高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

恢复湿地土壤重金属含量变化及污染评价

李海兴 孙晓新 满秀玲 王清波 李东 胡艳玲

李海兴, 孙晓新, 满秀玲, 王清波, 李东, 胡艳玲. 恢复湿地土壤重金属含量变化及污染评价[J]. 北京林业大学学报, 2020, 42(3): 134-142. doi: 10.12171/j.1000-1522.20190338
引用本文: 李海兴, 孙晓新, 满秀玲, 王清波, 李东, 胡艳玲. 恢复湿地土壤重金属含量变化及污染评价[J]. 北京林业大学学报, 2020, 42(3): 134-142. doi: 10.12171/j.1000-1522.20190338
Li Haixing, Sun Xiaoxin, Man Xiuling, Wang Qingbo, Li Dong, Hu Yanling. Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands[J]. Journal of Beijing Forestry University, 2020, 42(3): 134-142. doi: 10.12171/j.1000-1522.20190338
Citation: Li Haixing, Sun Xiaoxin, Man Xiuling, Wang Qingbo, Li Dong, Hu Yanling. Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands[J]. Journal of Beijing Forestry University, 2020, 42(3): 134-142. doi: 10.12171/j.1000-1522.20190338

恢复湿地土壤重金属含量变化及污染评价

doi: 10.12171/j.1000-1522.20190338
基金项目: 国家自然科学基金项目(31870443),中央高校基本科研业务费专项(2572016CA03)
详细信息
    作者简介:

    李海兴。主要研究方向:湿地恢复与湿地污染评价。Email:15545186286@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    孙晓新,博士,副教授。主要研究方向:湿地生态。Email:sunxiaoxin@nefu.edu.cn 地址:同上

  • 中图分类号: S714.8

Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands

  • 摘要: 目的为探究退耕还湿对土壤重金属含量及其潜在危害的影响。方法取黑龙江三江国家级自然保护区内大豆田、不同退耕年限的杂草草甸或湿地和天然臌囊苔草—小叶章沼泽土样,测定土壤重金属含量。利用Hankanson潜在生态危害指数法,进行潜在生态危害评价。结果三江自然保护区退耕湿地恢复过程中土壤重金属污染物主要为Pb,其次是Cu,而Zn、Mn和Cr的影响很小。随土壤深度增加,Cu、Pb、Zn、Mn和Cr含量呈波动变化。Cu和Pb含量在退耕还湿11年之前,在0 ~ 10 cm土壤深度含量最高,而在退耕还湿11年之后,在40 ~ 50 cm土壤深度含量最高。其他重金属含量随着土壤深度变化没有表现出一定的规律。退耕恢复期间,土壤Cu、Pb、Zn与Cr含量随退耕时间先增加后减少,但Zn含量增加与减少未达到显著程度(P > 0.05)。而退耕样地土壤Mn含量从恢复第1年开始就显著低于大豆田(P < 0.05)。大豆田和退耕前6年的恢复样地具有强烈的潜在生态风险危害,退耕8、11年样地和天然沼泽的潜在生态风险危害指数为中度,退耕15和25年样地的潜在生态风险危害指数为轻度。结论随着退耕还湿时间的延长,土壤中Cu、Pb、Zn和Cr含量先增加后减少,分别在退耕15、12、2和10年左右恢复到天然湿地水平。而土壤Mn含量在退耕开始后便与天然湿地没有显著性差异(P > 0.05)。随着退耕年限增加,生态系统潜在生态风险危害逐渐降低。

     

  • 图  1  不同土壤深度的重金属含量

    Figure  1.  Heavy metal contents in different soil depths

    图  2  不同样地间土壤重金属含量

    Figure  2.  Heavy metal contents in different sample plots

    表  1  样地植物种类

    Table  1.   Plant species in sample plots

    样地
    Sample plot
    植物种类
    Plant species
    DD 大豆 Glycine max、野苋 Amaranthus viridis、鸭跖草 Commelina communis
    T1 画眉草 Eragrostis pilosa、长芒野稗 Echinochloa caudate、藨草 Scirpus triqueter
    T2 画眉草 Eragrostis pilosa、稗草 Echinochloa crusgall、春蓼 Polygonum persicaria
    T6 小叶章 Deyeuxia angustifolia、臌囊苔草 Carex schmidti、沼泽蕨 Thelypteris palustris
    T8 小叶章 Deyeuxia angustifolia、小画眉草 Eragrostis minor、红花金丝桃 Triadenum japonicum
    T11 小叶章 Deyeuxia angustifolia、臌囊苔草 Carex schmidti、柳叶绣线菊 Spiraea salicifolia
    T15 小叶章 Deyeuxia angustifolia、臌囊苔草 Carex schmidti、荩草 Arthraxon hispidus
    T25 臌囊苔草 Carex schmidti、小叶章 Deyeuxia angustifolia、小白花地榆 Sanguisorba teriuifolia
    var. alba
    TR 小叶章 Deyeuxia angustifolia、臌囊苔草 Carex schmidti、广布野豌豆 Vicia cracca
    注:DD为大豆(Glycine max)田;T1 ~ T25为不同退耕年限样地;TR为天然臌囊苔草(Carex schmidti)—小叶章(Deyeuxia angustifolia)沼泽。下同。Notes: DD, soybean field; T1−T25, the sample plots of different converting years in the process of restoration; TR, natural C. schmidti-D. angustifolia marsh. The same below.
    下载: 导出CSV

    表  2  土壤重金属潜在生态风险分级标准

    Table  2.   Potential ecological risk grading standards for soil heavy metal

    潜在生态风险等级
    Potential ecological risk grade
    轻度
    Mild
    中度
    Moderate
    强烈
    Strong
    很强
    Very strong
    极强
    Extremely strong
    Eri < 5 5 ~ 1010 ~ 2020 ~ 40 > 40
    RI < 2020 ~ 4040 ~ 80 > 80
    注:Eri为第i种金属的潜在生态危害系数;RI为综合潜在风险系数。Notes: Eri is potential ecological risk index of the i-th metal; RI is compositive potential ecological risk coefficient.
    下载: 导出CSV

    表  3  退耕恢复过程中土壤重金属含量之间及其与退耕年限的相关性

    Table  3.   Correlations of soil heavy metal contents and converting years in the process of restoration

    项目 Item退耕年限 Restoring yearCuPbZnMnCr
    退耕年限 Restoring year 1
    Cu − 0.842** 1
    Pb − 0.810** 0.967** 1
    Zn − 0.312 − 0.110 − 0.249 1
    Mn 0.317 − 0.330 − 0.238 0.175 1
    Cr − 0.717** 0.926** 0.892** − 0.064 − 0.250 1
    注:**表示相关性极显著(P < 0.01)。Note: ** means correlation is extremely significant at P < 0.01 level .
    下载: 导出CSV

    表  4  农田、恢复湿地与天然湿地潜在生态风险危害指数

    Table  4.   Potential ecological risk index of farmland, restored wetland and natural marsh

    潜在生态风险指数
    Potential ecological risk index
    DDT1T2T6T8T11T15T25TR
    ErCu b12.13 b17.74 c23.38 c22.57 b12.44 b11.41 4.27 4.68 a5.17
    SE 0.55 11.34 1.45 0.74 0.74 1.45 0.83 1.03 0.9
    ErPb c26.19 c30.95 c36.87 c35.43 c24.67 c22.57 a6.45 b12.72 b16.58
    SE 2.10 4.15 1.40 1.80 1.10 2.20 1.99 2.02 3.56
    ErZn 0.30 0.60 0.39 0.21 0.24 0.25 0.69 0.20 0.059
    SE 0.049 0.72 0.24 0.11 0.12 0.087 0.039 0.17 0.053
    ErMn 0.82 0.37 0.14 0.12 0.17 0.22 0.38 0.34 0.18
    SE 0.45 0.17 0.024 0.088 0.13 0.14 0.11 0.078 0.078
    ErCr 1.76 2.04 4.43 2.77 1.24 0.81 0.37 0.37 0.62
    SE 0.45 0.76 0.61 0.59 0.24 0.33 0.36 0.20 0.19
    RI b41.20 b51.69 b65.21 b61.10 a38.75 a35.25 12.16 18.30 a22.61
    注:T1 ~ T25为不同退耕年限样地;Eri为第i种金属的潜在生态危害系数。RI为综合潜在风险系数,a为中度,b为强烈,c为很强。Notes: T1−T25 represent sample plots of varied restoring years; Eri is potential ecological risk index of the i-th metal. RI is compositive potential ecological risk index; a,moderate; b, strong; c, very strong.
    下载: 导出CSV
  • [1] 韩大勇, 杨永兴, 杨杨, 等. 湿地退化研究进展[J]. 生态学报, 2012, 32(4):1293−1307. doi: 10.5846/stxb201012011707

    Han D Y, Yang Y X, Yang Y, et al. Recent advances in wetland degradation research[J]. Acta Ecologica Sinica, 2012, 32(4): 1293−1307. doi: 10.5846/stxb201012011707
    [2] 杨艳芳, 孟向东, 张平究. 不同退耕年限条件下菜子湖湿地土壤理化性质变化[J]. 生态与农村环境学报, 2013, 29(3):322−328. doi: 10.3969/j.issn.1673-4831.2013.03.009

    Yang Y F, Meng X D, Zhang P J. Physical and chemical properties of soils in wetlands of Caizi Lake different in restoration history in Anqing, Anhui Province[J]. Journal of Ecology and Rural Environment, 2013, 29(3): 322−328. doi: 10.3969/j.issn.1673-4831.2013.03.009
    [3] Bruland G L, Richardson C J. Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland[J]. Restoration Ecology, 2005, 13(3): 515−523. doi: 10.1111/j.1526-100X.2005.00064.x
    [4] 田应兵, 熊明标, 宋光煜. 若尔盖高原湿地土壤的恢复演替及其水分与养分变化[J]. 生态学杂志, 2005, 24(1):21−25. doi: 10.3321/j.issn:1000-4890.2005.01.005

    Tian Y B, Xiong M B, Song G Y. Restoration succession of wetland soils and their changes of water and nutrient in Ruoergai Plateau[J]. Chinese Journal of Ecology, 2005, 24(1): 21−25. doi: 10.3321/j.issn:1000-4890.2005.01.005
    [5] 丁秋祎, 白军红, 高海峰, 等. 黄河三角洲湿地不同植被群落下土壤养分含量特征[J]. 农业环境科学学报, 2009, 28(10):2092−2097. doi: 10.3321/j.issn:1672-2043.2009.10.016

    Ding Q W, Bia J H, Gao H F, et al. Soil nutrient contents in Yellow River Delta Wetlands with different plant communities[J]. Journal of Agro-Environment Science, 2009, 28(10): 2092−2097. doi: 10.3321/j.issn:1672-2043.2009.10.016
    [6] 郑立地, 肖蓉, 姚新颖, 等. 黄河三角洲潮汐区和生态恢复区湿地土壤特征和重金属分布[J]. 湿地科学, 2015, 13(5):535−542.

    Zheng L D, Xiao R, Yao X Y, et al. Soil properties and heavy metal distributions in soils of tidal areas and restored areas in the Yellow River Delta[J]. Wetland Science, 2015, 13(5): 535−542.
    [7] Yao X Y, Xiao R, Ma Z W, et al. Distribution and contamination assessment of heavy metals in soils from tidal flat, oil exploitation zone and restored wetland in the Yellow River Delta[J]. Wetlands, 2016, 36(1): 153−165.
    [8] 于君宝, 董洪芳, 王慧彬, 等. 黄河三角洲新生湿地土壤金属元素空间分布特征[J]. 湿地科学, 2011, 9(4):297−304.

    Yu J B, Dong H F, Wang H B, et al. Spatial distribution characteristics of metals in new-born coastal wetlands in the Yellow River Delta[J]. Wetland Science, 2011, 9(4): 297−304.
    [9] Gao W, Du Y, Gao S, et al. Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China[J]. Soils Sediments, 2016, 16: 1093−1108. doi: 10.1007/s11368-015-1314-0
    [10] Esmaeilzadeh M, Karbassi A R, Moattar F. Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices[J]. Acta Oceanol Sin, 2016, 35(10): 28−36. doi: 10.1007/s13131-016-0920-z
    [11] Zhang Y, Shi T, Zhang Y, et al. Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China[J]. Environ Monit Assess, 2014, 186: 1219−1234. doi: 10.1007/s10661-013-3451-5
    [12] 刘晶, 滕彦国, 崔艳芳, 等. 土壤重金属污染生态风险评价方法综述[J]. 环境监测管理与技术, 2007, 19(3):6−11. doi: 10.3969/j.issn.1006-2009.2007.03.003

    Liu J, Teng Y G, Cui Y F, et al. Review in ecological risk assessment methods for heavy metal polluted soils[J]. The Administration and Technique of Environmental Monitoring, 2007, 19(3): 6−11. doi: 10.3969/j.issn.1006-2009.2007.03.003
    [13] 叶华香, 臧淑英, 张丽娟, 等. 扎龙湿地沉积物重金属空间分布特征及其潜在生态风险评价[J]. 环境科学, 2013, 34(4):1333−1339.

    Ye H X, Zang S Y, Zhang L J, et al. Distribution and potential ecological risk assessment of heavy metals in sediments of Zhalong Wetland[J]. Environmental Science, 2013, 34(4): 1333−1339.
    [14] Wang X, Sun Y, Li S, et al. Spatial distribution and ecological risk assessment of heavy metals in soil from the Raoyanghe Wetland, China[J/OL]. PLoS One, 2019, 14(8) (2018−12−21) [2019−08−09]. https://doi.org/10.1371/journal.pone.0220409.
    [15] 任华丽, 崔保山, 白军红, 等. 哈尼梯田湿地核心区水稻土重金属分布与潜在的生态风险[J]. 生态学报, 2008, 28(4):1625−1634. doi: 10.3321/j.issn:1000-0933.2008.04.033

    Ren H L, Cui B S, Bai J H, et al. Distribution of heavy metal in paddy soil of Hani Terrace core zone and assessment on its potential ecological risk[J]. Acta Ecologica Sinica, 2008, 28(4): 1625−1634. doi: 10.3321/j.issn:1000-0933.2008.04.033
    [16] 张曼胤, 崔丽娟, 盛连喜, 等. 衡水湖湿地底泥重金属污染及潜在生态风险评价[J]. 湿地科学, 2007, 5(4):362−369. doi: 10.3969/j.issn.1672-5948.2007.04.011

    Zhang M Y, Cui L J, Sheng L X, et al. Pollution and ecological risk assessment of heavy metals in the Hengshuihu Wetland[J]. Wetland Science, 2007, 5(4): 362−369. doi: 10.3969/j.issn.1672-5948.2007.04.011
    [17] 富德义, 吴敦虎. 三江平原土壤中微量元素背景值的研究[J]. 土壤通报, 1982, 13(1):26−29.

    Fu D Y, Wu D H. Study on the natural background value of trace element in soil of Sangjiang Plain[J]. Chinese Journal of Soil Science, 1982, 13(1): 26−29.
    [18] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8
    [19] Fernández J A, Carballeira A. Evaluation of contamination, by different elements, in terrestrial mosses[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 461−468. doi: 10.1007/s002440010198
    [20] 马建华, 王晓云, 侯千, 等. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究, 2011, 30(3):486−495.

    Ma J H, Wang X Y, Hou Q, et al. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens[J]. Geographical Research, 2011, 30(3): 486−495.
    [21] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3):1037−1044.

    Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037−1044.
    [22] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals, toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030
    [23] 商书波. 包气带中的土壤可移动胶体及对重金属迁移影响的研究[D]. 长春: 吉林大学, 2008.

    Shang S B. Study on the impact of soil colloid on heavy metals migration in vadose zone[D]. Changchun: Jilin University, 2008.
    [24] 白梅. 影响土壤中重金属淋溶的主要因素的研究[D]. 长沙: 湖南农业大学, 2011.

    Bai M. The research about the main factors which effect on the eluviation of heavy metals in the soil[D]. Changsha: Hunan Agricultural University, 2011.
    [25] 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007, 16(5):1551−1556.

    Lei M, Liao B H, Qin P F. Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation[J]. Ecology and Environment, 2007, 16(5): 1551−1556.
    [26] Yang J, Zheng G, Yang J, et al. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes[J]. Ecological Engineering, 2017, 107: 56−64. doi: 10.1016/j.ecoleng.2017.06.052
    [27] 滕葳, 柳琪, 李倩, 等. 重金属污染对农产品的危害与风险评估[M]. 北京: 化学工业出版社, 2010.

    Teng W, Liu Q, Li Q, et al. Hazard and risk assessment of heavy metal pollution on agricultural products[M]. Beijing: Chemicel Industry Press, 2010.
    [28] 王耀平, 白军红, 肖蓉, 等. 黄河口盐地碱蓬湿地土壤-植物系统重金属污染评价[J]. 生态学报, 2013, 33(10):3083−3091. doi: 10.5846/stxb201202230246

    Wang Y P, Bai J H, Xiao R, et al. Assessment of heavy metal contamination in the soil-plant system of the Suaeda salsa wetland in the Yellow River Estuary[J]. Acta Ecologica Sinica, 2013, 33(10): 3083−3091. doi: 10.5846/stxb201202230246
    [29] 徐明露. 不同退耕年限下湿地土壤重金属含量、生物有效性及风险评价[D]. 芜湖: 安徽师范大学, 2016.

    Xu M L. The character of heavy metals content, biologcal effectiveness and risk evaluation in the wetland from reurning farmland within various periods in Caizi lake, Anhui Province[D]. Wuhu: Anhui Normal University, 2016.
    [30] 耿慧, 张平究, 李云飞, 等. 不同退耕年限下菜子湖湿地土壤Cu和Zn形态特征[J]. 土壤通报, 2017, 48(5):1256−1263.

    Geng H, Zhang P J, Li Y F, et al. Characteristics of soil Cu and Zn forms in wetland with different restoration ages around the Caizi Lake, Anhui Province[J]. Chinese Journal of Soil Science, 2017, 48(5): 1256−1263.
    [31] 张仲胜, 吕宪国, 宋晓林. 三江平原土地利用方式变化对土壤锰形态影响[J]. 环境科学, 2013, 34(7):2782−2787.

    Zhang Z S, Lü X G, Song X L. Effects of land use on manganese distribution and fractions in wetland soil of Sanjiang Plain, northeast China[J]. Environmental Science, 2013, 34(7): 2782−2787.
    [32] Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicology and Environmental Safety, 2019, 174: 714−727. doi: 10.1016/j.ecoenv.2019.02.068
    [33] 李庆华. 人工湿地植物重金属分布规律及富集性研究[D]. 西安: 长安大学, 2014.

    Li Q H. Spatial distribution and accumulation characteristics of heavy metals in constructed wetlands plants[D]. Xi,an: Chang,an University, 2014.
    [34] 杨俊兴, 郑国砥, 胡健, 等. 湿地植物铅的富集特征及根际铅移动性的影响因素研究[J]. 植物营养与肥料学报, 2018, 24(4):1058−1067. doi: 10.11674/zwyf.17214

    Yang J X, Zheng G D, Hu J, et al. Characterization of Pb accumulation and factors influencing Pb mobilityin rhizosphere soils of wetland plants[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1058−1067. doi: 10.11674/zwyf.17214
    [35] Berg G A V D, Loch J P G, Winkels H J. Effect of fluctuating hydrological conditions on the mobility of heavy metals in soils of a freshwater estuary in the Netherlands[J]. Water, Air, and Soil Pollution, 1998, 102(3−4): 377−388.
    [36] 吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J]. 环境科学学报, 2017, 37(10):3959−3967.

    Wu P P, Li L J, Li M. Effects of biochar and Fe-loaded biochar on the leaching and fraction transformation of Cd, Cu and As in multi-contaminated soil[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3959−3967.
    [37] 韩志轩, 王学求, 迟清华, 等. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 2018, 38(9):3455−3463. doi: 10.3969/j.issn.1000-6923.2018.09.032

    Han Z X, Wang X Q, Chi Q H, et al. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 2018, 38(9): 3455−3463. doi: 10.3969/j.issn.1000-6923.2018.09.032
    [38] 曹宏杰, 王立民, 罗春雨, 等. 三江平原地区农田土壤中几种重金属空间分布状况[J]. 生态与农村环境学报, 2014, 30(2):155−161. doi: 10.3969/j.issn.1673-4831.2014.02.003

    Cao H J, Wang L M, Luo C Y, et al. Spatial distribution of heavy metals in agricultural soil in Sanjiang Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(2): 155−161. doi: 10.3969/j.issn.1673-4831.2014.02.003
    [39] 尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10):4670−4683.

    Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10): 4670−4683.
    [40] 谭小爱, 王平, 王倩, 等. 大山包黑颈鹤国家级自然保护区湿地土壤重金属污染评价[J]. 湿地科学, 2016, 14(6):916−922.

    Tan X A, Wang P, Wang Q, et al. Evaluation on heavy metals, contamination in the soils of wetlands in Dashanbao Black-necked Crane National Nature Reserve[J]. Wetland Science, 2016, 14(6): 916−922.
    [41] 王涛. 大山包不同退耕年限湿地土壤理化性质研究[D]. 昆明: 云南师范大学, 2015.

    Wang T. Physical and chemical properties of soil in the wetland from reurning farmland within various periods in Dashanbao Black-necked Crane National Nature Reserve[D]. Kunming: Yunnan Normal University, 2015.
    [42] 崔德杰, 张玉龙. 土壤重金属污染现状与修复技术研究进展[J]. 土壤通报, 2004, 35(3):366−370. doi: 10.3321/j.issn:0564-3945.2004.03.029

    Cui D J, Zhang Y L. Current situation of soil contamination by heavy metals and research advances on the remediation techniques[J]. Chinese Journal of Soil Science, 2004, 35(3): 366−370. doi: 10.3321/j.issn:0564-3945.2004.03.029
    [43] Weis J S, Weis P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration[J]. Environment International, 2004, 30(5): 685−700.
    [44] Su H T, Guo P Y, Zhang Y X, et al. Effects of planting patterns on trace metals in soils following wetland restoration[J]. Clean - Soil, Air, Water, 2018, 46(6): 1700338.1−1700338.10. doi: 10.1002/clen.201700338
    [45] Yao X, Xiao R, Ma Z, et al. Distribution and contamination assessment of heavy metals in soils from tidal flat, oil exploitation zone and restored wetland in the Yellow River Estuary[J]. Wetlands, 2016, 36(Suppl. 1): 153−165.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  432
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-20
  • 修回日期:  2019-11-14
  • 网络出版日期:  2020-03-19
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回