高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

古建筑七架梁缺陷安全性影响数值模拟研究

欧自娜 张厚江 管成

欧自娜, 张厚江, 管成. 古建筑七架梁缺陷安全性影响数值模拟研究[J]. 北京林业大学学报, 2020, 42(4): 142-154. doi: 10.12171/j.1000-1522.20190328
引用本文: 欧自娜, 张厚江, 管成. 古建筑七架梁缺陷安全性影响数值模拟研究[J]. 北京林业大学学报, 2020, 42(4): 142-154. doi: 10.12171/j.1000-1522.20190328
Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. doi: 10.12171/j.1000-1522.20190328
Citation: Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. doi: 10.12171/j.1000-1522.20190328

古建筑七架梁缺陷安全性影响数值模拟研究

doi: 10.12171/j.1000-1522.20190328
基金项目: 中央高校基本科研业务费专项资金资助(BLX201817),中国博士后科学基金面上资助项目(2018M641225),北京市科学计划公益应用类项目(Z090506016609002)
详细信息
    作者简介:

    欧自娜。主要研究方向:木材无损检测技术。Email:ozn101402@163.com  地址:100083 北京市清华东路35号北京林业大学工学院

    责任作者:

    张厚江,教授,博士生导师。主要研究方向:木材无损检测技术。Email:hjzhang6@bjfu.edu.cn  地址:同上

    管成,博士,讲师。主要研究方向:木材无损检测技术。Email:648911029@qq.com  地址:同上

  • 中图分类号: TU366.2

Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building

  • 摘要: 目的七架梁作为大型木结构古建筑的主要承重构件,其承载力安全性直接影响古建筑木结构整体的安全性。由于周围环境和使用长久等原因造成木梁出现不同程度的缺陷,会影响木梁弯曲拉应力和剪切应力的分布,进而影响其承载力安全性。因此,研究不同缺陷类型、尺寸、位置对古建筑七架梁承载力安全性的影响很有必要。方法采用Abaqus有限元软件模拟计算梁上存在的裂纹、腐朽和空洞等不同缺陷时的应力分布状态,通过量化缺陷大小和缺陷位置,对不同残损因素进行单参量数值模拟分析,确定带有缺陷木梁的最大工作应力位置,分析木梁破坏的敏感位置,探究木梁承载力安全性的变化规律。结果不同缺陷类型对七架梁安全性的影响不同,外部腐朽对七架梁承载力的影响最大,空洞缺陷次之,裂纹缺陷的影响相对最小;对于弹性阶段的受弯木梁而言,缺陷位于两下金瓜柱之间的受拉区域时,对七架梁承载力安全性的影响程度最大;不同缺陷大小对七架梁承载力的影响不同,随着木梁开裂深度、腐朽区域深度、空洞缺陷大小的增加,木梁安全性逐步降低。结论局部缺陷的存在会降低七架梁安全性。数值模拟结果可以精确算出木梁最大拉应力值,是定量研究缺陷对七架梁安全性影响和确定七架梁安全性监测位置点的良好方法。

     

  • 图  1  七架梁示意图

    Figure  1.  Sketch map of Qijia-beam

    图  2  古建筑木构件常见缺陷照片

    Figure  2.  Photographs of common defects in ancient timber buildings

    图  3  七架梁裂纹缺陷几何模型示意图

    l1. 缝长Crack length; w1. 缝宽Crack width; d1. 缝深Crack depth

    Figure  3.  Sketch map of geometric model for Qijia-beam specimens with crack defect

    图  4  七架梁外部腐朽截面示意图

             d2. 腐朽深度Decay depth

    Figure  4.  Section diagram of Qijia-beam specimens with external decay defect

    图  5  七架梁内部腐朽和空洞缺陷示意图

    l3. 空洞长度Hole length; h3. 空洞高度Hole height; D. 空洞直径Hole diameter

    Figure  5.  Diagram of Qijia-beam specimens with internal decay and hole defect

    图  6  七架梁荷载与边界约束示意图

    UL为木梁纵向位移,UR为径向位移,UT为弦向位移。UL is the longitudial displacement, and UR is the radial displacement, UT is the tangential displacement.

    Figure  6.  Sketch map of load and boundary constraint for Qijia-beam

    图  7  七架梁模型网格划分示意图

    Figure  7.  Mesh generation of Qijia-beam model

    图  8  完好七架梁线弹性应力计算结果

    Figure  8.  Calculation results of linear elastic of healthy Qijia-beam

    图  9  七架梁BC1-1线弹性应力计算结果

    Figure  9.  Calculation results of linear elastic of Qijia-beam BC1-1

    图  10  不同开裂深度d1七架梁线弹性应力计算结果(l1 = 8 000 mm、w1 = 10 mm、h1 = 260 mm)

    Figure  10.  Calculation results of linear elastic stress of wood Qijia-beam with different d1 (l1 = 8 000 mm,w1 = 10 mm,h1 = 260 mm)

    图  11  七架梁BD1-4线弹性应力计算结果

    Figure  11.  Calculation results of linear elastic stress of Qijia-beam BD1-4

    图  12  不同腐朽深度d2七架梁线弹性应力计算结果

    Figure  12.  Calculation results of linear elastic stress of Qijia-beam with different d2

    图  13  七架梁BH1-4线弹性应力计算结果

    Figure  13.  Calculation results of linear elastic stress of Qijia-beam BH1-4

    图  14  不同空洞直径D七架梁线弹性应力计算结果(h3 = 260 mm,l3 = 8 000 mm)

    Figure  14.  Calculation results of linear elastic stress of Qijia-beam with different D (h3 = 260 mm,l3 = 8 000 mm)

    图  15  不同空洞高度h3七架梁线弹性应力计算结果(D = 40 mm,l3 = 8 000 mm)

    Figure  15.  Calculation results of linear elastic stress of Qijia-beam with different h3 (D=40 mm, l3 = 8 000 mm)

    图  16  不同空洞高度h3七架梁线弹性应力计算结果(D = 240 mm,l3 = 8 000 mm)

    Figure  16.  Calculation results of linear elastic stress of Qijia-beam with different h3 (D = 240 mm, l3 = 8 000 mm)

    图  17  不同空洞长度l3七架梁线弹性应力计算结果(D = 240 mm,h3 = 260 mm)

    Figure  17.  Calculation results of linear elastic stress of Qijia-beam with different l3 (D = 240 mm, h3 = 260 mm)

    图  18  某古建筑木结构七架梁线弹性应力计算结果

    Figure  18.  Calculation results of linear elastic stress of Qijia-beam for an ancient timber builiding

    表  1  七架梁裂纹缺陷几何模型参数

    Table  1.   Modeling parameters of Qijia-beam specimens with crack defect mm

    模型编号
    Model No.
    缝长
    Crack
    length (l1)
    缝宽
    Crack
    width (w1)
    缝深
    Crack
    depth (d1)
    缝高
    Crack
    height (h1)
    BC1-0 0 0 0 0
    BC1-1 8 000 10 50 260
    BC1-2 8 000 10 100 260
    BC1-3 8 000 10 150 260
    BC1-4 8 000 10 200 260
    BC1-5 8 000 10 250 260
    BC1-6 8 000 10 300 260
    BC1-7 8 000 10 350 260
    下载: 导出CSV

    表  2  七架梁外部腐朽缺陷模型参数

    Table  2.   Modeling parameters of Qijia-beam specimens with external decay defect mm

    模型编号
    Model No.
    腐朽深度
    Decay
    depth (d2)
    有效截面尺寸
    Effective section size
    腐朽长度
    Decay
    length (l2)
    宽 Width (w2)高 Height (h2)
    BD1-0 0 0 0 0
    BD1-1 50 300 420 8 000
    BD1-2 75 250 370 8 000
    BD1-3 100 200 320 8 000
    BD1-4 125 150 270 8 000
    BD1-5 150 100 220 8 000
    下载: 导出CSV

    表  3  七架梁内部腐朽和空洞缺陷模型参数

    Table  3.   Modeling parameters of Qijia-beam specimens with internal decay and hole defect mm

    模型编号
    Model No.
    空洞直径
    Hole diameter (D)
    空洞高度
    Hole height (h3)
    空洞长度
    Hole length (l3)
    BH1-0 0 0 0
    BH1-1 5 260 8 000
    BH1-2 40 260 8 000
    BH1-3 120 260 8 000
    BH1-4 160 260 8 000
    BH1-5 200 260 8 000
    BH1-6 240 260 8 000
    BH1-7 280 260 8 000
    BH1-8 320 260 8 000
    BH1-9 360 260 8 000
    BH2-0 0 0 0
    BH2-1 40 60 8 000
    BH2-2 40 160 8 000
    BH2-3 40 260 8 000
    BH2-4 40 360 8 000
    BH2-5 40 460 8 000
    BH2-6 240 120 8 000
    BH2-7 240 260 8 000
    BH2-8 240 400 8 000
    BH3-0 0 0 0
    BH3-1 240 260 1 000
    BH3-2 240 260 2 000
    BH3-3 240 260 4 000
    BH3-4 240 260 6 000
    BH3-5 240 260 8 000
    下载: 导出CSV

    表  4  楠木和落叶松强度设计值

    Table  4.   Strength design value of Phoebe zhennan and Larix gmelinii MPa

    树种 Tree species抗弯强度设计值 Designed bending strength (fm)抗剪强度设计值 Designed shear strength (fv)
    楠木Phoebe zhennan 7.13 0.84
    落叶松Larix gmelinii 11.01 1.04
    注:表4引自参考文献[13]。表中数据为正常条件下的木材强度设计值乘以不同使用条件和不同使用年限的调整系数所得。Notes:Tab. 4 is quoted from reference [13]. The data in the table are obtained by multiplying the wood designed strength under normal conditions by the adjustment factors of different used conditions and service life.
    下载: 导出CSV

    表  5  落叶松木材材性参数

    Table  5.   Property parameters of larch wood

    EL/MPaER/MPaET/MPaμLRμLTμRTGLR/MPaGLT/MPaGRT/MPa
    14 190 1 419 709.50 0.03 0.02 0.43 1 064.25 851.40 255.42
    注:表5引自参考文献[2, 14]。EL为木梁纵向弹性模量,MPa; ER为径向弹性模量,MPa; ET为弦向弹性模量,MPa; μLR为LR面的泊松比; μLT为LT面的泊松比; μRT为RT面的泊松比; GLR为LR面内的剪切模量,Mpa;GLT为LT面内的剪切模量,Mpa;GRT为RT面内的剪切模量,Mpa。下同。Notes: Tab. 5 is quoted from reference [2, 14]. EL is the longitudinal elastic modulus of the wood beam, MPa; ER is the radial elastic modulus, MPa; ET is the tangential elastic modulus, MPa; μLR is the Poisson’s ratio of LR-plane; μLT is the Poisson’s ratio of LT-plane; μRT is the Poisson’s ratio of RT-plane; GLR is the shear modulus of LR-plane, Mpa; GLT is the shear modulus of LT-plane, Mpa; GRT is the shear modulus of RT-plane, Mpa. Same as below.
    下载: 导出CSV

    表  6  楠木材性参数

    Table  6.   Property parameters of P. zhennan

    EL/MPaER/MPaET/MPaμLRμLTμRTGLR/MPaGLT/MPaGRT/MPa
    11 1101 111555.500.0290.020.43833.25666.60199.98
    注:表6引自参考文献[2, 14]。Note: Tab. 6 is quoted from reference [2, 14].
    下载: 导出CSV
  • [1] 石四军. 古建筑营造技术细部图解[M]. 沈阳: 辽宁科学技术出版社, 2010.

    Shi S J. Ancient building construction technology detail[M]. Shenyang: Liaoning Science and Technology Publishing House, 2010.
    [2] 成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985.

    Cheng J Q. Wood science[M]. Beijing: China Forestry Publishing House, 1985.
    [3] 廖春晖, 张厚江, 黎冬青, 等. 古建筑圆柱形木构件内部缺陷筛查方法研究[J]. 北京林业大学学报, 2013, 35(1):123−126.

    Liao C H, Zhang H J, Li D Q, et al. Screening method of internal defects in cylindrical wood members of ancient architectures[J]. Journal of Beijing Forestry University, 2013, 35(1): 123−126.
    [4] 林丽. 古建筑木梁架常见破坏形式及修缮方案—以浙江古民居为例[J]. 价值工程, 2015, 34(29):155−157.

    Li L. The wooden beams renovation scheme of Zhejiang ancient architecture[J]. Value Engineering, 2015, 34(29): 155−157.
    [5] 张厚江, 管成, 文剑. 木质材料无损检测的应用与研究进展[J]. 林业工程学报, 2016, 1(6):1−9.

    Zhang H J, Guan C, Wen J. Applications and research development of nondestructive testing of wood based materials[J]. Journal of Forestry Engineering, 2016, 1(6): 1−9.
    [6] Akbiyik A, Lamanna A J, Hale W M. Feasibility investigation of the shear repair of timber stringers with horizontal splits[J]. Construction and Building Materials, 2007, 21(5): 991−1000. doi: 10.1016/j.conbuildmat.2006.03.004
    [7] Nagai H, Murata K, Nakano T. Defect detection in lumber including knots using bending deflection curve: comparison between experimental analysis and finite element modeling[J]. Journal of Wood Science, 2009, 55(3): 169−174. doi: 10.1007/s10086-008-1016-y
    [8] Xu H, Wang L. Curvature modal analysis of defective wood beams based on finite element method[C]// Changsha University of Science & Technology. International Conference on Measuring Technology & Mechatronics Automation. Washington: IEEE Computer Society, 2010: 874−877.
    [9] Zhang J, Xu Q F, Xu Y X, et al. Research on residual bending capacities of used wood members based on the correlation between non-destructive testing results and the mechanical properties of wood[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2015, 16(7): 541−550.
    [10] 孙艳玲, 张青, 赵东. 木材裂纹尖端应力、应变场的数值分析[J]. 北京林业大学学报, 2010, 32(1):103−107.

    Sun Y L, Zhang Q, Zhao D. Stress and strain filed at wood crack[J]. Journal of Beijing Forestry University, 2010, 32(1): 103−107.
    [11] 温宇鑫, 赵健, 赵东. 孔洞对木梁弯曲应变分布影响的试验研究[J]. 北京林业大学学报, 2017, 39(11):106−113.

    Wen Y X, Zhao J, Zhao D. Experimental study on the effects of holes on bending strain distribution of wood beams[J]. Journal of Beijing Forestry University, 2017, 39(11): 106−113.
    [12] 周乾, 闫维明, 纪金豹. 古建残损木梁受弯性能数值模拟研究[J]. 山东建筑大学学报, 2012, 27(6):570−574. doi: 10.3969/j.issn.1673-7644.2012.06.006

    Zhou Q, Yan W M, Ji J B. Numerical simulation of bending performance of the unsound Chinese ancient wooden beam[J]. Journal of Shandong Jianzhu University, 2012, 27(6): 570−574. doi: 10.3969/j.issn.1673-7644.2012.06.006
    [13] 中华人民共和国建设部. 木结构设计规范: GB50005—2017[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Development of the People’s Republic of China. Code for design of timber structures: GB50005−2017[S]. Beijing: China Architecture & Building Press, 2017.
    [14] 龙卫国, 杨学兵. 木结构设计手册[M]. 北京: 中国建筑工业出版社, 2005.

    Long W G, Yang X B. Manual for design of timber structure[M]. Beijing: China Architecture & Building Press, 2005.
    [15] 刘大可. 古建筑屋面荷载编汇(上)[J]. 古建园林技术, 2001(3):58−64.

    Liu D K. Assembly of roof loads in ancient buildings[J]. Traditional Chinese Architecture and Gardens, 2001(3): 58−64.
    [16] 中华人民共和国建设部. 古建筑木结构维护与加固技术规范: GB50165—92[S]. 北京: 中国建筑工业出版社, 1992.

    Ministry of Development of the People’s Republic of China. Technical code for maintenance and strengthening of ancient timber buildings: GB50165−92[S]. Beijing: China Architecture & Building Press, 1992.
    [17] 朱忠漫, 邱洪兴, 王靖翔. 干缩裂缝对木梁抗弯性能影响的试验研究[J]. 淮海工学院学报(自然科学版), 2015, 24(增刊1):74−79.

    Zhu Z M, Qiu H X, Wang J X. Flexural performance of timber beams with shrinkage crack[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2015, 24(Suppl.1): 74−79.
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  2171
  • HTML全文浏览量:  1385
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-20
  • 修回日期:  2019-09-29
  • 网络出版日期:  2019-11-02
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回