• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

多环芳烃(PAHs)污染土壤中接种平滑白蛋巢菌对蒿柳光合作用的影响

马晓东, 李霞, 刘俊祥, 翟飞飞, 孙振元, 韩蕾

马晓东, 李霞, 刘俊祥, 翟飞飞, 孙振元, 韩蕾. 多环芳烃(PAHs)污染土壤中接种平滑白蛋巢菌对蒿柳光合作用的影响[J]. 北京林业大学学报, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340
引用本文: 马晓东, 李霞, 刘俊祥, 翟飞飞, 孙振元, 韩蕾. 多环芳烃(PAHs)污染土壤中接种平滑白蛋巢菌对蒿柳光合作用的影响[J]. 北京林业大学学报, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340
Ma Xiaodong, Li Xia, Liu Junxiang, Zhai Feifei, Sun Zhenyuan, Han Lei. Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil[J]. Journal of Beijing Forestry University, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340
Citation: Ma Xiaodong, Li Xia, Liu Junxiang, Zhai Feifei, Sun Zhenyuan, Han Lei. Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil[J]. Journal of Beijing Forestry University, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340

多环芳烃(PAHs)污染土壤中接种平滑白蛋巢菌对蒿柳光合作用的影响

基金项目: 中央级公益性科研院所基本科研业务费专项(CAFYBB2018ZB002),国家自然科学基金项目(31700533)
详细信息
    作者简介:

    马晓东,博士生。主要研究方向:园林植物抗逆生理。Email:630502839@qq.com 地址:100091北京市海淀区香山路东小府1号中国林业科学研究院

    责任作者:

    韩蕾,研究员,博士生导师。主要研究方向:观赏植物发育生理与分子生物学。Email:hdd@caf.ac.cn 地址:同上

  • 中图分类号: S718.43;X53

Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil

  • 摘要:
    目的  虽然已有研究表明植物-白腐真菌联合修复是一种更高效的多环芳烃(PAHs)污染土壤修复策略,但由于该策略的作用机理尚不清楚,其在土壤修复实践中的应用前景仍存有疑问。光合作用不仅是植物生长发育的基础,也影响根系分泌物的释放水平,进而影响根际微生物的生长和土壤中PAHs的降解。基于此,我们研究了PAHs污染土壤中接种白腐真菌对植物光合作用的影响。
    方法  在温室中设置了PAHs污染土壤的盆栽修复实验,以蒿柳做为植物修复材料,选取光合色素含量、气体交换参数的光响应曲线和叶绿素荧光参数做为蒿柳的光合生理指标,探究了PAHs污染土壤中接种白腐真菌对蒿柳光合作用的影响。
    结果  PAHs污染土壤中接种白腐真菌对蒿柳光合色素含量、净光合速率(Pn)、蒸腾速率(Tr)、最大光化学效率(Fv/Fm)、光系统Ⅱ(PSⅡ)潜在活性(Fv/F0)等指标均有积极的促进作用,但降低了叶片的气孔导度(Gs)、胞间CO2浓度(Ci)、非光化学淬灭(NPQ)和光化学淬灭(qP)参数。不同的接种方法能改变GsTr的光响应曲线的变化趋势。此外蒿柳-白腐真菌联合修复显著提高了土壤菲(PHE)、芘(PYR)的去除率。
    结论  PAHs污染土壤中,白腐真菌能提高蒿柳的光合能力和蒸腾效率,促进土壤PHE和PYR的去除,这对揭示植物−白腐真菌联合修复的作用机理有重要意义。
    Abstract:
    Objective  Although the study has shown that plant-white rot fungi (WRF) combined remediation is a more efficient remediation strategy for PAHs-contaminated soil, the mechanism of this strategy is still unclear, and its application prospects remain questionable. Photosynthesis is the basis of plant growth and development, and it affects the release level of root exudates, which in turn alters the growth of rhizosphere microorganisms and the degradation of soil-borne PAHs. Based on this, for the first time, this study reported the effects of WRF inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil.
    Method  In this study, a pot experiment was conducted in greenhouse for bioremediation of PAHs-contaminated soils and S. viminalis was used as phytoremediation materials. Photosynthetic pigment content, light response curve of gas exchange parameters and chlorophyll fluorescence parameters were selected as the photosynthetic physiological indexes of S. viminalis and the effects of WRF inoculation on the photosynthesis of S. viminalis were reported.
    Result  Results showed that the inoculated WRF positively promoted photosynthetic pigment content, net photosynthetic rate (Pn) and transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), potential activity of PSII (Fv/F0) of S. viminalis, but reduced their stomatal conductance (Gs) and intercellular CO2 concentrations (Ci), non-photochemical quenching (NPQ) and photochemical quenching (qP). Different inoculation methods changed variation trend of light response curve of Gs and Tr. Besides, the combination of S. viminalis and WRF significantly increased the removal rate of soil-borne phenanthrene and pyrene.
    Conclusion  In this study, WRF increases the photosynthetic rate and transpiration efficiency of S. viminalis, enhances the removal of soil-borne PHE and PYR. In general, our study is significant to reveal the mechanism of plant-WRF combined remediation.
  • 图  1   P、PMR1、PMR2处理下蒿柳光合色素含量的变化

    Figure  1.   Changes in contents of photosynthetic pigments in leaves of Salix viminalis under P, PMR1 and PMR2 treatments

    图  2   P、PMR1、PMR2处理下蒿柳气体交换参数的光响应曲线

    Figure  2.   Light response curves of gas exchange parameters of S. viminalis under P, PMR1 and PMR2 treatments

    图  3   P、PMR1、PMR2处理下蒿柳叶绿素荧光参数的变化

    Figure  3.   Changes of chlorophyll fluorescence parameters of S. viminalis under P, PMR1 and PMR2 treatments

    表  1   各生物修复处理对土壤PAHs含量的影响(第30天)

    Table  1   Effects of bioremediation treatments on concentration of soil-borne PAHs (on 30th day) μg/kg

    PAHs含量
    PAHs concentration
    NA处理
    NA treatment
    M处理
    M treatment
    P处理
    P treatment
    PMR1处理
    PMR1 treatment
    PMR2处理
    PMR2 treatment
    菲 Phenanthrene 1 602.53 ± 3.27b 1 341.47 ± 28.80c 1 836.57 ± 30.51a 1 067.60 ± 30.60d 1 117.10 ± 33.78d
    芘 Pyrene 2 209.50 ± 57.24b 1 626.03 ± 26.30c 2 382.87 ± 53.72a 1 463.50 ± 46.54d 1 288.63 ± 18.74e
    苯并[a]芘 Benzo[a]pyrene 1 385.13 ± 37.76a 882.10 ± 11.85c 1 249.27 ± 35.09ab 847.50 ± 28.79c 1 061.40 ± 22.29b
    注:每个处理由3个重复计算平均值(± 标准差),不同字母表示用Tukey检验在P < 0.05的水平上有显著差异。NA为自然衰减;M为真菌强化;P为植物修复;PMR1和PMR2均为植物−微生物联合修复。Notes: means (± SD) are calculated from three replications (n=3) for each treatment. Different letters mean significantly different at P < 0.05 level applying Tukey test. NA, natural attenuation; M, mycoaugmentation; P, phytoremediation; PMR1 and PMR2, plant-microbial remediation.
    下载: 导出CSV
  • [1]

    Buonanno G, Giovinco G, Morawska L, et al. Lung cancer risk of airborne particles for Italian population[J]. Environmental Research, 2015, 142: 443−451. doi: 10.1016/j.envres.2015.07.019

    [2]

    Joner E J, Leyval C, Colpaert J V. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere[J]. Environmental Pollution, 2006, 142(1): 34−38. doi: 10.1016/j.envpol.2005.09.007

    [3]

    Agnello A C, Bagard M, Van Hullebusch E D, et al. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment, 2016, 563−564: 693−703. doi: 10.1016/j.scitotenv.2015.10.061

    [4]

    García-Sánchez M, Kosnar Z, Mercl F, et al. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil[J]. Ecotoxicology and Environmental Safety, 2018, 147: 165−174. doi: 10.1016/j.ecoenv.2017.08.012

    [5]

    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[C]. Lyons: International Agency for Research on Cancer, 2010.

    [6]

    Bamforth S M, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 723−736.

    [7]

    Ghosal D, Ghosh S, Dutta T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J/OL]. Frontiers in Microbiology, 2016, 7: 1369 (2016−11−15) [2018−08−12]. https://doi.org/10.3389/fmicb.2016.01837.

    [8]

    Lladó S, Gràcia E, Solanas A M, et al. Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil[J]. Soil Biology and Biochemistry, 2013, 67: 114−123. doi: 10.1016/j.soilbio.2013.08.010

    [9]

    Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1−3): 1−15. doi: 10.1016/j.jhazmat.2009.03.137

    [10]

    Radtke C, Cook W S, Anderson A. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils[J]. Applied Microbiology & Biotechnology, 1994, 41(2): 274−280.

    [11]

    Wiesche C I D, Martens R, Zadrazil F. The effect of interaction between white-rot fungi and indigenous microorganisms on degradation of polycyclic aromatic hydrocarbons in soil[J]. Water Air & Soil Pollution, 2003, 3(3): 73−79.

    [12]

    Borràs E, Caminal G, Sarrà M, et al. Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil[J]. Soil Biology and Biochemistry, 2010, 42(12): 2087−2093. doi: 10.1016/j.soilbio.2010.08.003

    [13]

    Gao D, Du L, Yang J, et al. A critical review of the application of white rot fungus to environmental pollution control[J]. Critical Reviews in Biotechnology, 2010, 30(1): 70−77. doi: 10.3109/07388550903427272

    [14]

    Alagić S Č, Maluckov B S, Radojičić V B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review[J]. Clean Technologies and Environmental Policy, 2014, 17(3): 597−614.

    [15]

    Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J/OL]. Science, 2019, 364(2019−05−10)[2019−07−25]. https://doi.org/10.1126/science.aau6389.

    [16]

    Marmiroli M, Pietrini F, Maestri E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319−1334. doi: 10.1093/treephys/tpr090

    [17]

    Berndes G, Fredrikson F, Börjesson P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden[J]. Agriculture, Ecosystems & Environment, 2004, 103(1): 207−223.

    [18]

    Ucisik A S, Trapp S. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(4): 619−627. doi: 10.1007/s00244-007-9065-6

    [19]

    Oleszczuk P, Baran S. Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix viminalis) cultivated on the sewage sludge-amended soil[J]. Water, Air, and Soil Pollution, 2005, 168(1−4): 91−111. doi: 10.1007/s11270-005-0884-7

    [20]

    Oleszczuk P, Godlewska P, Reible D D, et al. Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil[J]. Environmental Pollution, 2017, 227: 406−413. doi: 10.1016/j.envpol.2017.04.064

    [21]

    Bissonnette L, St-Arnaud M, Labrecque M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J]. Plant and Soil, 2010, 332(1−2): 55−67. doi: 10.1007/s11104-009-0273-x

    [22]

    Shimmen T, Nishikawa S I. Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant-impacted soil[J]. Journal of Environmental Quality, 2005, 34(5): 1755−1762. doi: 10.2134/jeq2004.0399

    [23]

    Önneby K. Phytoremediation of a highly creosote-contaminated soil by means of Salix viminalis[D]. Uppsala : Swedish University of Agricultural Sciences, 2005.

    [24]

    Hultgren J, Pizzul L, Castillo M D P. Degradation of PAH in a creosote-contaminated soil: a comparison between the effects of willows (Salix viminalis), wheat straw and a nonionic surfactant[J]. International Journal of Phytoremediation, 2009, 12(1): 54−66. doi: 10.1080/15226510902767122

    [25]

    Tornberg K, Bååth E, Olsson S. Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils[J]. Biology and Fertility of Soils, 2003, 37: 190−197. doi: 10.1007/s00374-002-0574-1

    [26]

    Reina R, Liers C, Ocampo J A, et al. Solid state fermentation of olive mill residues by wood- and dung-dwelling Agaricomycetes: effects on peroxidase production, biomass development and phenol phytotoxicity[J]. Chemosphere, 2013, 93(7): 1406−1412. doi: 10.1016/j.chemosphere.2013.07.006

    [27]

    Fellet G, Pošćić F, Licen S, et al. PAHs accumulation on leaves of six evergreen urban shrubs: a field experiment[J]. Atmospheric Pollution Research, 2016, 7(5): 915−924. doi: 10.1016/j.apr.2016.05.007

    [28]

    Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1−15. doi: 10.1104/pp.24.1.1

    [29]

    Khan Z, Roman D, Kintz T, et al. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1[J]. Environmental Science and Technology, 2014, 48(20): 12221−12228. doi: 10.1021/es503880t

    [30]

    Rajtor M, Piotrowska-Seget Z. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants[J]. Chemosphere, 2016, 162: 105−116. doi: 10.1016/j.chemosphere.2016.07.071

    [31] 宋微, 吴小芹. 外生菌根真菌对‘NL-895杨’光合作用的影响[J]. 西北植物学报, 2011, 31(7):1474−1478.

    Song W, Wu X Q. Effect of ectomycorrhizal fungi on photosynthesis of poplar NL-895[J]. Acta Bot Boreal-Occident Sin, 2011, 31(7): 1474−1478.

    [32]

    Nxele X, Klein A, Ndimba B K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants[J]. South African Journal of Botany, 2017, 108: 261−266. doi: 10.1016/j.sajb.2016.11.003

    [33] 朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):121−127.

    Zhu L J, Fu Z Y, Zhang J C, et al. Effects of mycorrhizal fungi on photosynthetic characteristics of Zelkova serrata Thunb[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 121−127.

    [34]

    Ahammed G J, Wang M M, Zhou Y H, et al. The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress[J]. Ecotoxicology and Environmental Safety, 2012, 80: 132−139. doi: 10.1016/j.ecoenv.2012.02.015

    [35]

    Bilger W, Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research, 1990, 25(3): 173−185. doi: 10.1007/BF00033159

  • 期刊类型引用(4)

    1. 赵海民. 缺磷胁迫对旱柳生长及光合作用的影响. 河北林业科技. 2023(02): 16-20 . 百度学术
    2. 张亚伟,孙海龙,郑鸿权,卫月华. 施肥对水曲柳林木叶片SPAD值的影响. 森林工程. 2020(05): 34-39+44 . 百度学术
    3. 裘珍飞,范春节,曾炳山. 缺磷培养下黑木相思苗木的生理生化响应. 西南林业大学学报(自然科学). 2020(06): 27-33 . 百度学术
    4. 范春楠,郑金萍,韩士杰,郭忠玲,王丽丽,周振钊. 吉林省中东部森林分布区水曲柳分布及其生态特征. 北京林业大学学报. 2017(04): 1-11 . 本站查看

    其他类型引用(7)

图(3)  /  表(1)
计量
  • 文章访问数:  2055
  • HTML全文浏览量:  724
  • PDF下载量:  51
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-08-20
  • 修回日期:  2019-09-09
  • 网络出版日期:  2020-04-20
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回