doi: 10.12171/j.1000-1522.20190305
Liu Yue, Xu Liying, Wang Yujiao, Yu Jiangbo, Yang Lixue. Characteristics analysis of quantity and spatial structure of standing live and dead trees in Tilia amurensis secondary forest on the west slope of Zhangguangcailing, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 68-79. doi: 10.12171/j.1000-1522.20190305
Citation: Liu Yue, Xu Liying, Wang Yujiao, Yu Jiangbo, Yang Lixue. Characteristics analysis of quantity and spatial structure of standing live and dead trees in Tilia amurensis secondary forest on the west slope of Zhangguangcailing, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 68-79. doi: 10.12171/j.1000-1522.20190305

紫椴次生林枯立木与活立木数量及空间结构特征分析

doi: 10.12171/j.1000-1522.20190305
基金项目: “十三五”国家重点研发计划项目(2017YFD0600606),中央高校基本科研业务费专项资金(2572019CP16)
详细信息
    作者简介:

    刘月。主要研究方向:森林经营。Email:837370311@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    杨立学,博士,教授。主要研究方向:森林培育,森林经营。Email:ylx_0813@163.com 地址:同上

  • 中图分类号: S750;S792.36

Characteristics analysis of quantity and spatial structure of standing live and dead trees in Tilia amurensis secondary forest on the west slope of Zhangguangcailing, northeastern China

  • 摘要: 目的通过分析两种干扰模式(未择伐、择伐)下紫椴次生林中枯立木和活立木的数量及空间结构特征,探究林分生长状态、演替过程以及枯立木形成的主要原因,为紫椴次生林的生长、保护以及经营提供依据。方法分析活立木、枯立木物种组成、径级结构、高度级结构及空间结构。结果(1)在择伐林分中,紫椴和色木槭以及其他活立木占优势地位的树种在枯立木中也同样占优势地位,而未择伐林分中,紫椴在活立木和枯立木中占优势,但色木槭只在活立木中占优势,枯立木中并不多见。(2)两个林分中小径阶的活立木和枯立木均占优势,径阶结构均大致呈倒J型。两个林分活立木高度级结构大致呈左偏山峰状,而枯立木大致呈倒J型,小个体枯立木所占比例较大,因此可以分析出两个林分枯立木形成主要的原因是林木间竞争。(3)由空间结构参数三元分析可知,两个林分中呈随机分布、高度混交且占优势的活立木较多。而大多数枯立木处于随机分布、劣势状态,且周围林木均为其他树种或仅有1株为同树种。(4)通过枯立木结构参数四元分布可知,两个林分枯立木总体呈现随机分布,具有很强的种间混交,且大小分化很明显。四元分布能反映出该状态下的枯立木周围存在3 ~ 4株活立木。【结论】 以上信息进一步说明林木种间竞争是该种林分枯立木形成的主要原因。该研究分析了2种紫椴次生林活立木及枯立木空间结构及数量特征,不仅可以探究该类型次生林枯立木形成的主要原因,也为其保护和经营提供了理论依据。

     

  • 图  1  样地1和样地2活立木径级分布

    Figure  1.  Diameter class distribution of living trees in sample plot 1 and 2

    图  2  样地1和样地2活立木高度级分布

    Figure  2.  Height class distribution of living treesin sample plot 1 and 2

    图  3  样地1和样地2枯立木径级分布

    Figure  3.  Diameter class distribution of dead standing trees insample plot 1 and 2

    图  4  样地1和样地2枯立木高度级分布

    Figure  4.  Height class distribution of dead standing trees insample plot 1 and 2

    图  5  样地1和样地2活立木空间结构参数的三元分布

    Figure  5.  Trivariate distribution of spatial structure parameters of living trees in sample plot 1 and 2

    图  6  样地1和样地2枯立木空间结构参数的三元分布

    Figure  6.  Trivariate distribution of spatial structure parameters of dead standing trees in sample plot 1 and 2

    图  7  样地1中枯立木空间结构参数的四元分布

    Figure  7.  Quadrivariate distribution of spatial structure parameters of dead standing trees in sample plot 1

    图  8  样地2中枯立木空间结构参数的四元分布

    Figure  8.  Quadrivariate distribution of spatial structure parameters of dead standing trees in sample plot 2

    表  1  标准地基本概况

    Table  1.   General condition of sample plots

    样地编号
    Sample
    plot No.
    坡度
    Slope
    degree/(°)
    坡向
    Slope
    aspect
    平均海拔
    Average altitude/m
    郁闭度
    Crown
    density
    断面积/(m2·hm−2)
    Basal area/
    (m2·ha−1)
    林分平均胸径
    Mean stand DBH/cm
    林分密度/(株·hm−2)
    Stand density/
    (plant·ha−1)
    树种组成
    Tree species composition
    1 27 西南Southwest 378 0.80 30.4 15.1 1 291 3紫2色1蒙1白3杂
    2 24 西南Southwest 420 0.84 29.8 14.7 1 235 4色3紫1糠1青1杂
    注:紫为紫椴;色为色木槭;蒙为蒙古栎;白为白桦;糠为糠椴;青为青楷槭;杂为其他树种。Notes:
    ,Tilia amurensis; 色,Acer mono; 蒙,Quercus mongolica; 白,Betula platyphylla; 糠,Tilia mandshurica; 青,Acer tegmentosum; 杂,other tree species.
    下载: 导出CSV

    表  2  空间结构参数

    Table  2.   Spatial structure parameters

    参数 Parameter公式 Formula备注 Remark
    混交度 Mingling $ {M_i} = \frac{1}{n}\sum\limits_j^n {{V_{ij}}} $ 当参照树i与第j株相邻木非同种时,Vij取值为1;否则取值为0
    The value of Vij is 1 when the reference tree i is not the same species as that of the adjacent trees of strain j; otherwise, the value is 0
    角尺度 Uniform angle index $ {M_i} = \frac{1}{n}\sum\limits_j^n {{Z_{ij}}} $ 当第ia角小于标准角a0时,Zij取值为1;否则取值为0
    When the first angle a is smaller than the standard a0, the Zij value is 1; otherwise, the value is 0
    大小比数 Neighbourhood comparison $ {U_i} = \frac{1}{n}\sum\limits_j^n {{K_{ij}}} $ 当相邻木j比参照树i小,Kij取值为0;否则取值为1
    When the adjacent tree j is smaller than the reference tree i, the value of Kij is 0; otherwise, the value is 1
    活立木比 Living tree ratio ${L_{{i} } } = \frac{1}{4}\sum\limits_{j = 1}^4 { {l_{ij} } }$ 当相邻木j为枯立木时,lij取值为0;否则取值为1
    When the adjacent tree j is standing dead tree, the value of lij is 0; otherwise it’s 1
    下载: 导出CSV

    表  3  角尺度、混交度、大小比数和活立木比各参数的数值及意义

    Table  3.   Specific values and meanings of uniform angle index, mingling, dominance and living tree ratio

    角尺度
    Uniform angle index
    混交度
    Mingling
    大小比数
    Neighbourhood comparison
    活立木比
    Living tree ratio
    参数值
    Parameter value
    意义
    Meaning
    参数值
    Parameter value
    意义
    Meaning
    参数值
    Parameter
    value
    意义
    Meaning
    参数值
    Parameter
    value
    意义
    Meaning
    W = 0.00 非常均匀
    分布
    Very regular distribution
    M = 0.00 无混交
    No mixture
    U = 0.00 优势状态
    Predominant state
    L = 0.00 参照树周围4株相邻木无活立木
    4 adjacent trees around the reference tree without living trees
    W = 0.25 均匀分布
    Regular distribution
    M = 0.25 低混交
    Low mixture
    U = 0.25 亚优势状态
    Subdominant state
    L = 0.25 参照树周围4株相邻木有1株活立木There is 1 living tree among 4 adjacent trees around the reference tree
    W = 0.50 随机分布
    Random distribution
    M = 0.50 中度混交
    Medium mixture
    U = 0.50 中庸状态
    Medium state
    L = 0.50 参照树周围4株相邻木有2株活立木There are 2 living trees among 4 adjacent trees around the reference tree
    W = 0.75 团状分布
    Clumped distribution
    M = 0.75 高度混交
    High mixture
    U = 0.75 中庸向劣势过渡状态
    From medium to disadvantaged state
    L = 0.75 参照树周围4株相邻木有3株活立木There are 3 living trees among 4 adjacent trees around the reference tree
    W = 1.00 聚集分布
    Very clumped distribution
    M = 1.00 极强混交
    Complete mixture
    U = 1.00 劣势状态
    Absolutely disadvantaged state
    L = 1.00 参照树周围4株相邻木有4株活立木There are 4 living trees among 4 adjacent trees around the reference tree
    下载: 导出CSV

    表  4  活立木及枯立木树种组成的数量特征

    Table  4.   Tree species attributes of living trees and dead standing trees

    样地1 Sample plot 1样地2 Sample plot 2
    树种
    Tree species
    密度/
    (株·hm− 2
    Density/
    (plant·ha− 1
    断面积/
    (m2·hm− 2
    Basal area/
    (m2·ha− 1
    平均胸径
    Mean DBH/
    cm
    树种
    Tree species
    密度/
    (株·hm− 2
    Density/
    (plant·ha− 1
    断面积/
    (m2·hm− 2
    Basal area/
    (m2·ha− 1
    平均胸径
    Mean DBH/
    cm
    活立木 Living
    tree
    紫椴
    Tilia amurensis
    529 10.089 15.781 色木槭
    Acer mono
    485 5.777 11.865
    色木槭
    Acer mono
    323 4.246 12.463 紫椴
    Tilia amurensis
    311 7.148 17.721
    蒙古栎
    Quercus mongolica
    70 2.331 19.212 青楷槭
    Acer tegmentosum
    89 0.426 8.073
    黄菠萝
    Phellodendron amurense
    40 0.756 16.421 槺椴
    Tilia mandshurica
    75 1.718 17.531
    大叶榆
    Ulmus laevis
    38 0.947 17.732 白桦
    Betula platyphylla
    34 2.114 30.482
    白桦
    Betula platyphylla
    30 1.449 24.581 蒙古栎
    Quercus mongolica
    28 1.373 25.313
    其他
    Others
    187 3.921 16.961 枫桦
    Betula costata
    26 1.545 28.964
    其他
    Others
    98 2.260 18.685
    枯立木
    Dead standing tree
    紫椴
    Tilia amurensis
    44 0.232 8.644 色木槭
    Acer mono
    33 0.114 7.135
    大叶榆
    Ulmus laevis
    6 0.064 12.434 紫椴
    Tilia amurensis
    29 0.193 9.123
    黄菠萝
    Phellodendron amurense
    5 0.064 13.043 青楷槭
    Acer tegmentosum
    5 0.012 6.234
    蒙古栎
    Quercus mongolica
    5 0.018 7.491 水榆花楸
    Sorbus alnifolia
    4 0.043 12.423
    山槐
    Albizia kalkora
    5 0.026 9.321 白桦
    Betula platyphylla
    3 0.074 19.563
    山杨
    Populus davidiana
    5 0.016 6.974 枫桦
    Betula costata
    3 0.078 18.134
    白桦
    Betula platyphylla
    1 0.102 35.962 胡桃楸
    Juglans mandshurica
    3 0.006 6.426
    花曲柳
    Fraxinus rhynchophylla
    1 0.005 8.123 槺椴
    Tilia mandshurica
    3 0.007 6.595
    槺椴
    Tilia mandshurica
    1 0.005 8.123 蒙古栎
    Quercus mongolica
    3 0.095 21.764
    青楷槭
    Acer tegmentosum
    1 0.003 6.424 裂叶榆
    Ulmus laciniate
    1 0.007 9.575
    水曲柳
    Fraxinus mandshurica
    1 0.006 9.264
    大叶榆
    Ulmus laevis
    1 0.086 11.312
    下载: 导出CSV
  • [1] 惠刚盈, 胡艳波, 徐海, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Hu Y B, Xu H, et al. Structure-based forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [2] Zhang L J, Hui G Y, Hu Y B, et al. Spatial structural characteristics of forests dominated by Pinus tabuliformis Carr.[J/OL]. PLoS ONE, 2018, 13: e0194710 (2018−04−13)[2018−10−22]. https://doi.org/10.1371/journal.pone.0194710.
    [3] Sun J, Yu X, Wang H, et al. Effects of forest structure on hydrological processes in China[J]. Journal of Hydrology, 2018, 561(1): 187−199.
    [4] Oliver C D, Larson B C. Forest stand dynamics: updated edition[M]. New York: McGraw-Hill Book Company, 1996.
    [5] Fang L H, Legendre P, LaFrankie J V, et al. Distribution patterns of tree species in a Malaysian tropical rain forest[J]. Journal of Vegetation Science, 1997, 8(1): 105−114. doi: 10.2307/3237248
    [6] 欧光龙, 王俊峰, 肖义发, 等. 思茅松天然林单木生物量地理加权回归模型构建[J]. 林业科学研究, 2014, 27(2):213−218.

    Ou G L, Wang J F, Xiao Y F, et al. Modeling individual biomass of Pinus kesiya var. langbianensis natural forests by geo-graphically weighted regression[J]. Forest Research, 2014, 27(2): 213−218.
    [7] 龚直文, 亢新刚, 顾丽, 等. 天然林林分结构研究方法综述[J]. 浙江林学院学报, 2009, 26(3):434−443.

    Gong Z W, Kang X G, Gu L, et al. Research methods on natural forest stand structure: a review[J]. Journal of Zhejiang Forestry College, 2009, 26(3): 434−443.
    [8] Houghton R A. The worldwide extent of land-use change[J]. Bioscience, 1994, 44(5): 305−313. doi: 10.2307/1312380
    [9] Dobson A P, Bradshaw A D, Baker A J M. Hopes for the future: restoration ecology and conservation biology[J]. Science, 1997, 277: 515−522. doi: 10.1126/science.277.5325.515
    [10] 李博, 陈家宽, 沃金森. 植物竞争研究进展[J]. 植物学通报, 1998, 15(4):18−29.

    Li B, Chen J K, Watkinson A R. A literature review on plant competition[J]. Chinese Bulletin of Botany, 1998, 15(4): 18−29.
    [11] 段仁燕, 王孝安. 太白红杉种内和种间竞争研究[J]. 植物生态学报, 2005, 29(2):242−250. doi: 10.3321/j.issn:1005-264X.2005.02.009

    Duan R Y, Wang X A. Intraspecific and interspecific competition in Larix chinensis[J]. Acta Phytoecologica Sinica, 2005, 29(2): 242−250. doi: 10.3321/j.issn:1005-264X.2005.02.009
    [12] Franklin J F, Shugart H H, Harmon M E, et al. Tree death as an ecological process: the causes, consequences, and variability of tree mortality[J]. Bioscience, 1987, 37(8): 550−556. doi: 10.2307/1310665
    [13] Jonsson B, Kruys N, Ranius T, et al. Ecology of species living on dead wood-lessons for dead wood management[J]. Silva Fennica, 2005, 39(2): 289−309.
    [14] Siitonen J. Ecology of woody debris in boreal forests forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example[J]. Ecological Bulletins, 2001 , 51(49): 11−21.
    [15] Harmon M E, Franklin J F, Swanson F J, et al. Role of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 2004, 34(15): 159−234.
    [16] Harmon M E. Carbon sequestration in forests: addressing the scale question[J]. Journal of Forestry, 2001, 99(4): 24−29.
    [17] Zielonka T. When does dead wood turn into a substrate for spruce replacement?[J]. Journal of Vegetation Science, 2006, 17(6): 739−746. doi: 10.1111/j.1654-1103.2006.tb02497.x
    [18] Lachat T, Brang P, Bolliger M, et al. Totholz im wald: entstehung, bedeutung und förderung[J]. Merkbl Prax, 2014, 52(1): 1−12.
    [19] Junninen K, Simila M, Kouki J, et al. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia[J]. Ecography, 2006, 29(1): 75−83. doi: 10.1111/j.2005.0906-7590.04358.x
    [20] Ódor P, Heilmann-Clausen J, Christensen M, et al. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe[J]. Biological Conservation, 2006, 131(1): 58−71. doi: 10.1016/j.biocon.2006.02.004
    [21] Uliczka H, Angelstam P. Assessing conservation values of forest stands based on specialised lichens and birds[J]. Biological Conservation, 2000, 95(3): 343−351. doi: 10.1016/S0006-3207(00)00022-7
    [22] Similä M, Kouki J, Martikainen P, et al. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters[J]. Forest Ecology and Management, 2003, 174(1−3): 365−381. doi: 10.1016/S0378-1127(02)00061-0
    [23] Sverdrup-Thygeson A, Gustafsson L, Kouki J, et al. Spatial and temporal scales relevant for conservation of dead-wood associ-ated species: current status and perspectives[J]. Biodiversity and Conservation, 2014, 23(3): 513−535. doi: 10.1007/s10531-014-0628-3
    [24] Heilmann-Clausen J, Christensen M. Fungal diversity on decaying beech logs: implications for sustainable forestry[J]. Biodiversity and Conservation, 2003, 12(5): 953−973. doi: 10.1023/A:1022825809503
    [25] Heilmann-Clausen J, Aude E, Christensen M, et al. Cryptogam communities on decaying deciduous wood: does tree species diversity matter?[J]. Biodiversity and Conservation, 2005, 14(9): 2061−2078. doi: 10.1007/s10531-004-4284-x
    [26] Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests[J]. European Journal of Forest Research, 2010, 129(6): 981−992. doi: 10.1007/s10342-010-0400-5
    [27] 国家林业局. 国家重点保护野生植物名录(第一批)[J]. 植物杂志, 1999(5):4−11.

    State Administration of Forestry. List of national key protected wild plant (first batch)[J]. Journal of Plants, 1999(5): 4−11.
    [28] Dale M R T, Gibson D J. Spatial pattern analysis in plant ecology[J]. Quarterly Review of Biology, 2002, 15(1): 195−196.
    [29] 唐杨, 陈红, 童跃伟, 等. 长白山阔叶红松林不同强度择伐后关键树种的竞争关系[J]. 应用生态学报, 2019, 30(5):1469−1478.

    Tang Y, Chen H, Tong Y W, et al. Competition of key tree species with selective cutting at different intensities in broadleaved-Korean pine mixed forest in the Changbai Mountain, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1469−1478.
    [30] 许梅, 董树斌, 张德怀, 等. 北京市紫椴种群空间分布格局研究[J]. 西北农林科技大学学报(自然科学版), 2017, 45(8):81−88.

    Xu M, Dong S B, Zhang D H, et al. Study on spatial distribution pattern of Tilia amurensis population in Beijing[J]. Journal of Northwest A & F University, 2017, 45(8): 81−88.
    [31] 张东来, 张玲. 帽儿山林区紫椴群落物种多样性、种间关系及对环境因子的响应[J]. 森林工程, 2015, 31(6):41−44, 166. doi: 10.3969/j.issn.1001-005X.2015.06.009

    Zhang D L, Zhang L. atudy on species diversity, interspecific association and response to environmental factors of Tilia amurensis community in Maoer Mountain[J]. Forest Engineering, 2015, 31(6): 41−44, 166. doi: 10.3969/j.issn.1001-005X.2015.06.009
    [32] 殷东生, 葛文志, 张凤海, 等. 色木槭天然次生林种群竞争关系研究[J]. 植物研究, 2012, 32(1):105−109. doi: 10.7525/j.issn.1673-5102.2012.01.005

    Yin D S, Ge W Z, Zhang F H, et al. Competition relationship of populations of natural secondary Acer mono forest[J]. Bulletin of Botanical Research, 2012, 32(1): 105−109. doi: 10.7525/j.issn.1673-5102.2012.01.005
    [33] 赵中华, 刘灵, 王宏翔, 等. 红花尔基沙地樟子松天然林枯立木特征分析[J]. 林业科学研究, 2017, 30(5):788−796.

    Zhao Z H, Liu L, Wang H X, et al. Dead standing trees characteristics analysis of Pinus sylvestris var. mongolica natural forest in Honghuaerji[J]. Forest Research, 2017, 30(5): 788−796.
    [34] 张岗岗, 刘瑞红, 惠刚盈, 等. 林分空间结构参数N元分布及其诠释: 以小陇山锐齿栎天然混交林为例[J]. 北京林业大学学报, 2019, 41(4):21−31.

    Zhang G G, Liu R H, Hui G Y, et al. N-variate distribution and its annotation on forest spatial structural parameters: a case study of Quercus aliena var. acuteserrata natural mixed forest in Xiaolong Mountains, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 21−31.
    [35] Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management, 2006, 224(3): 266−277. doi: 10.1016/j.foreco.2005.12.039
    [36] 陈亚南, 杨华, 马士友, 等. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 2015, 37(12):48−58.

    Chen Y N, Yang H, Ma S Y, et al. Spatial structure diversity of semi-natural and plantation stands of Larix gmelini in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12): 48−58.
    [37] 汤孟平, 娄明华, 陈永刚, 等. 不同混交度指数的比较分析[J]. 林业科学, 2012, 48(8):46−53. doi: 10.11707/j.1001-7488.20120808

    Tang M P, Lou M H, Chen Y G, et al. Comparative analyses on different mingling indices[J]. Scientia Silvae Sinicae, 2012, 48(8): 46−53. doi: 10.11707/j.1001-7488.20120808
    [38] 王宏翔. 天然林林分空间结构的二阶特征分析[D]. 北京: 中国林业科学研究院, 2017.

    Wang H X. Analysis of second-order characteristics of stand spatial structure of natural forests[D]. Beijing: Chinese Academy of Forestry, 2017.
    [39] 万盼. 经营方式对甘肃小陇山锐齿栎天然林林分质量的影响[D]. 北京: 中国林业科学研究院, 2018.

    Wan P. Impacts of forest management methods on stand quality of natural Quercus aliena var. acuteserrata forest in Xiaolongshan, Gansu Province[D]. Beijing: Chinese Academy of Forestry Sciences, 2018.
    [40] 白超. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院, 2016.

    Bai C. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest[D]. Beijing: Chinese Academy of Forestry Sciences, 2016.
    [41] 卢志军, 鲍大川, 郭屹立, 等. 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构[J]. 植物科学学报, 2013, 31(4):336−344. doi: 10.3724/SP.J.1142.2013.40336

    Lu Z J, Bao D C, Guo Y L, et al. Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broadleaved mixed forest, central China[J]. Plant Science Journal, 2013, 31(4): 336−344. doi: 10.3724/SP.J.1142.2013.40336
    [42] Iida Y, Kohyama T S, Kubo T, et al. Tree architecture and life - history strategies across 200 co-occurring tropical tree species[J]. Functional Ecology, 2011, 25(6): 1260−1268. doi: 10.1111/j.1365-2435.2011.01884.x
    [43] 马芳, 王顺忠, 冯金朝, 等. 北京东灵山暖温带落叶阔叶林枯立木与活立木空间分布格局[J]. 生态学报, 2018, 38(16):5717−5725.

    Ma F, Wang S Z, Feng J C, et al. Spatial distribution patterns of snag and standing trees in awarm temperate deciduous broadleaved forest in Dongling Mountain, Beijing[J]. Acta Ecologica Sinica, 2018, 38(16): 5717−5725.
    [44] 陆龙龙. 长白山林区阔叶红松林不同演替阶段群落结构特征研究[D]. 吉林: 北华大学, 2019.

    Lu L L. Study on community structure characteristics of different succession stages of broadleaved Korean pine forest in Changbai Mountain[D]. Jilin: Beihua University, 2019.
    [45] Bond-Lamberty B, Wang C, Gower S T, et al. Corrigendum: aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of Forest Research, 2014, 32(8): 1441−1450.
    [46] Fraver S, Jonsson B G, Jönsson M, et al. Demographics and disturbance history of a boreal old-growth Picea abies forest[J]. Journal of Vegetation Science, 2008, 19: 789−798. doi: 10.3170/2008-8-18449
    [47] Eskelson B N I, Temesgen H, Hagar J C, et al. A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes[J]. Forest Ecology and Management, 2012, 272: 26−30. doi: 10.1016/j.foreco.2011.06.041
    [48] Morris E C. Effect of localized placement of nutrients on root competition in selfthinning populations[J]. Annals of Botany, 1999, 78(3): 353−364.
    [49] Silvertown J W. Introduction to plant population ecology[M]. New York: Longman Scientific and Technical, 1993.
    [50] Ogawa K. Time-trajectory of mean phytomass and density during a course of self-thinning in a sugi (Cryptomeria japonica D. Don) plantation[J]. Forest Ecology and Management, 2005, 214(1): 104−110.
    [51] Ogawa K. Relationships between mean shoot and root masses and density in an overcrowded population of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) seedlings[J]. Forest Ecology and Management, 2005, 213(1−3): 391−398. doi: 10.1016/j.foreco.2005.04.005
    [52] 周永斌, 殷有, 殷鸣放, 等. 白石砬子国家级自然保护区天然林的自然稀疏[J]. 生态学报, 2011, 31(21):6469−6480.

    Zhou Y B, Yin Y, Yin M F, et al. Self-thinning of natural broadleaved forests in Baishilazi Nature Reserve[J]. Acta Ecologica Sinica, 2011, 31(21): 6469−6480.
    [53] Escandón A B, Susana P, Rojas R K, et al. Sprouting extends the regeneration niche in temperate rain forests: the case of the long-lived tree Eucryphia cordifolia[J]. Forest Ecology and Management, 2013, 310(1): 321−326.
    [54] Travaini A, Delibes M, Ferreras P, et al. Diversity, abundance or rare species as a target for the conservation of mammalian carnivores: a case study in southern Spain[J]. Biodivers Conserv, 1997, 6(4): 529−535. doi: 10.1023/A:1018329127772
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  359
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2020-04-10
  • 网络出版日期:  2020-05-18
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回