高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽河源自然保护区油松林火烧迹地林木更新研究

王博 韩树文 武英达 牛树奎 刘晓东

王博, 韩树文, 武英达, 牛树奎, 刘晓东. 辽河源自然保护区油松林火烧迹地林木更新研究[J]. 北京林业大学学报, 2020, 42(4): 41-50. doi: 10.12171/j.1000-1522.20190315
引用本文: 王博, 韩树文, 武英达, 牛树奎, 刘晓东. 辽河源自然保护区油松林火烧迹地林木更新研究[J]. 北京林业大学学报, 2020, 42(4): 41-50. doi: 10.12171/j.1000-1522.20190315
Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. doi: 10.12171/j.1000-1522.20190315
Citation: Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. doi: 10.12171/j.1000-1522.20190315

辽河源自然保护区油松林火烧迹地林木更新研究

doi: 10.12171/j.1000-1522.20190315
基金项目: 国家自然科学基金项目(31770696)
详细信息
    作者简介:

    王博。主要研究方向:林火生态、森林草原防火灭火。Email:2293777945@qq.com  地址:100083北京市海淀区清华东路35号北京林业大学生态与自然保护学院

    责任作者:

    刘晓东,博士,教授。主要研究方向:林火生态、森林草原防火灭火。Email:xd-liu@bjfu.edu.cn 地址:同上

Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China

  • 摘要: 目的从树种组成、密度、生长性状(基径、株高、冠径)、空间分布格局4个方面探讨辽河源自然保护区油松人工林火烧迹地林木更新特征,为火烧迹地植被恢复和森林科学经营管理提供参考。方法以保护区内火烧迹地油松林为研究对象,根据重度火烧下不同更新方式(天然更新和人工促进天然更新)、天然更新下不同火烧强度(重度火烧、中度火烧、轻度火烧)和对照(未过火)分别设置3块20 m × 20 m样地,重度火烧下天然更新样地和天然更新下重度火烧样地为相同样地,共15块样地,调查林木更新出现的种类和数量,测量林木更新的基径、株高、冠径,进行每木检尺并记录样地的地理坐标和立地因子等信息。利用单因素方差分析方法分析林木更新密度、生长性状的差异,利用方差/均值法分析林木更新的空间分布格局。结果(1)油松林火烧迹地林木更新树种主要是蒙古栎和山杨,分别占所有林木更新的38.1%和42.3%,此外还包括油松、裂叶榆、大果榆、榆树、色木槭等。重度火烧下不同更新方式之间所有林木更新的密度存在显著性差异(P < 0.05),天然更新下不同火烧强度之间所有林木更新的密度不存在显著性差异(P > 0.05)。(2)重度火烧下不同更新方式之间所有林木更新的生长性状特征无显著性差异(P > 0.05),天然更新下不同火烧强度之间所有林木更新的生长性状特征存在极显著性差异(P < 0.01)。(3)油松林火烧迹地林木更新的空间分布格局受到种子来源、种间竞争和火灾后生长空间的影响,适宜的微生境、动物携带种子扩散等因素会促进更新小规模聚集。结论火烧后4年的油松林火烧迹地更新树种主要是蒙古栎、山杨,中、低强度地表火可以促进林分天然更新,采取抢救性采伐等管理措施人工促进天然更新,可以加速火烧迹地植被恢复。

     

  • 图  1  所有林木更新生长性状特征

    重度火烧下不同更新方式和天然更新下不同火烧强度包括重度火烧下天然更新(SN)和人工促进天然更新(SA),天然更新下重度火烧(SN)、中度火烧(MN)、轻度火烧(LN)、对照(CN)。重度火烧下天然更新样地和天然更新下重度火烧样地为相同样地。Different renewal modes under severe fire, and different fire intensities under natural renewal, including natural renewal (SN) and artificial promoting natural renewal (SA) under severe fire, severe fire (SN), moderate fire (MN), light fire (LN) and control (CN) under natural renewal. Natural renewal sample plot under severe fire is the same as severe fire sample plot under natural renewal.

    Figure  1.  Regeneration and growth characteristics of all trees

    表  1  样地基本概况

    Table  1.   Basic survey of the sample plots

    项目 Item人工促进天然更新
    Artificial promoting
    natural renewal
    天然更新
    Natural renewal
    重度火烧
    Severe fire
    重度火烧
    Severe fire
    中度火烧
    Moderate fire
    轻度火烧
    Light fire
    对照
    Control
    海拔 Elevation/m 1 154 1 182 1 174 1 189 1 200
    坡度 Slope degree/(°) 21 31 32 29 28
    坡向 Slope aspect 西北 Northwest 东北 Northeast 东北 Northeast 东北 Northeast 东南 Southeast
    林分密度/(株·hm− 2
    Stand density/(tree·ha− 1)
    883 1 100 1 158 1 675
    胸径 DBH/cm 16.10 17.59 21.75 17.56
    树高 Tree height/m 10.50 12.21 13.70 14.69
    冠径 Crown diameter/m 2.16 3.13 4.56 4.26
    熏黑高度 Blackened height/m 10.49 8.10 1.76
    注:人工促进天然更新样地内乔木均被采伐,没有林分数据。Notes: all trees in the artificial promoting natural renewal sample plots were cut down, no stand data.
    下载: 导出CSV

    表  2  林木更新树种组成和密度特征

    Table  2.   Species composition and density characteristics of tree regeneration

    更新方式
    Updating mode
    火烧强度
    Fire intensity
    更新主要树种
    Major regeneration species
    株数
    Tree number
    百分比
    Percentage/%
    密度/(株·hm 2
    Density/(tree·ha− 1)
    人工促进天然更新
    Artificial promoting natural renewal
    重度火烧 Severe fire 所有 All 167 100.0 1 392
    蒙古栎 Quercus mongolica 11 6.6 92
    山杨 Populus davidiana 111 66.5 925
    裂叶榆 Ulmus laciniata 45 26.9 375
    天然更新
    Natural renewal
    重度火烧 Severe fire 所有All 34 100.0 283
    蒙古栎 Quercus mongolica 21 61.8 175
    山杨 Populus davidiana 13 38.2 108
    中度火烧 Moderate fire 所有All 70 100.0 583
    蒙古栎 Quercus mongolica 31 44.3 258
    山杨 Populus davidiana 37 52.9 308
    轻度火烧 Light fire 所有 All 48 100.0 400
    蒙古栎 Quercus mongolica 47 97.9 392
    对照 Control 所有 All 62 100.0 517
    蒙古栎 Quercus mongolica 46 74.2 383
    裂叶榆 Ulmus laciniata 16 25.8 133
    下载: 导出CSV

    表  3  林木更新密度的方差分析结果

    Table  3.   Variance analysis results of tree regeneration density

    项目 Item不同更新方式 Different updating mode不同火烧强度 Different fire intensity
    自由度 Degree of freedom 组间 Interblock 1 3
    组内 Intragroup 4 7
    方差齐性检验
    Homogeneity test of variance
    Levene 值 Levene value 3.620 0.290
    P 0.130 0.832
    单因素方差分析 One way ANOVA F 10.712 2.417
    P 0.031 0.152
    结果 Result *
    注:*表示显著水平。Note: * represents significant level.
    下载: 导出CSV

    表  4  林木更新生长性状的方差分析结果

    Table  4.   Variance analysis results of tree regeneration and growth characteristics

    项目
    Item
    生长性状
    Growth characteristics
    自由度
    Degree of freedom
    方差齐性检验
    Homogeneity test of variance
    单因素方差分析
    One way ANOVA
    结果
    Result
    组间
    Interblock
    组内
    Intragroup
    Levene值 Levene valuePFP
    不同更新方式
    Different updating mode
    平均基径
    Mean base diameter
    1 199 0.334 0.564 0.098 0.754
    平均株高
    Mean plant height
    1 199 11.408 0.124 1.111 0.293
    平均冠径
    Mean crown diameter
    1 199 27.750 0.337 5.151 0.064
    不同火烧强度
    Different fire intensity
    平均基径
    Mean base diameter
    3 210 1.953 0.122 4.543 0.004 **
    平均株高
    Mean plant height
    3 210 0.683 0.563 7.530 0.000 **
    平均冠径
    Mean crown diameter
    3 210 1.268 0.286 14.793 0.000 **
    注:**表示极显著水平。Note: ** represents extremely significant level.
    下载: 导出CSV

    表  5  天然更新下不同火烧强度林木更新生长性状的LSD多重比较(P 值)

    Table  5.   Multiple LSD comparisons of tree regeneration and growth characteristics with differentfire intensities under natural regeneration (P value)

    项目 Item平均基径
    Mean base diameter
    平均株高
    Mean plant height
    平均冠径
    Mean crown diameter
    重度火烧 Severe fire 中度火烧 Moderate fire 0.084 0.650 0.979
    重度火烧 Severe fire 轻度火烧 Light fire 0.052 0.001** 0.000**
    重度火烧 Severe fire 对照 Control 0.465 0.676 0.801
    中度火烧 Moderate fire 轻度火烧 Light fire 0.688 0.000** 0.000**
    中度火烧 Moderate fire 对照 Control 0.003** 0.292 0.734
    轻度火烧 Light fire 对照 Control 0.002** 0.001** 0.000**
    注:**表示极显著水平。Note: ** represents extremely significant level.
    下载: 导出CSV

    表  6  主要林木更新树种生长性状特征

    Table  6.   Growth trait characteristics of main tree regeneration species

    更新方式
    Updating mode
    火烧强度
    Fire intensity
    更新主要树种
    Major regeneration tree species
    平均基径
    Mean base diameter/mm
    平均株高
    Mean plant height/m
    平均冠径
    Mean crown diameter/m
    人工促进天然更新
    Artificial promoting
    natural renewal
    重度火烧
    Severe fire
    山杨 Populus davidiana 4.30 ± 0.24 0.63 ± 0.03 0.28 ± 0.02
    裂叶榆 Ulmus laciniata 8.20 ± 0.62 0.86 ± 0.06 0.45 ± 0.04
    天然更新
    Natural renewal
    重度火烧
    Severe fire
    蒙古栎 Quercus mongolica 29.91 ± 2.90 2.23 ± 0.18 2.27 ± 0.22
    山杨 Populus davidiana 7.95 ± 1.40 0.70 ± 0.13 0.55 ± 0.15
    中度火烧
    Moderate fire
    蒙古栎 Quercus mongolica 12.31 ± 1.79 0.91 ± 0.14 0.83 ± 0.15
    山杨 Populus davidiana 7.95 ± 0.94 0.73 ± 0.12 0.40 ± 0.06
    轻度火烧
    Light fire
    蒙古栎 Quercus mongolica 13.49 ± 1.06 1.28 ± 0.09 1.11 ± 0.09
    对照 Control 蒙古栎 Quercus mongolica 6.01 ± 0.82 0.75 ± 0.08 0.48 ± 0.06
    裂叶榆 Ulmus laciniata 6.88 ± 1.58 0.80 ± 0.15 0.42 ± 0.12
    注:**表示极显著水平。Note: ** represents extremely significant level.
    下载: 导出CSV

    表  7  林木更新空间分布格局特征

    Table  7.   Spatial distribution pattern of tree regeneration

    更新方式
    Updating mode
    火烧强度
    Fire intensity
    更新树种
    Regeneration tree species
    方差/均值
    Variance/mean
    空间分布格局
    Spatial distribution pattern
    人工促进天然更新
    Artificial promoting
    natural renewal
    重度火烧 Severe fire 所有 All 3.83 聚集 Aggregation
    山杨 Populus davidiana 5.05 聚集 Aggregation
    裂叶榆 Ulmus laciniate 2.24 聚集 Aggregation
    天然更新
    Natural renewal
    重度火烧 Severe fire 所有 All 1.34 聚集 Aaggregation
    蒙古栎 Quercus mongolica 2.35 聚集 Aggregation
    山杨 Populus davidiana 0.98 均匀 Uniformity
    中度火烧 Moderate fire 所有 All 4.29 聚集 Aggregation
    蒙古栎 Quercus mongolica 0.76 均匀 Uniformity
    山杨 Populus davidiana 7.27 聚集 Aggregation
    轻度火烧 Light fire 所有 All 0.57 均匀 Uniformity
    蒙古栎 Quercus mongolica 0.57 均匀 Uniformity
    对照 Control 所有 All 1.42 聚集 Aggregation
    蒙古栎 Quercus mongolica 0.82 均匀 Uniformity
    裂叶榆 Ulmus laciniata 2.59 聚集 Aggregation
    下载: 导出CSV
  • [1] 刘晓东, 王博. 森林燃烧主要排放物研究进展[J]. 北京林业大学学报, 2017, 39(12):118−124.

    Liu X D, Wang B. Review on the main emission products released by forest combustion[J]. Journal of Beijing Forestry University, 2017, 39(12): 118−124.
    [2] 蔡文华, 杨健, 刘志华, 等. 黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子[J]. 生态学报, 2012, 32(11):3303−3312.

    Cai W H, Yang J, Liu Z H, et al. Controls of post-fire tree recruitment in Great Xing ’an Mountains in Heilongjiang Province[J]. Acta Ecologica Sinica, 2012, 32(11): 3303−3312.
    [3] Ahn Y S, Ryu S R, Joohoon L. Effects of forest fires on forest ecosystems in eastern coastal areas of Korea and an overview of restoration projects[J]. Landscape and Ecological Engineering, 2014, 10(1): 229−237. doi: 10.1007/s11355-013-0212-0
    [4] 王鼎. 大兴安岭兴安落叶松林火烧迹地植被群落特征研究[D]. 呼和浩特: 内蒙古农业大学, 2016.

    Wang D. Study on characteristics of plant communities at burned area of Daxing ’an Mountains[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
    [5] 梁瑞云, 黄茹, 李旭光, 等. 火干扰对北碚茅庵林场天然更新幼苗发生及存活的影响[J]. 西南大学学报(自然科学版), 2013, 35(8):6−12.

    Liang R Y, Huang R, Li X G, et al. The effect of fire disturbance on natural regeneration of plant seedlings in Maoan Forestry Farm of Beibei[J]. Journal of Southwest University (Natural Science Edition), 2013, 35(8): 6−12.
    [6] 曹慧. 火烧对油松天然林林下植被及土壤的影响[D]. 太谷: 山西农业大学, 2016.

    Cao H. Influenced on the Pinus tabuliformis natural forest vegetation and soil after burned[D]. Taigu: Shanxi Agricultural University, 2016.
    [7] 王鼎, 周梅, 赵鹏武, 等. 不同更新方式对兴安落叶松林火烧迹地物种组成及多样性的影响[J]. 生态环境学报, 2017, 26(4):570−575.

    Wang D, Zhou M, Zhao P W, et al. Study on species composition and diversity of burned phytocoenosium after different regenerate modes[J]. Ecology and Environmental Sciences, 2017, 26(4): 570−575.
    [8] Heil L J, Burkle L A. Recent post-wildfire salvage logging benefits local and landscape floral and bee communities[J]. Forest Ecology and Management, 2018, 424: 267−275. doi: 10.1016/j.foreco.2018.05.009
    [9] 李红, 杨树军, 刘敏, 等. 不同疏伐密度对油松天然更新的影响[J]. 防护林科技, 2018(3):6−7, 25.

    Li H, Yang S J, Liu M, et al. Effect of different thinning density on natural regeneration of Pinus tabuliformis[J]. Protection Forest Science and Technology, 2018(3): 6−7, 25.
    [10] 闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性[J]. 生态学报, 2010, 30(9):2311−2321.

    Yan H B, Han Y Z, Yang X Q, et al. Spatial distribution patterns and associations of tree species in typical natural secondary mountain forest communities of northern China[J]. Acta Ecologica Sinica, 2010, 30(9): 2311−2321.
    [11] 刘铁岩, 毕君, 王超, 等. 冀北山地油松人工林天然更新研究[J]. 中南林业科技大学学报, 2017, 37(7):55−58, 65.

    Liu T Y, Bi J, Wang C, et al. Study on the natural regeneration of Pinus tabuliformis plantation in the northern mountain of Hebei Province[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 55−58, 65.
    [12] 喻泓, 杨晓晖, 慈龙骏. 地表火对红花尔基沙地樟子松种群空间分布格局的影响[J]. 植物生态学报, 2009, 33(1):71−80. doi: 10.3773/j.issn.1005-264x.2009.01.008

    Yu H, Yang X H, Ci L J. Variations of spatial pattern in fire-mediated Mongolian pine forest, Hulunbuir sand region, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2009, 33(1): 71−80. doi: 10.3773/j.issn.1005-264x.2009.01.008
    [13] 张旭, 李家湘, 喻勋林, 等. 湖南大围山杜鹃灌丛木本植物种群空间格局[J]. 生态学杂志, 2009, 33(1):71−80.

    Zhang X, Li J X, Yu X L, et al. Spatial patterns of woody species in Rhododendron simsii shrubland at Daweishan, Hunan Province[J]. Chinese Journal of Ecology, 2009, 33(1): 71−80.
    [14] 李连强, 牛树奎, 陶长森, 等. 妙峰山油松林分结构与地表潜在火行为相关性分析[J]. 北京林业大学学报, 2019, 41(1):73−81.

    Li L Q, Niu S K, Tao C S, et al. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73−81.
    [15] 黄萍, 刘艳红. 北京松山油松林林分结构和地形对幼苗更新的影响[J]. 生态学杂志, 2018, 37(4):1003−1009.

    Huang P, Liu Y H. Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing[J]. Chinese Journal of Ecology, 2018, 37(4): 1003−1009.
    [16] 褚燕琴, 牛树奎, 陈锋, 等. 火干扰及环境因子对油松林林下植被的影响[J]. 浙江农林大学学报, 2017, 34(1):96−103. doi: 10.11833/j.issn.2095-0756.2017.01.014

    Chu Y Q, Niu S K, Chen F, et al. Fire disturbance and environmental factors for the undergrowth in a Pinus tabuliformis forest[J]. Journal of Zhejiang A&F University, 2017, 34(1): 96−103. doi: 10.11833/j.issn.2095-0756.2017.01.014
    [17] 倪宝龙, 刘兆刚. 不同强度火干扰下盘古林场天然落叶松林的空间结构[J]. 生态学报, 2013, 33(16):4975−4984.

    Ni B L, Liu Z G. A dynamic analysis of spatial distribution pattern ofLarix gmelinii natural forest in Pangu Farm under varying intensity of fire disturbance[J]. Acta Ecologica Sinica, 2013, 33(16): 4975−4984.
    [18] 刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2):29−40.

    Liu G H, Li B Y, Gong D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29−40.
    [19] Torres I, Pérez B, Quesada J, et al. Forest shifts induced by fire and management legacies in a Pinus pinaster woodland[J]. Forest Ecology and Management, 2016, 361: 309−317. doi: 10.1016/j.foreco.2015.11.027
    [20] Heil L J, Burkle L A. The effects of post-wildfire salvage logging on plant reproductive success and pollination in Symphoricarpos albus, a fire-tolerant shrub[J]. Forest Ecology and Management, 2019, 432: 157−163. doi: 10.1016/j.foreco.2018.09.013
    [21] Swanson M E, Franklin J F, Beschta R L, et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites[J]. Frontiers in Ecology and the Environment, 2011, 9(2): 117−125. doi: 10.1890/090157
    [22] Boucher D, Gauthier S, Josée N, et al. Salvage logging affects early post-fire tree composition in Canadian boreal forest[J]. Forest Ecology and Management, 2014, 325: 118−127. doi: 10.1016/j.foreco.2014.04.002
    [23] Agee J K, Skinner C N. Basic principles of forest fuel reduction treatments[J]. Forest Ecology and Management, 2005, 211(1−2): 83−96. doi: 10.1016/j.foreco.2005.01.034
    [24] Derose R J, Long J N. Resistance and resilience: a conceptual framework for silviculture[J]. Forest Science, 2014, 60(6): 1205−1212. doi: 10.5849/forsci.13-507
    [25] Johnstone J F, Hollingsworth T N, Chapin F S, et al. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest[J]. Global Change Biology, 2010, 16(4): 1281−1295. doi: 10.1111/j.1365-2486.2009.02051.x
    [26] 张立志, 孙亚娟, 宋银平, 等. 不同强度林火干扰对红花尔基樟子松天然林更新的影响[J]. 防护林科技, 2015(5):16−19.

    Zhang L Z, Sun Y J, Song Y P, et al. Effects of fire disturbance with different intensities on regeneration of natural forest of Pinus sylvestris var. mongolica in Honghuaerji Region[J]. Protection Forest Science and Technology, 2015(5): 16−19.
    [27] Johnstone J F, Chapin F S. Effects of soil burn severity on post-fire tree recruitment in boreal forest[J]. Ecosystems, 2006, 9(1): 14−31. doi: 10.1007/s10021-004-0042-x
    [28] Macdonald S E, Haeussler S, Domenicano S, et al. The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed[J]. Canadian Journal of Forest Research, 2007, 37(6): 1012−1023. doi: 10.1139/X06-245
    [29] Jayen K, Leduc A, Bergeron Y. Effect of fire severity on regeneration success in the boreal forest of northwest Québec, Canada[J]. Écoscience, 2006, 13(2): 143−151. doi: 10.2980/i1195-6860-13-2-143.1
    [30] 孙家宝. 火干扰后大兴安岭兴安落叶松林群落动态研究[D]. 哈尔滨: 东北林业大学, 2010.

    Sun J B. The dynamic study on plant community of Larix gmelinii in Daxing ’an Mountain after fire disturbance[D]. Harbin: Northeast Forestry University, 2010.
    [31] Connell J H. Diversity in tropical rainforests and coral reefs[J]. Science, 1978, 199: 1302−1310. doi: 10.1126/science.199.4335.1302
    [32] Greene D F, Gauthier S, Noël J, et al. A field experiment to determine the effect of post-fire salvage on seedbeds and tree regeneration[J]. Frontiers in Ecology and the Environment, 2006, 4(2): 69−74. doi: 10.1890/1540-9295(2006)004[0069:AFETDT]2.0.CO;2
    [33] Hernández-Hernández R, Jorge C, Marcelino A A, et al. Post-fire salvage logging imposes a new disturbance that retards succession: the case of bryophyte communities in a Macaronesian laurel forest[J]. Forests, 2017, 8(7): 252. doi: 10.3390/f8070252
    [34] Lindenmayer D B, Burton P J, Franklin J F. Salvage logging and its ecological consequences[M] . Washington:Island Press, 2008.
    [35] Fernandes P, Máguas C, Correia O. Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus[J]. Plant Ecology, 2017, 218(5): 501−515. doi: 10.1007/s11258-017-0706-1
    [36] Hopkins T, Larson A J, Belote R T. Contrasting effects of wildfire and ecological restoration in old-growth western larch forests[J]. European Journal of Marketing, 2014, 60(5): 1005−1013.
    [37] Splawinski T B, Gauthier S, Bergeron Y, et al. A landscape-level tool for assessing natural regeneration density of Picea mariana and Pinus banksiana following fire and salvage logging[J]. Forest Ecology and Management, 2016, 373: 189−202. doi: 10.1016/j.foreco.2016.04.036
    [38] Greene D F, Splawinski T B, Gauthier S, et al. Seed abscission schedules and the timing of post-fire salvage of Picea mariana and Pinus banksian[J]. Forest Ecology and Management, 2013, 303: 20−24. doi: 10.1016/j.foreco.2013.03.049
    [39] Marzano R, Garbarino M, Marcolin E, et al. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy)[J]. Ecological Engineering, 2013, 51: 117−122. doi: 10.1016/j.ecoleng.2012.12.030
    [40] Lesser M R, Jackson S T, Nathan R. Contributions of long-distance dispersal to population growth in colonizing Pinus ponderosa populations[J]. Ecology Letters, 2013, 16(3): 380−389. doi: 10.1111/ele.12053
    [41] Ozawa H A, Watanabe A, Uchiyama K, et al. Influence of long-distance seed dispersal on the genetic diversity of seed rain in fragmented Pinus densiflora populations relative to pollen-mediated gene flow[J]. Journal of Heredity, 2013, 104(4): 465−475. doi: 10.1093/jhered/est022
    [42] Owen S M, Sieg C H, Meador S, et al. Spatial patterns of ponderosa pine regeneration in high-severity burn patches[J]. Forest Ecology and Management, 2017, 405: 134−149. doi: 10.1016/j.foreco.2017.09.005
    [43] Pesendorfer M B, Sillett T S, Koenig W D, et al. Scatter-hoarding corvids as seed dispersers for oaks and pines: a review on a widely distributed mutualism and its utility to habitat restoration[J]. The Condor, 2016, 118(2): 215−237. doi: 10.1650/CONDOR-15-125.1
    [44] Dunn C J, Bailey J D. Modeling the direct effects of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests[J]. For Ecol Manage, 2015, 341: 93−109. doi: 10.1016/j.foreco.2015.01.002
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  1780
  • HTML全文浏览量:  974
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 修回日期:  2019-10-09
  • 网络出版日期:  2019-10-19
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回