Progress and perspective of quantitative remote sensing of forestry
-
摘要: 林业遥感经历了航片判读、卫片目视解译、蓄积量定量估测阶段后,已经进入参数定量反演阶段。在林业对遥感业务化监测和精度提升的强烈需求下,定量遥感逐步与林业遥感交叉融合,林业遥感定量化研究的人才队伍、理论模型、数据源和应用方法逐渐成熟。本文提出了林业定量遥感的概念和框架,指出了其中关键的科学问题:(1)如何使遥感解译、建模和反演适应复杂的森林状况;(2)如何提高参数反演的准确度;(3)如何丰富林业遥感数据源;(3)如何发展更为智能化的遥感数据自动化算法。在介绍适合林业的定量遥感模型和通用反演方法的基础上,阐述了高光谱、热红外、激光雷达和微波遥感数据源的林业应用方法。未来林业定量遥感将在全波段数据统一建模和信息融合机制、机理模型反演、大数据融合等方面进行突破。Abstract: Forestry remote sensing has entered the stage of quantitative inversion of parameters after air-photo interpretation, satellite visual interpretation and quantitative estimation of forest volume. Under the background of strong demands of remote sensing from forestry on operational monitoring and accuracy improvement, quantitative remote sensing is gradually integrated with forestry remote sensing. It has gradually matured in talent teams, theoretical models, data sources and application methods for the quantitative studies in forestry remote sensing. This paper puts forward the concept and framework of quantitative remote sensing of forestry (QRSF), and points out the key scientific problems: (1) how to adapt remote sensing interpretation, modeling and inversion to complex forest conditions; (2) how to improve the accuracy of parameter inversion; (3) how to enrich forestry remote sensing data sources; (3) how to develop highly intelligent and automated information extraction algorithm on remote sensing data. On the basis of introducing quantitative remote sensing models and general inversion methods suitable for forestry, the application methods of hyperspectral, thermal infrared, lidar and microwave remote sensing data sources in forestry are expounded. In the future, QRSF will make breakthroughs in the unified modeling of full-band data, information fusion mechanism, physical model inversion and large-scale data fusion.
-
有数据显示,全球陆地土壤碳含量为1 750 Pg,植被碳含量为550 Pg,总量约为大气碳含量的3倍[1],即无论土壤作为“碳源”还是“碳汇”都将对气候变化产生巨大影响,故在全球气候变化和生态扰动背景下,陆地生态系统有机碳(SOC)分布与动态变化受到广大学者的广泛重视。尤其表层土壤,是SOC的集中分布层,其SOC含量更显著的受到微地形[2]、植被类型[3-4]、枯落物数量[5-6]、人为扰动[7]等因素的影响,使其在空间分布上具有更强的异质性,而成为研究者关注的一个焦点。
在不同空间尺度上,SOC分布的异质性为SOC储量的科学估算及关键影响因素的研究提出了挑战,故随着地统计分析工具的出现,广大学者采用地统计学的方法针对不同生态类型、空间尺度等条件下SOC的分布特征及空间变异性进行了研究,并表明地统计学是研究SOC空间分布的一种有效工具[8]。如Gao等[9]基于地统计方法研究得出中国北方丘陵地区SOC的空间异质性受随机性和结构性因素的共同控制。Göl等[10]研究发现球状模型可以很好地模拟黑海不同土地利用方式SOC的空间分布。SOC的空间分布还具有尺度效应[11],然而在区域、县域等大、中尺度下的空间分布与预测往往简化了某些生态过程,可能增加碳研究的不确定性[12],相比之下,小尺度下的空间预测反映的信息量更加丰富[13],因此揭示小尺度SOC的空间分布格局及其影响因素对于精确估算SOC含量是必要的。
青藏高原属于典型的生态脆弱区和气候变化的敏感区,在全国乃至全球都具有重要的生态地位。近年来,随着交通不断便利,不少学者开展了青藏高原土壤碳循环研究,如王建林等[14]关于草地土壤化学计量特征的大尺度空间分布研究,从宏观上了揭示青藏高原的土壤养分状况。叶成龙等[15]人基于野外定点试验和室内试验的研究表明,氮输入将增加预测青藏高原高寒草甸地区土壤碳排放的不确定性。其他研究如吕韶利[16]、刘合满[17]等,研究结果为高寒地区土壤碳循环研究奠定了丰富的理论和技术参考。青藏高原地形、植被、气候等具有显著的差异,导致SOC含量具有高度的空间异质性,然而目前针对SOC的空间分布与模拟研究仍少见报道,尤其是在小尺度空间范围,这将阻碍我们对于青藏高原这一特殊生态系统土壤碳动态变化的认识。为科学阐明高寒地区典型植被类型表层SOC及SOCD的空间分布特征与影响因素,本研究以西藏东南部色季拉山西坡广泛分布的草甸和杜鹃灌丛土壤为研究对象,采用地统计分析方法,旨在阐明小尺度下不同植被类型SOC及SOCD的空间变异及格局,以期为高寒环境下土壤有机碳循环研究及土壤碳储量的准确估算提供理论支撑。
1. 研究区概况与研究方法
1.1 研究区概况
本研究以色季拉山西坡相邻分布的灌丛、草甸为研究样地,其海拔4 200 ~ 4 400 m,地理位置29°36′N、94°38′E。根据色季拉山道班阴坡林外(29°35′51″N,94°36′43″E,4 390 m)2005 — 2012年的观测数据,该区域年均气温约为0.64 ℃,年均相对湿度为77%,年降雨量为877 mm。土壤类型属于亚高山林灌草甸土、沼泽草甸土[18]。
本研究所选样区主要包含苔草高寒草甸(Carex alpine meadow,CAM)、林芝杜鹃灌丛(Rhododendron tanastylum shrub,RTS)、雪山杜鹃灌丛(Rhododendron aganniphum shrub,RAS)3种植被类型。苔草高寒草甸,地面以苔草为建群种,其中还分布有委陵菜(Potentilla chinensis)、老鹳草(Geranium wilfordii)、阜莱氏马先蒿(Pedicularis fletcherii)、西藏糙苏(Phlomis tibetica)、偃卧繁缕(Stellaria decumbens)、蒲公英(Taraxacu mmongolicum)等,地面凹凸不平,存在沟壑。林芝杜鹃灌丛是以林芝杜鹃(Rhododendron tanastylum)为优势种,红枝小檗(Berberis erythroclada)和雪层杜鹃(Rhododendron nivale)为亚优势种的灌草丛地,植被分布不均一。雪山杜鹃灌丛主要生长雪山杜鹃(Rhododendron aganniphum),并伴有高山柏(Sabina squamata)和急尖长苞冷杉(Abies georgei var. smithii)零星分布,地面有较厚的枯落物层(最厚可达10 cm)。样地概况如表1所示。
表 1 样地基本概况Table 1. Basic condition of sample plots植被类型
Vegetation
type海拔
Altitude/m植被盖度
Vegetation
coverage/%坡度
Slope/(°)全氮
Total nitrogen
(TN)/(g·kg−1)全磷
Total phosphorus
(TP)/(g·kg−1)pH 含水率
Water
content/%土壤密度
Soil density/
(g·cm−3)黏粒
Clay/%粉粒
Silt/%砂粒
Sand/%CAM 4242 95 16 6.54 1.12 5.59 55.37 0.81 3.82 62.76 33.42 RTS 4264 75 14 3.29 0.39 5.47 72.01 0.82 3.55 61.45 35.00 RAS 4387 > 95 25 5.48 0.37 4.30 72.62 0.46 3.19 62.07 34.75 注:CAM为苔草高寒草甸;RTS为林芝杜鹃灌丛;RAS为雪山杜鹃灌丛。黏粒粒径< 0.002 mm,粉粒粒径在0.002~0.05 mm之间,砂粒粒径在0.05~2 mm之间。下同。Notes: CAM is Carex alpine meadow; RTS is Rhododendron tanastylum shrub; RAS is Rhododendron aganniphum shrub. Clay particle size is less than 0.002 mm; silt particle size is between 0.002−0.05 mm; sand particle size is between 0.05−2 mm. The same below. 1.2 样品采集与处理
于2018年10月,在野外考察的基础上,选择坡度较缓,植被类型连续的区域作为研究区(图1),采用10 m × 10 m网格法采样。即在3种植被类型区采用测量绳分别划定一个50 m × 50 m的样地,然后按照10 m × 10 m网格设置采样点,共计36个采样点。分别采集0 ~ 10 cm层次土壤和原状土壤样品,共获得土壤样品和环刀土样各108个,详细记录每一采样点的地形(海拔、坡度、坡位、凸起、沟壑)、植被覆盖等信息。采集的样品去杂置于风干盘自然风干后,经研磨使其分别通过2.00、0.25 mm土壤筛,用以测定土壤碳、氮等理化性质。SOC采用重铬酸钾容量−外加热法测定,全氮(TN)采用半微量凯氏法测定,全磷(TP)采用钼锑抗比色法测定,土壤密度、机械组成分别采用环刀法和激光粒度分布仪(Bettersize2000,丹东百特仪器有限公司)测定,以上实验过程参照文献[19-20]进行。
1.3 土壤有机碳密度计算
SOCD的计算采用如下公式:
SOCD=CDE(1−G)/100 式中:
C 为有机碳含量(g/kg),D 为土壤密度(g/cm3),E 为土层厚度(cm),G 为直径 > 2 mm石砾百分含量(%),这里忽略G 后计算SOCD[21]。1.4 数据处理与分析
在SPSS 22.0中计算SOC及SOCD的最大值、最小值、平均值、标准差、变异系数(Coefficient of variation, CV),其中CV值在0 ~ 10%、10% ~ 100%和 > 100%之间时,分别属于弱、中等和强变异。对不同植被类型SOC、SOCD的差异显著性检验采用LSD法(P < 0.01)。在GS+ 9.0中建立半方差函数模型,模型拟合可以得到块金值(C0)、基台值(C0 + C)、变程(A0)3个评价空间变异程度的参数,其中块金值与基台值的比值(C0/(C0 + C))即结构比,反映了随机性因素引起的空间变异占系统总变异的比值,比值在 < 25%、25% ~ 75%、> 75%范围,分别表示强、中、弱的空间自相关性,随机性因素引起的空间变异逐渐增大[22],变程反映了区域化变量存在空间自相关性的距离上限。基于半方差函数模型,在ArcGIS10.2中完成克里格插值。冗余分析采用Canoco 5.0进行,并采用Forward selection和Monte Carlo permutation test进行环境因子重要性排序和显著性检验。
2. 结果与分析
2.1 SOC及SOCD的分布特征
不同植被类型的SOC、SOCD差异显著(P < 0.01)(表2),SOC含量表现为RAS(146.45 g/kg) > CAM(95.60 g/kg) > RTS(60.43 g/kg),RAS分别较CAM和RTS的SOC含量高53.19%、142.35%,SOCD表现为CAM(7.34 kg/m2) > RAS(6.32 kg/m2) > RTS(4.80 kg/m2),CAM分别较RAS和RTS高22.31%、61.04%。该研究区SOC和SOCD均具有中等程度的空间变异。
表 2 SOC及SOCD的描述性统计特征Table 2. Descriptive statistics of SOC and SOCD指标
Item植被类型
Vegetation type样本量
Sample size平均值
Mean最大值
Max.最小值
Min.变异系数
CV/%P 分布类型
Distribution typeSOC/(g·kg−1) CAM 33 95.60 ± 44.31b 219.85 49.63 46.35 0.169 N RTS 36 60.43 ± 25.73a 148.31 24.01 42.58 0.359 N RAS 36 146.45 ± 49.67c 252.15 69.10 33.92 0.500 N SOCD/(kg·m−2) CAM 36 7.73 ± 2.39c 12.77 4.50 30.92 0.538 L RTS 36 4.80 ± 2.01a 8.92 1.90 41.88 0.943 N RAS 36 6.32 ± 1.98b 11.22 1.53 31.33 0.747 N 注:不同小写字母表示植被类型之间SOC或SOCD差异显著(P < 0.01)。N为正态分布;L为对数正态分布。Notes: different lowercase letters indicate significant differences in SOC or SOCD between vegetation types (P < 0.01). N means normal distribution; L means lognormal distribution. 在K-S检验结果如表2所示,CAM的SOC在剔除3个异常值后符合正态分布,SOCD则符合对数正态分布,RTS及RAS的SOC和SOCD均符合正态分布。
2.2 SOC及SOCD的空间自相关性
本研究以最大间距的1/2(35.56 m)为样本变化范围,以最小间距(10 m)为步长,并以平均预测误差(ME)最接近于0,决定系数(R2)和均方根标准预测误差(RMSSE)最接近于1交叉验证模型精度,最优模型如图2所示。
在不考虑各向异性的前提下,除RAS外,CAM和RTS的SOC、SOCD均得到了较好的拟合(表3)。CAM、RTS的SOC最优拟合为球状模型(spherical model),R2分别达0.998、0.432,ME依次为3.268、0.506,RMSSE为0.920、1.057;RAS的SOC最佳拟合模型为线性模型(linear model),R2为0.091,拟合效果较差。3种植被类型SOCD的拟合效果均较好,CAM、RTS及RAS分别符合指数模型(exponential model)、球状模型和线性模型,R2达0.965、0.864和0.996,ME在−0.145 ~ 0.021之间,RMSSE在1.017 ~ 1.059之间。
表 3 不同植被类型SOC及SOCD半方差函数模型及交叉验证Table 3. Semivariogram and cross-validation of SOC and SOCD under different vegetation types指标
Item植被类型
Vegetation
type理论模型
Theoretical model块金值
Nugget
(C0)基台值
Sill
(C0 + C)结构比
Structure ratio
(C0/(C0 + C))/%变程
Range (A0)/
m决定系数
Determination
coefficient (R2)预测误差 Prediction error ME RMSSE SOC CAM 球状模型 Spherical model 25.00 1716.00 1.46 30.29 0.998 −3.268 0.920 RTS 球状模型 Spherical model 58.00 721.30 8.04 17.68 0.432 0.506 1.057 RAS 线性模型 Linear model 2338.32 2338.32 100.00 32.69 0.091 −1.009 1.068 SOCD CAM 指数模型 Exponential model 0.01 4.67 2.14 20.31 0.965 −0.145 1.042 RTS 球状模型 Spherical model 0.58 4.64 12.51 17.44 0.864 0.021 1.059 RAS 线性模型 Linear model 4.00 4.00 100.00 32.69 0.996 −0.065 1.017 从结构比来看,除RAS外,其他植被类型的SOC及SOCD均具有强烈的空间自相关性。CAM与RTS的SOC结构比分别为1.46%、8.04%,SOCD结构比分别为2.14%、12.51%,即CAM < RTS < 25%,结构性因素引起的空间变异大于75%,具有较强的空间依赖性。RAS的SOC及SOCD块金值等于基台值,结构比达100%,属于纯块金方差,空间自相关性较弱,随机性因素控制为主。
从变程来看,SOC、SOCD的空间变异尺度存在差异,反映出不同程度的空间连续性。3种植被类型SOC的变程表现为RAS(32.69 m) > CAM(30.29 m) > RTS(17.68 m),SOCD为RAS(32.69 m) > CAM(20.31 m) > RTS(17.44 m),即SOC、SOCD的空间连续性从RAS、CAM到RTS逐渐变差。除RNS外,CAM和RTS的空间变程均表现为SOC > SOCD,即SOC可能较SOCD具有更大的空间自相关距离,在考察SOC含量时的采样可以适当加大采样间距。
2.3 SOC及SOCD的空间分布
本研究RAS的SOC及SOCD空间上主要受随机因素控制,故不适合做空间插值[23]。CAM及RTS的SOC及SOCD的空间分布如图3所示。总体而言,SOC及SOCD呈斑状或条带状分布,并且同一植被类型的SOC与SOCD空间分布相似。其中CAM的SOC、SOCD高值区集中分布在样地南部和东部边缘,分别在90.29 ~ 219.85 g/kg、8.05 ~ 14.05 kg/m2之间,并且由北部、西部边缘向中部延伸分别形成两个低值分布带,值在49.63 ~ 90.29 g/kg、8.05 ~ 14.50 kg/m2之间。RTS的SOC、SOCD具有相似的高低值分布区,高值区SOC、SOCD分别为56.63 ~ 148.31 g/kg、5.31 ~ 13.09 kg/m2范围,低值区分别在24.01 ~ 56.63 g/kg和2.67 ~ 5.31 kg/m2范围,但与CAM相比,RTS的SOC及SOCD均未表现出明显的边缘效应,而呈高低值交错分布的特征,空间连续性较差。
2.4 SOC和SOCD与土壤因子的相关性分析
如图4所示,RDA排序图的典型轴1和轴2解释了SOC、SOCD与土壤性质总体变异的58.2%。土壤含水率、TN在SOC箭头连线上的投影长度最长,表明其与SOC呈较强的正相关性,土壤密度、pH在SOC箭头反向延长线上的投影较长,表明二者与SOC呈较强的负相关性,而土壤机械组成、坡度、TP与SOC的相关性不大。SOCD与SOC呈正相关性,但与土壤各性质的相关性不如SOC显著,主要与TP、TN的关系较为密切。
图 4 SOC及SOCD与土壤因子相关性的冗余分析排序图SOC. 土壤有机碳;SOCD. 土壤有机碳密度;TN. 全氮;TP. 全磷;Water content. 含水率;Soil density. 土壤密度;Slope. 坡度;Clay. 黏粒;Silt.粉粒;Sand. 砂粒。SOC, soil organic carbon.; SOCD, soil organic carbon density; TN, total nitrogen; TP, total phosphorus.Figure 4. Redundancy analysis on the correlation between SOC and SOCD with soil properties由表4可知,各土壤因子对SOC、SOCD的影响存在一定差异。各土壤因子对SOC、SOCD影响的重要性排序从大到小依次为含水率 > 土壤密度 > pH > TN > 黏粒 > 砂粒 > 粉粒 > 坡度 > TP,除TP对SOC、SOCD的影响未达显著水平外(P > 0.05),其他土壤因子对SOC、SOCD的影响均达极显著水平(P < 0.01),其中含水率、土壤密度和pH因子对SOC、SOCD空间变异的贡献率较高,分别为69.60%、65.70%、53.50%,其次是TN和黏粒,贡献为44.20%和30.10%。表明土壤含水率、土壤密度、pH是影响研究区SOC、SOCD空间分布的关键因素。
表 4 土壤因子解释量及显著性检验Table 4. Explanation rate and significance test of soil factors土壤因子
Soil
factor重要性排序
Importance
ranking因子解释量
Factor explanation
rate/%F P 含水率 Water content 1 69.60 98.40 0.002 土壤密度 Soil density 2 65.70 88.30 0.002 pH 3 53.50 62.10 0.002 全氮 TN 4 44.20 46.60 0.002 黏粒 Clay 5 30.10 27.80 0.002 砂粒 Silt 6 17.50 14.60 0.002 粉粒 Sand 7 15.80 13.00 0.002 坡度 Slope 8 12.50 10.00 0.004 全磷 TP 9 0.20 0.10 0.740 3. 讨 论
3.1 植被类型对SOC和SOCD的影响
本研究中植被类型显著影响了表层0 ~ 10 cm土壤有机碳含量(P < 0.01),与前人研究结果一致[24-25]。表层SOC含量为RAS > CAM > RTS,与植被覆盖度规律一致(表1),即RAS(> 95%) > CAM(95%) > RTS(75%)。这是因为自然生态系统植被枯落物是表层土壤有机碳的重要来源,并与植被覆盖度显著正相关。研究区SOC含量处于较高水平,均值达100.97 g/kg,显著高于全国0 ~ 10 cm土壤水平(24.56 g/kg)[26]。与相似生态类型区比较,CAM的SOC(95.60 g/kg)亦高于青海省河南县杂类草型草甸(74.99 g/kg)[27]和江西省武功山草甸(63.52 g/kg)[28],两种灌丛SOC的平均含量(103.44 g/kg)亦显著高于燕山北部绣线菊(Spiraea salicifolia)灌丛(37.65 g/kg)和榛子(Corylus heterophylla)灌丛(64.74 g/kg)[29]。这可能与低温抑制酶活性、减缓土壤有机质的矿化分解有关[30],该区域年均气温仅0.64 ℃,且降水丰富,年降雨达877 mm,有利于表层有机质的积累。SOCD与SOC的表现基本一致,CAM(7.73 kg/m2)、RTS(4.8 kg/m2)和RAS(6.32 kg/m2)的SOCD显著高于全国10 cm土壤厚度的SOCD(1.21 kg/m2)[31],表明色季拉山高海拔区土壤有机碳储量较丰富,可能成为未来大气CO2浓度升高的潜在碳源。
3.2 SOC及SOCD的空间异质性
本研究小空间尺度上,植被类型影响了表层土壤有机碳的空间分布与变异特征。SOC和SOCD的空间变异半方差函数分析结果表明,拟合度以CAM最佳,其次为RTS,而RAS则较差。这可能是由于小空间尺度上RAS地表地形及植被、枯落物等基本立地条件较为破碎有关,故可能需要增加采样点或缩小采样间距[32]。结构比反映了引起变量空间异质性的主要影响因素,本研究中CAM、RTS的SOC、SOCD结构比均小于13%,由结构性因素引起的空间异质性占总空间异质性的87.49% ~ 98.54%,表明小尺度空间范围,在气候、土壤类型一致的前提下,地面枯落物量、微地形、土壤理化性质等结构性因素是表层SOC、SOCD空间变异的主要原因。而RAS的SOC、SOCD表现为以人为干扰等随机因素控制为主,考虑是采样间距大于其空间变异尺度引起的[33]。
变程反映的是变量的空间自相关范围,在变程内的变量才具有空间自相关性[23]。本研究中CAM和RTS的SOC、SOCD变程均大于取样距离(10 m),表明本研究在该小尺度下设置的采样间距是合理的,可以反映SOC、SOCD的空间异质性。对于RAS而言,10 m可能超出了其SOC、SOCD空间自相关的最大距离,而未表现出空间结构性,反映了SOC、SOCD的尺度效应。本研究中,SOC由空间自相关部分引起的变异占总变异的91.96% ~ 98.54%,表现在30.29 m以下的范围,与辽东山区次生林[34]土壤有机质由空间自相关引起的变异占总变异的65.40%,发生在46.77 m尺度以内相比,本研究SOC在较小尺度内存在较强的空间自相关性,表明色季拉山微生境比较复杂,SOC的空间破碎化严重。
3.3 SOC及SOCD水平分布格局的影响因素分析
SOC空间分布受多种因素的综合影响,其中土壤含水率、微地形是影响该研究区SOC空间分布格局的重要环境变量。CAM样地东、南边缘是SOC、SOCD高值的集中分布区,该边缘与嵩草沼泽化草甸接壤,土壤含水率较高(多数采样点超过100%),在低温通气不良的条件下,微生物活动受限,植物残体和根系不易分解,使土壤有机物质大量积累,符合冗余分析中SOC与土壤含水率极显著正相关的规律。在CAM的中部到北部边缘,存在一条东西方向的沟壑,在地面径流的作用下,导致土壤中可溶性有机碳向地势较低的东部边缘迁移,可能是CAM北部低值分布带形成的主要原因,与石峰[35]关于土壤无机氮的研究结果一致,表明在小尺度空间范围,微地形可能成为土壤养分空间分布的主要驱动因子[36-37]。在本研究中,坡度与SOC、SOCD的相关性较低(P > 0.05),这与Ritchie等[38]的研究结果相异,可能是水、热等条件的差异弱化了小尺度下坡度对SOC、SOCD的影响[39]。
研究区RTS样地为裸地、草本和灌丛镶嵌性分布,可能是其SOC、SOCD空间连续性较CAM差,破碎化程度高的原因。有研究表明土壤有机碳含量与灌丛凋落物生物量呈正相关性[40],在本研究中,灌丛斑块地上凋落物数量明显高于灌丛间裸地、草地斑块,导致交错分布的不同斑块下表层SOC存在差异,从而表现出空间异质性,与何俊龄[41]的研究结果一致,其研究亦表明金露梅(Potentilla fruticosa)灌丛表层土壤养分含量显著高于灌丛间草地。本研究未对RAS的SOC、SOCD进行空间插值,但其纯块金效应的出现表明其SOC、SOCD的空间连续性可能较差,事实上RAS微地形较复杂,平均坡度达25°,且地面枯落物分布不均匀,厚度0 ~ 10 cm不等,因此有待更小尺度的研究。
土壤密度、pH、TN、机械组成亦是影响SOC及SOCD空间分布格局的重要因素。冗余分析结果表明,土壤密度、pH是影响研究区SOC、SOCD空间变异的关键因子,与SOC、SOCD呈极显著负相关,这一结果与卓志清等[42]、贡璐等[43]人的研究结果一致,SOC含量提高时有利于改善土壤结构,使土壤疏松多孔,降低土壤紧实度。同时在一定范围内,随着土壤酸性增强,微生物活动受限,从而导致碳的积累。土壤中TN大部分来源于土壤有机质,因此与SOC极显著正相关。本研究SOC、SOCD与土壤黏粒、粉粒呈负相关,与砂粒正相关,这是因为黏粒、粉粒含量的降低,有利于提高土壤透气性,从而加快微生物分解释放养分元素,与马文瑛等[44]、Igor等[45]的研究结果相似。
4. 结 论
(1)SOC、SOCD显著受植被类型的影响,本研究区SOC表现为RAS > CAM > RTS,SOCD为CAM > RAS > RTS。
(2)研究区CAM、RTS的SOC和SOCD主要受结构性因素的影响,具有较强的空间自相关性,二者空间自相关的最大距离在17.44 ~ 30.29 m之间,表明本研究采取的地统计采样间隔是合理的。RAS的SOC、SOCD具有纯块金效应,即随采样间隔变化,其方差均为一常量,说明本研究采取的10 m间隔采样超出了RAS 的SOC、SOCD的空间变异尺度。
(3)在水平方向,CAM的SOC、SOCD主要受含水率、微地形影响,而在样地的东部、南部边缘存在高值区,在北部存在东西向的低值分布带。RTS的SOC、SOCD呈高低值交错分布,破碎化程度高,可能与地面覆被物的镶嵌性分布有关。
(4)冗余分析表明,土壤含水率、土壤密度、pH、TN是影响表层SOC、SOCD空间变异的关键要素。
-
表 1 林业定量遥感正向模型
Table 1 Forward model of quantitative remote sensing of forestry
模型类型 Model class 模型名称 Model name 功能 Function 阔叶 Broadleaf PROSPECT[51] 模拟叶片高光谱反射和透射率曲线
Simulate leaf hyperspectral reflectance and transmittance curves圆盘模型[52] Disk model 模拟叶片微波散射
Simulate leaf microwave scattering针叶 Needle LIBERTY[53] 模拟针叶高光谱反射和透射率曲线
Simulate needle-like leaf hyperspectral reflectance and transmittance curves圆柱体模型[54] Cylinder model 模拟针叶微波散射
Simulate needle-like leaf microwave scattering水体 Water Cox-Monk[55] 考虑波浪的水体反射
Simulate water reflectance with waves土壤 Soil HAPKE[56] 模拟土壤反射率
Simulate soil reflectanceAIEM[57] 模拟土壤微波散射
Simulate soil microwave scattering冠层 Canopy 几何光学模型[28]
Geometric-optical model椭球体假设,模拟林分二向反射
Use sphere assumption to simulate forest BRDFSAIL[58] 一维假设,模拟植被反射和热辐射
1D assumption, simulate vegetation radiative transfer in VNIR and TIR五尺度模型[59] 5-scale 五尺度假设,模拟林分二向反射
Five scale assumption to simulate forest BRDF随机辐射传输模型[60] SRT 结构光谱分离,模拟林分二向反射
Separate optical and structural information to simulate BRDF水云模型[61] Water cloud model 一阶透射,模拟作物和草地微波散射
1st order transmittance to simulate crop and grass microwave scatteringMIMICS[62] 一维假设,模拟林分微波后向散射系数
1D assumption to simulate forest microwave scatteringDART[63] 三维模型,模拟林分二向反射、热红外辐射和激光雷达
3D, simulate forest BRDF, TIR emission and LiDARRAPID[32, 34] 三维模型,模拟林分二向反射、热红外辐射、激光雷达和微波散射
3D, simulate forest BRDF, TIR emission, LiDAR and microwave scatteringLESS[64] 三维模型,模拟林分二向反射、热红外辐射和激光雷达
3D, simulate forest BRDF, TIR emission and LiDAR -
[1] 游先祥. 应用彩红外航空照片对森林受污染危害程度的动态研究[J]. 北京林业大学学报, 1986, 8(2):49−72. You X X. Using color infra-red aerial photographs to dynamically monitor polluted forests[J]. Journal of Beijing Forestry University, 1986, 8(2): 49−72.
[2] 游先祥, 杨晓明. 应用遥感信息复合方法的森林分类和动态监测研究[J]. 环境遥感, 1995, 10(2):97−106. You X X, Yang X M. A study on forest classification and dynamic monitoring by using remote sensing information[J]. Remote Sensing of Environment China, 1995, 10(2): 97−106.
[3] 赵宪文. 林业遥感定量估测[M]. 北京: 中国林业出版社, 1997. Zhao X W. Quantitative estimation of remote sensing in forestry[M]. Beijing: China Forestry Publishing House, 1997.
[4] Gu C, Clevers J G P W, Xiao L, et al. Predicting forest height using the GOST, Landsat 7 ETM+, and airborne LiDAR for sloping terrains in the Greater Khingan Mountains of China[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2018, 137: 97−111.
[5] 李增元, 陈尔学, 高志海, 等. 中国林业遥感技术与应用发展现状及建议[J]. 中国科学院院刊, 2013, 28(Z1):132−144. Li Z Y, Chen E X, Gao Z H, et al. Current development status and proposals for national forest remote sensing techniques and applications[J]. Bulletin of the Chinese Academy of Sciences, 2013, 28(Z1): 132−144.
[6] 李小文. 定量遥感的发展与创新[J]. 河南大学学报(自然科学版), 2005, 35(4):49−56. doi: 10.3969/j.issn.1003-4978.2005.04.012 Li X W. Retrospect, prospect and innovation in quantitative remote sensing[J]. Journal of Henan University (Natural Science), 2005, 35(4): 49−56. doi: 10.3969/j.issn.1003-4978.2005.04.012
[7] 赵宪文, 李崇贵, 斯林, 等. 基于信息技术的森林资源调查新体系[J]. 北京林业大学学报, 2002, 24(5):147−155. doi: 10.3321/j.issn:1000-1522.2002.05.028 Zhao X W, Li C G, Si L, et al. Building a new system of forest resources inventory by information technology[J]. Journal of Beijing Forestry University, 2002, 24(5): 147−155. doi: 10.3321/j.issn:1000-1522.2002.05.028
[8] 覃先林, 张子辉, 李增元. 一种利用HJ-1B红外相机数据自动识别林火的方法[J]. 遥感技术与应用, 2010, 25(5):700−706. doi: 10.11873/j.issn.1004-0323.2010.5.700 Qin X L, Zhang Z H, Li Z Y. An automatic forest fires identification method using HJ-1BIRS data[J]. Remote Sensing Technology & Application, 2010, 25(5): 700−706. doi: 10.11873/j.issn.1004-0323.2010.5.700
[9] 武红敢, 曾庆伟. 林业生物灾害的监测调查技术研究进展[J]. 灾害学, 2008, 23(4):106−109. doi: 10.3969/j.issn.1000-811X.2008.04.022 Wu H G, Zeng Q W. Technological development of forest pest monitoring[J]. Journal of Catastrophology, 2008, 23(4): 106−109. doi: 10.3969/j.issn.1000-811X.2008.04.022
[10] 覃先林, 李增元, 易浩若, 等. 基于ENVISAT-MERIS数据的过火区制图方法研究[J]. 遥感技术与应用, 2008, 23(1):1−6. doi: 10.11873/j.issn.1004-0323.2008.1.1 Qin X L, Li Z Y, Yi H R, et al. Studying on burned scar mapping using ENVISat-MERIS data[J]. Remote Sensing Technology & Application, 2008, 23(1): 1−6. doi: 10.11873/j.issn.1004-0323.2008.1.1
[11] 赵宪文. 面向21世纪的中国林业遥感[J]. 中国工程科学, 1999, 1(3):16−21. doi: 10.3969/j.issn.1009-1742.1999.03.004 Zhao X W. Orienting the forest remote sensing of the 21st century in China[J]. Engineering Science, 1999, 1(3): 16−21. doi: 10.3969/j.issn.1009-1742.1999.03.004
[12] 唐守正. 关于两相抽样面积蓄积统计的原则[J]. 林业资源管理, 1996(4):18−22. Tang S Z. Rules on area and volume statistics using double sampling[J]. Forest Resources Management, 1996(4): 18−22.
[13] 徐冠华, 田国良, 王超, 等. 遥感信息科学的进展和展望[J]. 地理学报, 1996, 51(5):385−397. doi: 10.3321/j.issn:0375-5444.1996.05.001 Xu G H, Tian G L, Wang C, et al. Remote sensing information science: progress and prospect[J]. Acta Geographica Sinica, 1996, 51(5): 385−397. doi: 10.3321/j.issn:0375-5444.1996.05.001
[14] 游先祥. 遥感原理及在资源环境中的应用[M]. 北京: 中国林业出版社, 2003. You X X. Remote sensing principles and its applications in resource and environment[M]. Beijing: China Forestry Publishing House, 2003.
[15] 陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6):18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004 Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004
[16] 赵宪文, 周万村, 易浩若. 森林火灾遥感监测评价: 理论及技术应用[M]. 北京: 中国林业出版社, 1995. Zhao X W, Zhou W C, Yi H R. Monitoring and assessment of remote sensing on forest fire-theory and technology application[M]. Beijing: China Forestry Publishing House, 1995.
[17] 谢卫莹. 高光谱遥感影像高精度分类方法研究[D]. 西安: 西安电子科技大学, 2017. Xie W Y. Research on high accuracy classification for hyperspectral remote sensing imagery[D]. Xi ’an: Xidian University, 2017.
[18] 谭炳香, 李增元, 陈尔学, 等. Hyperion高光谱数据森林郁闭度定量估测研究[J]. 北京林业大学学报, 2006, 28(3):95−101. doi: 10.3321/j.issn:1000-1522.2006.03.017 Tan B X, Li Z Y, Chen E X, et al. Estimating forest crown closure using Hyperion hyperspectral data[J]. Journal of Beijing Forestry University, 2006, 28(3): 95−101. doi: 10.3321/j.issn:1000-1522.2006.03.017
[19] 蒋云姣, 韩轶群, 李明阳, 等. 紫金山乔木多样性遥感估测及空间分布[J]. 浙江农林大学学报, 2015, 32(4):509−515. doi: 10.11833/j.issn.2095-0756.2015.04.003 Jiang Y J, Han Y Q, Li M Y, et al. Remote sensing based estimation and spatial distribution of tree species diversity for Zijin Mountain[J]. Journal of Zhejiang A&F University, 2015, 32(4): 509−515. doi: 10.11833/j.issn.2095-0756.2015.04.003
[20] 沈亲, 邓槿, 刘旭升, 等. 基于遥感温度植被干旱指数的小蠹虫害预警[J]. 农业工程学报, 2018, 34(9):167−174. doi: 10.11975/j.issn.1002-6819.2018.09.020 Shen Q, Deng J, Liu X S, et al. Prediction of bark beetles pests based on temperature vegetation dryness index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 167−174. doi: 10.11975/j.issn.1002-6819.2018.09.020
[21] 梁顺林, 程洁, 贾坤, 等. 陆表定量遥感反演方法的发展新动态[J]. 遥感学报, 2016, 20(5):875−898. Liang S L, Cheng J, Jia K, et al. Recent progress in land surface quantitative remote sensing[J]. Journal of Remote Sensing, 2016, 20(5): 875−898.
[22] 李小文, 王锦地. 植被光学遥感模型与植被结构参数化[M]. 北京: 科学出版社, 1995 Li X W, Wang J D. Plant photon remote sensing model and parameterizing of plant structure[M]. Beijing: Science Press, 1995.
[23] 柳钦火, 辛晓洲, 唐娉, 等. 定量遥感模型、应用及不确定性研究[M]. 北京: 科学出版社, 2010. Liu Q H, Xin X Z, Tang P, et al. Modeling, application and uncertainty of quantitative remote sensing[M]. Beijing: Science Press, 2010.
[24] Liang S L. Quantitative remote sensing of land surfaces[M]. Hoboken: John Wiley and Sons, Inc., 2004.
[25] 柳钦火, 唐勇, 李静, 等. 遥感辐射传输建模与反演研究进展[J]. 遥感学报, 2009, 13(增刊 1):168−182. Liu Q H, Tang Y, Li J, et al. Research progress on remote sensing radiative transfer modellling and inversion[J]. Journal of Remote Sensing, 2009, 13(Suppl. 1): 168−182.
[26] 李晓松, 高志海, 李增元, 等. 基于高光谱混合像元分解的干旱地区稀疏植被覆盖度估测[J]. 应用生态学报, 2010, 21(1):152−158. Li X S, Gao Z H, Li Z Y, et al. Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 152−158.
[27] 汪小钦, 江洪, 傅银贞. 森林叶面积指数遥感研究进展[J]. 福州大学学报(自然科学版), 2009, 37(6):822−828. Wang X Q, Jiang H, Fu Y Z. The progress of the forest LAI estimation from remote sensing data[J]. Journal of Fuzhou University (Natural Science Edition), 2009, 37(6): 822−828.
[28] Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience & Remote Sensing, 1992, 30(2): 276−292.
[29] Verhoef W, Jia L, Xiao Q, et al. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(6): 1808−1822.
[30] Jin Y Q. Electromagnetic scattering modelling for quantitative remote sensing[M]. Singapore: World Scientific, 1993.
[31] 柳钦火, 阎广建, 焦子锑, 等. 发展几何光学遥感建模理论, 推动定量遥感科学前行—深切缅怀李小文院士[J]. 遥感学报, 2019, 23(1):1−10. Liu Q H, Yan G J, Jiao Z T, et al. Geometric-optical remote sensing modeling to quantitative remote sensing theory and methodology development: in memory of academician Li Xiaowen[J]. Journal of Remote Sensing, 2019, 23(1): 1−10.
[32] Huang H G, Qin W, Liu Q. RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes[J]. Remote Sensing of Environment, 2013, 132(10): 221−237.
[33] Huang H G, Wynne R H. Simulation of lidar waveforms with a time-dependent radiosity algorithm[J]. Canadian Journal of Remote Sensing, 2013, 39(Suppl. 1): 126−138.
[34] Huang H G, Zhang Z Y, Ni W J, et al. Extending RAPID model to simulate forest microwave backscattering[J]. Remote Sensing of Environment, 2018, 217(10): 272−291.
[35] 李增元, 覃先林, 高志海, 等. 高分遥感林业应用研究[J]. 卫星应用, 2018(11):61−65. doi: 10.3969/j.issn.1674-9030.2018.11.015 Li Z Y, Qin X L, Gao Z H, et al. Application research of high resolution remote sensing in forestry[J]. Satellite Application, 2018(11): 61−65. doi: 10.3969/j.issn.1674-9030.2018.11.015
[36] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1): 185−201. doi: 10.1016/S0034-4257(01)00295-4
[37] Alijafar M, Wout V, Massimo M, et al. Modeling top of atmosphere radiance over heterogeneous non-lambertian rugged terrain[J]. Remote Sensing, 2015, 7(6): 8019−8044. doi: 10.3390/rs70608019
[38] 柳钦火, 曹彪, 曾也鲁, 等. 植被遥感辐射传输建模中的异质性研究进展[J]. 遥感学报, 2016, 20(5):933−945. Liu Q H, Cao B, Zeng Y L, et al. Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy[J]. Journal of Remote Sensing, 2016, 20(5): 933−945.
[39] 高峰, 李小文, 夏宗国, 等. 基于知识的分阶段不确定性多角度遥感反演[J]. 中国科学(D辑), 1998, 28(4):346−350. Gao F, Li X W, Xia Z G, et al. Multi-stage uncertainty inversion of multi-angle remote sensing based on prior information[J]. Science in China (Series D), 1998, 28(4): 346−350.
[40] Sader S A, Stone T A, Joyce A T. Remote sensing of tropical forests: an overview of research and applications using non-photographic sensors[J]. Photogrammetric Engineering and Remote Sensing, 1990, 56(10): 1343−1351.
[41] King D J. Airborne remote sensing in forestry: sensors, analysis and applications[J]. Forestry Chronicle, 2000, 76(6): 25−42.
[42] Su Y, Guan H, Hu T, et al. The integration of UAV and backpack lidar systems for forest inventory[C]//IEEE. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018.
[43] Zou X, Cheng M, Wang C, et al. Tree classification in complex forest point clouds based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2360−2364. doi: 10.1109/LGRS.2017.2764938
[44] Ball J E, Anderson D T, Chan C S. A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4). DOI: 10.1117/1.JRS.11.042609.
[45] 吴楠, 李增元, 廖声熙, 等. 国内外林业遥感应用研究概况与展望[J]. 世界林业研究, 2017, 30(6):34−40. Wu N, Li Z Y, Liao S X, et al. Current situation and prospect of research on application of remote sensing to forestry[J]. World Forestry Research, 2017, 30(6): 34−40.
[46] Khare S, Latifi H, Rossi S. Forest beta-diversity analysis by remote sensing: how scale and sensors affect the Rao ’s Q index[J/OL]. Ecological Indicators, 2019, 106 [2019−08−11]. http: //doi.org/10.1016/j.ecolind.2019.105520.
[47] Ferreira M P, Féret J-B, Grau E, et al. Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy[J]. Remote Sensing of Environment, 2018, 211(6): 276−291.
[48] Fischer R, Knapp N, Bohn F, et al. The relevance of forest structure for biomass and productivity in temperate forests: new perspectives for remote sensing[J]. Surveys in Geophysics, 2019, 40(4): 709−734. doi: 10.1007/s10712-019-09519-x
[49] Senf C, Seidl R, Hostert P. Remote sensing of forest insect disturbances: current state and future directions[J]. International Journal of Applied Earth Observations and Geoinformation, 2017, 60(8): 49−60.
[50] Widlowski J L, Taberner M, Pinty B, et al. Third radiation transfer model intercomparison (RAMI) exercise: documenting progress in canopy reflectance models[J/OL]. Journal of Geophysical Research, 2007, 112(9): D09111 [2019−08−15]. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006JD007821.
[51] Jacquemoud S, Baret F. Prospect: a model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2): 75−91. doi: 10.1016/0034-4257(90)90100-Z
[52] Senior T B A, Sarabandi K, Ulaby F T. Measuring and modeling the backscattering cross section of a leaf[J]. Radio Science, 1987, 22(6): 1109−1116. doi: 10.1029/RS022i006p01109
[53] Dawson T P, Curran P J, Plummer S E. Liberty: modeling the effects of leaf biochemical concentration on reflectance spectra[J]. Remote Sensing of Environment, 1998, 65(1): 50−60. doi: 10.1016/S0034-4257(98)00007-8
[54] Karam M A, Fung A K. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation[J]. International Journal of Remote Sensing, 1988, 9(6): 1109−1134. doi: 10.1080/01431168808954918
[55] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the suns glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838−850. doi: 10.1364/JOSA.44.000838
[56] Liang S, Townshend J R G. A modified Hapke model for soil bidirectional reflectance[J]. Remote Sensing of Environment, 1996, 55(55): 1−10.
[57] Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(1): 90−101.
[58] Verhoef W, Bach H. Simulation of sentinel-3 images by four-stream surface-atmosphere radiative transfer modeling in the optical and thermal domains[J]. Remote Sensing of Environment, 2012, 120(10): 197−207.
[59] Leblanc S G, Chen J M. A windows graphic user interface (GUI) for the five-scale model for fast BRDF simulations[J]. Remote Sensing Reviews, 2000, 19(1−4): 293−305. doi: 10.1080/02757250009532423
[60] Shabanov N V, Knyazikhin Y, Baret F, et al. Stochastic modeling of radiation regime in discontinuous vegetation canopies[J]. Remote Sensing of Environment, 2000, 74(1): 125−144. doi: 10.1016/S0034-4257(00)00128-0
[61] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357−364. doi: 10.1029/RS013i002p00357
[62] Ulaby F T, Sarabandi K, Mcdonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7): 1223−1253. doi: 10.1080/01431169008955090
[63] Gastellu-Etchegorry J P, Lauret N, Yin T, et al. Dart: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(6): 2640−2649.
[64] Qi J, Xie D, Yin T, et al. Less: large-scale remote sensing data and image simulation framework over heterogeneous 3D scenes[J]. Remote Sensing of Environment, 2019, 221(2): 695−706.
[65] 谭炳香, 李增元, 陈尔学, 等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究, 2008, 21(增刊1):105−111. Tan B X, Li Z Y, Chen E X, et al. Research advance in forest informa tion extractionfrom hyoerspectral remote sensing data[J]. Forest Research, 2008, 21(Suppl.1): 105−111.
[66] 李瑞平, 黄侃, 黄华国. 吉林蛟河主要树种叶片光谱分类[J]. 东北林业大学学报, 2015, 43(3):48−55. doi: 10.3969/j.issn.1000-5382.2015.03.012 Li R P, Huang K, Huang H G. Leaf classification of main tree species in Jiaohe of Jilin with hyperspectral data[J]. Journal of Northeast Forestry University, 2015, 43(3): 48−55. doi: 10.3969/j.issn.1000-5382.2015.03.012
[67] Quan W, Li P. Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements[J]. Hydrological Processes, 2012, 26(8): 1230−1241. doi: 10.1002/hyp.8221
[68] Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment, 2005, 95(2): 177−194. doi: 10.1016/j.rse.2004.12.016
[69] 李军玲, 庞勇, 李增元, 等. 机载AISA Eagle Ⅱ高光谱数据在温带天然林树种分类中的应用[J]. 东北林业大学学报, 2019, 47(5):72−76. doi: 10.3969/j.issn.1000-5382.2019.05.014 Li J L, Pang Y, Li Z Y, et al. Tree species classification using airborne hyperspectral data in a temperate natural forest[J]. Journal of Northeast Forestry University, 2019, 47(5): 72−76. doi: 10.3969/j.issn.1000-5382.2019.05.014
[70] 周磊, 辛晓平, 李刚, 等. 高光谱遥感在草原监测中的应用[J]. 草业科学, 2009, 26(4):20−27. Zhou L, Xin X P, Li G, et al. Application progress on hyperspectral remote sensing in grassland monitoring[J]. Pratacultural Science, 2009, 26(4): 20−27.
[71] 谭炳香, 李增元, 陈尔学, 等. EO-1 Hyperion高光谱数据的预处理[J]. 遥感信息, 2005(6):36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010 Tan B X, Li Z Y, Chen E X, et al. Preprocessing of EO-1 Hyperion hyperspectral data[J]. Remote Sensing Information, 2005(6): 36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010
[72] 李小梅, 谭炳香, 李增元, 等. CHRIS高光谱图像森林类型分类方法比较研究[J]. 遥感技术与应用, 2010, 25(2):227−234. doi: 10.11873/j.issn.1004-0323.2010.2.227 Li X M, Tan B X, Li Z Y, et al. Comparation of forest types classification methods using CHRIS hyperspectral image[J]. Remote Sensing Technology and Application, 2010, 25(2): 227−234. doi: 10.11873/j.issn.1004-0323.2010.2.227
[73] 孙允珠, 蒋光伟, 李云端, 等. “高分五号”卫星概况及应用前景展望[J]. 航天返回与遥感, 2018, 39(3):1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001 Sun Y Z, Jiang G W, Li Y D, et al. GF-5 satellite: overview and application prospects[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001
[74] 刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679−695. Liu L J, Pang Y, Fan W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. Journal of Remote Sensing, 2013, 17(3): 679−695.
[75] 韦玮, 李增元, 谭炳香. 高光谱遥感技术在湿地研究中的应用[J]. 世界林业研究, 2010, 23(3):18−23. Wei W, Li Z Y, Tan B X. A review of application of hyperspectral remote sensing to wetland study[J]. World Forestry Research, 2010, 23(3): 18−23.
[76] 刘啸添, 周蕾, 石浩, 等. 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析[J]. 生态学报, 2018, 38(10):3482−3494. Liu X T, Zhou L, Shi H, et al. Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyll fluorescence and CO2 flux data[J]. Acta Ecologica Sinica, 2018, 38(10): 3482−3494.
[77] 李石磊, 高懋芳, 李召良, 等. 基于碳卫星的中国东北地区叶绿素荧光反演[J]. 中国农业信息, 2018, 30(6):53−62. doi: 10.12105/j.issn.1672-0423.20180605 Li S L, Gao M F, Li Z L, et al. Retrieval of chlorophyll fluorescence from Tansat in Northeast China[J]. China Agricultural Informatics, 2018, 30(6): 53−62. doi: 10.12105/j.issn.1672-0423.20180605
[78] 张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5):963−978. Zhang Y J, Liu L Y, Hou Y M, et al. Progress in remote sensing of vegetation chlorophyll fluorescence[J]. Journal of Remote Sensing, 2009, 13(5): 963−978.
[79] 解潍嘉. 遥感观测林冠温度的角度效应动态模拟研究[D]. 北京: 北京林业大学, 2016. Xie W J. Simulation of angular effect and temporal variation of forest canopy temperature by remote sensing observations[D]. Beijing: Beijing Forestry University, 2016.
[80] Fisher J B, Hook S J, Allen R G, et al. ECOSTRESS: NASA’S next-generation mission to measure evapotranspiration from the international space station[C]//AGU. AGU fall meeting 2015. San Francisco: American Geophysical Union, 2015.
[81] 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3):129−136. doi: 10.3321/j.issn:1001-7488.2005.03.022 Pang Y, Li Z Y, Chen E X, et al. Lidar remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005, 41(3): 129−136. doi: 10.3321/j.issn:1001-7488.2005.03.022
[82] Yan W Y, Shaker A, Habib A, et al. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2012, 67(2): 35−44.
[83] 林沂, Puttonen E, Hyypp J. 高光谱激光雷达: 三维生物物理化学生态测量学[J]. 遥感信息, 2017, 32(1):5−9. doi: 10.3969/j.issn.1000-3177.2017.01.002 Lin Y, Puttonen E, Hyypp J. Hyperspectral LiDAR: a new era of 3D biophysichemical ecometrics[J]. Remote Sensing Information, 2017, 32(1): 5−9. doi: 10.3969/j.issn.1000-3177.2017.01.002
[84] 陈尔学, 李增元, 庞勇, 等. 基于极化合成孔径雷达干涉测量的平均树高提取技术[J]. 林业科学, 2007, 43(4):66−70. doi: 10.3321/j.issn:1001-7488.2007.04.011 Chen E X, Li Z Y, Pang Y, et al. Polarimetric synthetic aperture radar interferometry based mean tree height extraction technique[J]. Scientia Silvae Sinicae, 2007, 43(4): 66−70. doi: 10.3321/j.issn:1001-7488.2007.04.011
[85] 薛娟, 俞琳锋, 林起楠, 等. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018, 30(4):108−114. doi: 10.6046/gtzyyg.2018.04.17 Xue J, Yu L F, Lin Q N, et al. Using SENTINEL-1 time series InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land and Resources, 2018, 30(4): 108−114. doi: 10.6046/gtzyyg.2018.04.17
[86] 李平湘, 刘致曲, 杨杰, 等. 利用随机森林回归进行极化SAR土壤水分反演[J]. 武汉大学学报(信息科学版), 2019, 44(3):405−412. Li P X, Liu Z Q, Yang J, et al. Soil moisture retrieval of winter wheat fields based on random forest regression using Quad-polarimetric SAR images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 405−412.
[87] 李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12):1211−1216. Li D R, Zhang L P, Xia G S. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211−1216.
[88] 郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球[J]. 科学通报, 2014, 59(35):1047−1054. Guo H D, Wang L Z, Chen F, et al. Scientific big data and digital earth[J]. Chinese Science Bulletin, 2014, 59(35): 1047−1054.
[89] 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050−1061. Zhang L P, Shen H F. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5): 1050−1061.
[90] 何兴元, 任春颖, 陈琳, 等. 森林生态系统遥感监测技术研究进展[J]. 地理科学, 2018, 38(7):997−1011. He X Y, Ren C Y, Chen L, et al. The progress of forest ecosystems monitoring with remote sensing techniques[J]. Scientia Geographica Sinica, 2018, 38(7): 997−1011.
[91] Karathanassi V, Kolokousis P, Ioannidou S. A comparison study on fusion methods using evaluation indicators[J]. International Journal of Remote Sensing, 2007, 28(10): 2309−2341. doi: 10.1080/01431160600606890
[92] Evans T L, Costa M, Telmer K, et al. Using ALOS/PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(4): 560−575.
[93] Lehmann E A, Caccetta P, Lowell K, et al. SAR and optical remote sensing: assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system[J]. Remote Sensing of Environment, 2015, 156: 335−348. doi: 10.1016/j.rse.2014.09.034
[94] 蔡庆空, 李二俊, 陶亮亮, 等. PROSAIL模型和水云模型耦合反演农田土壤水分[J]. 农业工程学报, 2018, 34(20):117−123. doi: 10.11975/j.issn.1002-6819.2018.20.015 Cai Q K, Li E J, Tao L L, et al. Farmland soil moisture retrieval using PROSAIL and water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 117−123. doi: 10.11975/j.issn.1002-6819.2018.20.015
[95] Côté J F, Fournier R A, Luther J E, et al. Fine-scale three-dimensional modeling of boreal forest plots to improve forest characterization with remote sensing[J]. Remote Sensing of Environment, 2018, 219: 99−114. doi: 10.1016/j.rse.2018.09.026
[96] Huang Y, Chen Z X, Tao Y U, et al. Agricultural remote sensing big data: management and applications[J]. Journal of Integrative Agriculture, 2018, 17(9): 1915−1931. doi: 10.1016/S2095-3119(17)61859-8
[97] José G D, Philip L, Mathias D. Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences[J/OL]. Remote Sensing, 2016, 8. DOI: 1033902/rs8020119 [2019−08−16]. https://www.mdpi.xilesou.top/2072-4292/8/2/119.
[98] Swarup V, Geschwind D H. Alzheimer’s disease: from big data to mechanism[J]. Nature, 2013, 500: 34−35. doi: 10.1038/nature12457
[99] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748−767. Chen Z X, Ren J Q, Tang H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748−767.
[100] 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24):98−106. doi: 10.11975/j.issn.1002-6819.2016.24.013 Liu J G, Zhao C J, Yang G J, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 98−106. doi: 10.11975/j.issn.1002-6819.2016.24.013
[101] Ramón D-V, Raúl D L R, Lorenzo L, et al. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials[J]. Remote Sensing, 2015, 7(4): 4213−4232. doi: 10.3390/rs70404213
[102] Gómez-Candón D, Virlet N, Labbé S, et al. Field phenotyping of water stress at tree scale by UAV-sensed imagery: new insights for thermal acquisition and calibration[J]. Precision Agriculture, 2016, 17(6): 1−15.
-
期刊类型引用(1)
1. 杨冲,张子木,朱麒轩,杜瑶,李黎,罗斌. 基于中密度纤维板磨削的定组态砂带寿命研究. 林业机械与木工设备. 2023(03): 62-66+75 . 百度学术
其他类型引用(4)