Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco
-
摘要:目的NAC转录因子是一类具有多种生物功能的新型转录因子,在植物抗逆响应中发挥着重要作用。本文旨在克隆并研究细叶百合LpNAC6基因在逆境胁迫下的表达模式,探究其在烟草中响应盐胁迫的功能。方法本研究采用同源克隆技术克隆得到细叶百合LpNAC6基因,利用生物信息学软件对LpNAC6基因进行分析;通过基因枪法对LpNAC6蛋白进行亚细胞定位;利用实时荧光定量PCR的方法分析LpNAC6基因在不同非生物胁迫和不同组织中的表达模式;构建植物表达载体pBI121-LpNAC6-GFP转化烟草,通过对转基因烟草进行盐胁迫处理验证LpNAC6基因的功能。结果LpNAC6基因长909 bp,编码302个氨基酸,存在一个高度保守的NAM结构域,属于NAC基因家族。LpNAC6为不稳定亲水性蛋白,无信号肽和跨膜结构域,有5个糖基化位点和20个磷酸化位点,亚细胞定位在细胞核。LpNAC6基因与黄褐棉的NAC转录因子进化关系最近。细叶百合中LpNAC6基因对ABA、干旱、低温及盐胁迫均有响应。盐胁迫下,过表达LpNAC6基因的转基因烟草其SOD、POD、CAT的活性和叶绿素、脯氨酸、可溶性蛋白的含量均显著高于野生型。结论细叶百合LpNAC6基因能够响应ABA、干旱、低温、盐胁迫等非生物胁迫,其过表达能够提高转基因烟草在盐胁迫下的代谢活力和抗氧化酶活性,从而增强烟草耐盐性。Abstract:ObjectiveNAC transcription factor is a new kind of transcription factor with many biological functions, which plays an important role in stress response. This paper aims to explore the expression pattern of LpNAC6 gene under stress and its response to salt stress in transgenic tobacco.Method
LpNAC6 gene from Lilium pumilum was cloned by homologous cloning and analyzed by bioinformatics softwares. Subcellular localization of LpNAC6 protein was performed by particle bombardment. The expression patterns of LpNAC6 gene in different abiotic stresses and different tissues were analyzed by RT-qPCR. The plant expression vector pBI121-LpNAC6-GFP was constructed, and tobacco was transformed for verifying the function of LpNAC6 gene under salt stress. ResultThe LpNAC6 gene was 909 bp in length and encoded 302 amino acids, it had a highly conserved NAM domain and belongs to the NAC gene family. LpNAC6 protein was a hydrophilic protein with no signal peptide and trans-membrane domain. It had 5 glycosylation sites, 20 phosphorylation sites and subcellular localization of LpNAC6 protein in nucleus. The evolutionary relationship between LpNAC6 gene and NAC transcription factor of Gossypium mustelinum was closest. LpNAC6 gene in L. pumilum responded to ABA, drought, low temperature and salt stress. Under salt stress, the activity of SOD, POD, CAT and the contents of chlorophyll, proline and soluble protein in transgenic tobacco overexpressing LpNAC6 gene were significantly higher than those in wild-type.ConclusionLpNAC6 gene of L. pumilum can respond to ABA, drought, low temperature and salt stress. Its overexpression can increase the metabolic activity and antioxidant enzyme activity of transgenic tobacco under salt stress, thus enhancing the salt tolerance of tobacco.-
Keywords:
- Lilium pumilum /
- NAC transcription factor /
- LpNAC6 /
- transgenic tobacco /
- salt stress
-
森林是一个国家的重要资源,在防治水土流失、改善生态环境方面发挥着重要作用,具有良好的生态效益和社会效益[1]。但是,一直以来森林不断遭受着病虫害的侵扰,大量的农药被用来防治病虫害的发生。在防治的同时,大量农药喷洒在林地上,部分农药残留渗入地下,经由河流汇入湖泊,不可避免对环境水体造成一定污染[2]。
拟除虫菊酯是一类广泛使用的杀虫剂,是衍生自菊花和植物花的除虫菊酯的合成衍生物[3]。它们通常被大量用于林业、农业等领域[4]。据报道,在中国,每年消耗3 700多吨拟除虫菊酯类农药,用于害虫防治[5]。大量拟除虫菊酯的使用会导致生态环境的污染,同时,如果人体长期过量接触拟除虫菊酯,会产生严重的健康问题,引发包括恶心、呕吐、呼吸抑制、精神变化、急性肾损伤等疾病症状[6]。因此,有必要对环境水体中的拟除虫菊酯进行检测。
由于样品的复杂性和低浓度性,需要进行样品预处理才能够进行检测。传统的萃取方法有液液萃取(LLE)[7]、索氏提取(Soxhlet extraction)[8]、固相萃取(SPE)[9]等。液液萃取易于使用,无需使用复杂的仪器执行。然而,高毒性有机溶剂的大量消耗和提取分析物的低选择性限制了液液萃取的使用。与液液萃取相比,固相萃取消耗较少量的有机溶剂,但相对昂贵且耗时[10]。因此,近年来的样本前处理技术不断向绿色化、微型化和简便化方向发展。
分散液液微萃取(DLLME)是常用的农药残留检测方法,具有操作简单、快速、成本低等优点。该方法由Rezaee等[11]于2006年提出来,主要包括两个步骤:萃取剂分散和回收。传统分散液液微萃取需要采用有机分散剂进行分散,既消耗了有机溶剂,又降低了分析物的分配系数。近年来不需要有机分散剂的辅助分散方法逐渐被开发出来,丰富了分散液液微萃取技术。具体分散技术包括手动摇晃[12]、涡旋[13]、超声[14]、微波[15]等。其中,手动摇晃因为重现性差而逐渐被其他方式代替,而其他几种方式都需要使用仪器进行操作,难以现场进行。2014年,Lasade-Aragones等人首次引入了泡腾辅助分散液液微萃取(EA-DLLME),它是通过酸和碳酸盐或碳酸氢盐发生泡腾反应,产生二氧化碳将萃取剂分散[16]。因其不受超声、涡旋等仪器限制,具有现场处理的可能,且具有环境副作用小的优点,越来越受到欢迎[17]。
最近,可转换亲水性溶剂(SHS)已被用作液相微萃取中的萃取剂[18]。中链脂肪酸被认为是可转换亲水性溶剂[19],其机理是通过调节pH值实现可溶和不溶之间的转化[20]。而且,中链脂肪酸的钠盐和泡腾片都是可溶性固体粉末,泡腾反应能够促进可转换亲水性溶剂的分散和溶解,同时,泡腾片中过量的酸可以促使萃取剂从可溶性转变为不溶性,从而完成萃取过程。因此,将可转换亲水性溶剂与泡腾片结合非常利于微萃取过程的完成[17]。
萃取剂相的分离是液相微萃取技术的重要步骤,离心是常用的相分离方法,但是离心步骤涉及到离心机的使用,而大型仪器的存在使得前处理过程难以在现场操作[21]。基于此问题,研究者开发出多种现场处理方法。磁性纳米粒子(MNPs)分散在溶液中吸附萃取剂,借助于磁铁吸附作用实现汇聚,最终洗脱得到萃取剂,整个过程不需要使用大型仪器,方便现场操作[16]。另外,利用低密度溶剂会漂浮在溶液上层的性质,刘学科等使用1-十一烷醇作为萃取剂,采用移液管吸收上层液体的方法以实现现场处理[22]。最近,采用过滤方式进行相分离的方法也可以很好地在现场进行[23]。本课题组已制作具有良好亲油疏水性的过滤柱,采用过滤方式实现萃取剂的回收[24]。目前还没有研究采用泡腾片分散和过滤分离相结合的方法,来进行样品的现场前处理。
因此,在现场处理的基础上,本研究开发了一种基于可转换亲水性溶剂的泡腾片辅助分散液液微萃取结合气相色谱法,测定环境水中的拟除虫菊酯类农药。该方法按照一定配方压制泡腾片,用于萃取剂的分散,采用过滤方式进行相分离,成功完成了前处理步骤和气相色谱仪检测。整个提取过程不依赖任何特殊仪器,这使得该方法得以成功地应用于现场处理。目前,该方法已成功应用于北京市环境水的检测。
1. 材料与方法
1.1 试剂和材料
5种拟除虫菊酯类农药标准品(联苯菊酯、氟氰菊酯、氯氰菊酯、氰戊菊酯、溴氰菊酯)购自坛墨质量检测技术有限公司(江苏,中国),纯度均 > 98%。己酸钠(99%)、壬酸钠(98%)购自百灵威公司(北京,中国)。柠檬酸、磷酸二氢钠、碳酸氢钠、碳酸钠均购自麦克林公司(上海,中国)。SPE色谱柱购自安捷伦科技公司(美国)。聚丙烯吸油棉和聚丙烯无纺布购自苏州伊路发环保技术有限公司(江苏,中国)。
1.2 仪器与设备
安捷伦7890B型气相色谱仪(美国安捷伦科技公司,美国),配备电子捕获检测器;DB-5 MS型毛细管柱(30 m × 0.32 mm × 0.25 µm);手动液压压片机购自鹤壁立信仪器有限公司(河南,中国);Milli-Q超纯水系统(Millipore,美国);万分之一天平;微量进样针;一次性注射器。
1.3 标准储备溶液和实际样品
使用色谱级乙腈,分别配制5种拟除虫菊酯标准品的标准溶液(2 000 μg/mL),并在4 ℃的冰箱中储存。将5种标准溶液等体积混合配制混合标准溶液。将混合标准溶液稀释至不同浓度,得到工作标准溶液。自来水、水库水和河水均采集于中国北京。水样收集在玻璃瓶中,避光储存。
1.4 泡腾片压制
使用万分天平称量0.499 2 g柠檬酸、0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠和0.180 0 g己酸钠,加入到研钵中,手动研磨直至获得均匀细致的粉末。然后,将粉末放入直径12 mm模具中,使用手动液压压片机在1 MPa的压力下压制成泡腾片,取出泡腾片,干燥储存或直接使用。
1.5 自制过滤柱制备
自制过滤柱制备过程如图1所示,它由3部分组成:SPE外壳、吸油棉填料和适配器。先将1 mL SPE色谱柱裁剪至合适的高度,底部加入一个垫片;然后将吸油棉切成长条状,卷成圆柱形,填充到SPE柱中,起到过滤作用,在上部再压上一个垫片;最后将适配器插入色谱柱上方,获得自制过滤柱。
1.6 样品前处理过程
取10 mL水样品注入20 mL注射器中,注射器下端接转接头,加入已制备的泡腾片,待泡腾片完全反应、注射器中无气泡产生时,打开转接头,使用自制过滤柱过滤注射器中溶液,再使用50 mL注射器吹干自制过滤柱上残留水滴,最后使用200 μL乙腈洗脱得到分析物,进行气相色谱电子捕获检测器(GC-ECD)检测。
2. 结果与讨论
2.1 方法优化
2.1.1 萃取剂类型
萃取剂的选择朝着越来越绿色、环保、低毒等的方向发展,因此,本研究选择了两种可转换性溶剂(己酸钠和壬酸钠)进行优化,其他条件如下:脂肪酸盐的量为0.16 g,泡腾片成分包括0.499 2 g柠檬酸、0.405 6 g 磷酸二氢钠和0.218 4 g 碳酸氢钠,无盐,自制过滤柱(填料吸油棉,高度为2 cm,密度为60 mg/cm),洗脱剂乙腈200 μL。结果如图2所示,对样本进行显著性检验,P < 0.01,两组间差异极显著,而己酸钠具有更高的响应值,因此,己酸钠萃取效果更佳,用于后续的优化实验。
2.1.2 萃取剂用量
泡腾片中己酸钠的用量需要进行优化,以获得最佳的条件。在实验中,检测了不同用量己酸钠(0.16、0.18、0.20、0.22 g)对峰面积的影响,其他条件同上。如图3所示,不同萃取剂用量差异显著(P < 0.01),当萃取剂为0.16 g时,峰面积最大,随着萃取剂用量的增加,峰面积逐渐减小。因此,最终选择0.16 g己酸钠进行后续优化实验。
2.1.3 泡腾片的类型
泡腾反应对萃取剂的分散和萃取具有重要影响。不同类型的泡腾片将发生不同时长和强度的泡腾反应,从而影响最终的萃取效果。在实验中,我们选择了4种物质(柠檬酸,磷酸二氢钠,碳酸氢钠和碳酸钠)进行测定。4种方案如表1所示。泡腾片中的酸不仅与碳酸盐发生泡腾反应,而且与萃取剂反应,使萃取剂从可溶状态转变为不溶状态,完成萃取。基于该过程对酸的双重要求,具有较强酸性的柠檬酸成为最佳选择。实验中同时发现,柠檬酸酸性较强,反应迅速,反应时间过短,导致萃取剂分散不充分,萃取效果受到影响,所以,加入弱酸磷酸二氢钠作为调节剂,延缓反应的速度,延长反应的时间,使萃取剂在分散、转化和萃取过程更为充分。根据图4所示,P < 0.01表明差异极显著,综合A、B、C、D四个方案显示,方案A的反应速度和反应强度更为优化,萃取效果更佳。因此,泡腾片制备选择方案A(柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠)。
表 1 不同泡腾片成分方案Table 1. Scheme of different effervescent tablets编号 No. 方案 Scheme 反应时间 Reaction time/s A 柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠
Citric acid + sodium dihydrogen phosphate + sodium bicarbonate + sodium hexanoate60 B 柠檬酸 + 磷酸二氢钠 + 碳酸钠 + 己酸钠
Citric acid + sodium dihydrogen phosphate + sodium carbonate + sodium hexanoate80 C 柠檬酸 + 碳酸氢钠 + 己酸钠 Citric acid + sodium bicarbonate + sodium hexanoate 15 D 柠檬酸 + 碳酸钠 + 己酸钠 Citric acid + sodium carbonate + sodium hexanoate 30 2.1.4 酸碱比
萃取剂己酸钠很容易受到pH值的影响,因此有必要对泡腾片的酸碱比进行优化。根据酸碱电离理论,柠檬酸可产生3个H+,磷酸二氢钠可产生1个H+,碳酸氢钠和己酸钠可产生一个OH−。因此,根据不同的酸碱比(6∶2∶1∶1,8∶2∶1∶1,10∶2∶1∶1)进行优化。结果如图5所示,进行显著性分析,P > 0.05,差异性不显著,表明pH的变化能够对峰面积产生影响,但是目前范围变化影响不大。据图可知,在柠檬酸∶磷酸二氢钠∶碳酸氢钠∶己酸钠的比例为8∶2∶1∶1的情况下,可获得最佳峰面积。因此,泡腾片质量为0.499 2 g柠檬酸,0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠、0.18 g己酸钠,进行下一步实验。
2.1.5 盐效应的影响
通过向水样中添加不同量的盐(0 ~ 10%, w/w)来调节盐的质量分数,从而评估盐效应带来的影响。如图6所示,随着盐质量分数的增加,不同农药的响应幅度显示出差异,联苯菊酯和氰戊菊酯P < 0.01,差异极显著,受盐效应影响较大,抑制作用明显;而氟氯氰菊酯、氰戊菊酯、溴氰菊酯P > 0.05,差异不显著,变化不大。总体上盐质量分数的增加起到了抑制作用。因此,最终选择零添加进行后续研究。
2.1.6 自制过滤柱填料类型
自制过滤柱是进行相分离的重要设备。而自制过滤柱的填料是影响分离效果的重要因素。吸油棉和无纺布被选作自制过滤柱的填料,二者都是聚丙烯材料,能够在过滤过程中吸附萃取剂,完成相分离,但是在亲脂性和疏水性的性能上存在差异,因此有必要对其进行优化。结果如图7所示,显著性检验P < 0.01,表明不同填料类型差异极显著,吸油棉效果显著高于无纺布。因此,吸油棉用于后续实验。
2.1.7 自制过滤柱填料的高度和密度
自制过滤柱填料的高度和密度会影响过滤性能。如果过滤柱填料过高,则需要消耗更多的洗脱剂,降低响应值;如果过滤柱填料过低,则容易无法完全保留过滤溶液中的萃取剂,影响回收效率,所以,选择合适的高度对于该方法具有重要影响。因此,研究了1.5、2.0和2.5 cm高度对峰面积的影响,结果如图8所示,显著性检验P > 0.05,差异不显著,考虑到在2 cm高度时,除联苯菊酯外,其他几种农药微弱高于其他条件。因此,选择了2.0 cm高度的自制过滤柱进行进一步研究。
如果过滤材料太紧,则会影响过滤速度;如果过滤材料太稀疏,萃取剂将很容易被冲洗掉。所以,有必要对过滤柱的密度进行优化。因此,在2.0 cm的高度条件下,研究了不同密度的填料(40、50、60、70 mg/cm)对峰面积的影响,结果如图9所示,显著性检验显示联苯菊酯、氰戊菊酯和溴氰菊酯P < 0.05,差异显著,峰面积呈现先增后减的趋势,在60 mg/cm处获得最佳效果。因此,最佳密度选择为60 mg/cm。
2.2 方法评价
为了评价所建立方法的性能,评估了包括线性范围、线性方程、相关系数、检测限、定量限、相对标准偏差和富集倍数在内的参数。在优化条件下进行研究,结果如表2所示,在5 ~ 500 μg/L的线性范围内,相关系数均 ≥ 0.999 0,线性关系良好。检出限和定量限分别为0.22 ~ 1.88 μg/L和0.75 ~ 6.25 μg/L。日内标准差和日间标准差分别低于6.1%和5.4%。富集倍数在65 ~ 108范围内。
表 2 5种菊酯的线性方程、相关系数及检出限Table 2. Linear equation, correlation coefficients and detection limits of five pyrethroids化合物
Compounds线性范围
Range of
linearity/
(μg·L−1)线性方程
Linearity
equation相关系数
Correlation
coefficient检出限
Limit of
detection/
(μg·L−1)定量限
Limit of
quantitation/
(μg·L−1)日内标准差
Intra-day
SD/%日间标准差
Inter-day
SD/%富集倍数
Enrichment
factor联苯菊酯 Bifenthrin 5 ~ 500 y = 94.8x − 217.5 0.999 0 0.22 0.75 6.1 0.8 108 氟氯氰菊酯 Cyfluthrin 5 ~ 500 y = 24.916x + 67.895 0.999 4 1.03 3.45 2.2 5.4 71 氯氰菊酯 Cypermethrin 5 ~ 500 y = 13.341x + 42.416 0.999 6 1.65 5.49 3.0 4.6 65 氰戊菊酯 Fenvalerate 5 ~ 500 y = 68.004x + 165.82 0.999 6 0.39 1.29 4.3 2.9 66 溴氰菊酯 Deltamethrin 5 ~ 500 y = 21.184x − 51.306 0.999 9 1.88 6.25 1.9 1.3 93 2.3 实际样品分析
为了进一步验证所开发方法的可靠性和适用性,本研究分析了包括自来水、库水、水在内的3种实际样品。添加质量浓度为0、50、200 μg/L,样品回收率总结于表3,空白样品与加标样品色谱图见于图10。结果显示:所有空白实际水样均未检测到农药残留,表明采样地水质较为纯净。加标样品的回收率为88.2% ~ 113.0%,相对标准偏差在4.5% ~ 11.8%之间,均在可接受范围。因此,该方法可以成功准确地检测环境中水样。
表 3 使用建立的方法对3种实际水样进行分析Table 3. Analytical performance of the proposed method for three real samples化合物
Compounds自来水 Tap water 水库水 Reservoir water 河流水 River water 添加水平
Spiked level/(μg·L−1)回收率
Relative recovery/%标准差
SD/%回收率
Relative recovery/%标准差
SD/%回收率
Relative recovery/%标准差
SD/%联苯菊酯
Bifenthrin50 92.3 8.3 94.5 4.5 105.1 6.8 200 113.0 5.7 97.8 8.1 107.6 10.0 氟氯氰菊酯
Cyfluthrin50 106.2 6.1 104.8 7.3 104.6 7.9 200 109.7 7.4 103.2 8.3 99.5 7.5 氯氰菊酯
Cypermethrin50 98.2 7.5 96.4 7.9 97.5 9.3 200 108.5 5.7 99.1 9.2 100.2 8.9 氰戊菊酯
Fenvalerate50 96.8 6.9 96.5 6.1 104.4 6.4 200 110.8 5.0 93.7 8.6 102.7 8.2 溴氰菊酯
Deltamethrin50 88.2 8.6 88.7 5.2 97.1 8.8 200 101.6 6.0 89.6 10.2 98.8 11.8 2.4 方法比较
为了体现现场分散液液微萃取结合气相色谱法(On-stie DLLME-GC)的优越性,该方法与已报道方法的几个重要参数进行了比较。如表4所示,研究发现该方法具有良好的线性范围、较低的检出限。同时,相比于前处理过程,固相萃取、分散固相萃取等方法都需要使用耗电设备,主要体现在在萃取剂的分散[25-26]和萃取剂的分离[27]两个步骤,Li等[25]使用磁力搅拌仪进行Fe3O4@TiO2的分散,Mi等[26]采用离心吸取上层液的方法进行相分离。与之前前处理方法相比,该方法成功地实现了整个样品前处理过程不使用耗电设备,从而实现了现场样品处理,大大减少大量样品运输带来的不便,减少了人力和物力的消耗。因此,On-site DLLME-GC-ECD被证明是一种经济实用、简单方便的方法,能够用于现场处理环境水样中的5种拟除虫菊酯类杀虫剂。
表 4 与其他方法在水中拟除虫菊酯测定中的比较Table 4. Comparison of the proposed method and some other methods for pyrethroids determination in water方法
Method检测器
Detector萃取剂
Extraction
solvent线性范围
Range of linearity检出限
Limit of
detection/
(μg·L−1)是/否使用耗电设备
Yes/no use of
power-consuming
equipment是/否现场
Yes/no on-site参考文献
Reference固相萃取
Solid phase extraction高效液相色谱仪
HPLCFe3O4@TiO2 25 ~ 2 500 2.8 ~ 6.1 是 Yes 否 No [25] 分散固相萃取
Dispersive solid
phase extraction高效液相色谱仪
HPLCβ-环糊精连接的
超支化聚合物
CD-HBP5 ~ 500
10 ~ 5000.96 ~ 2.06 是 Yes 否 No [26] 固相萃取
Solid phase extraction气相色谱仪
GCFe3O4-NH2@MIL-101(Cr) 0.002 ~ 2.000 0.005 ~ 0.009 是 Yes 否 No [27] 现场分散液液微萃取
On-site DLLME气相色谱仪
GC己酸钠
Sodium hexanoate5 ~ 500 0.22 ~ 1.88 否 No 是 Yes 本工作
This work3. 结 论
本研究发了一种基于现场处理的分散液液微萃取气相色谱法测定环境水中的5种拟除虫菊酯类杀虫剂。该方法采用泡腾片辅助分散方式,选择可切换亲水性溶剂作为萃取剂。影响此方法的相关因素进行了优化,在最佳条件下,样品的加标回收率为88.2% ~ 113.0%,相对标准偏差为4.5% ~ 11.8%,检出限在0.22 ~ 1.88 μg/L之间,定量限在0.75 ~ 6.25 μg/L之间。富集倍数为65 ~ 108。该方法具有毒性低,污染小,环境友好的优点,同时在萃取剂分散和回收过程不需要用电设备,操作简便,方便现场操作,减少运输带来的不便。最后,该方法成功检测了3种环境水样,具有应用于现场处理的广阔潜力。
-
图 2 LpNAC6的亲水/疏水性及信号肽分析
A. LpNAC6的亲水/疏水性分析;B. LpNAC6的信号肽分析。C-score. 剪切位置分值;S-score. 信号肽分值;Y-score. 综合剪切位置分值。A,hydrophilicity / hydrophobicity analysis of LpNAC6;B,signal peptide analysis of LpNAC6. C-score,the score of the original cut site;S-score,the score of signal peptide;Y-score,the score of the integrated cut site.
Figure 2. Hydrophilicity / hydrophobicity and signal peptide analysis of LpNAC6
图 4 细叶百合LpNAC6与其他物种NAC蛋白的多序列比对
TYJ30417.1. 黄褐棉;XP_017700768.1. 海枣;OWM84829.1. 石榴;XP_020261897.1. 石刁柏;XP_010907545.3. 油棕;RZS25466.1. 阿比西尼亚红脉蕉;THU44006.1. 野蕉;XP_015940149.1. 蔓花生;XP_024963988.1. 洋蓟;XP_020083042.1. 凤梨;XP_020703744.1. 铁皮石斛。TYJ30417.1,Gossypium mustelinum;XP_017700768.1,Phoenix dactylifera;OWM84829.1,Punica granatum;XP_020261897.1,Asparagus officinalis;XP_010907545.3,Elaeis guineensis;RZS25466.1,Ensete ventricosum;THU44006.1,Musa balbisiana;XP_015940149.1,Arachis duranensis;XP_024963988.1,Cynara cardunculus var. scolymus;XP_020083042.1,Ananas comosus;XP_020703744.1,Dendrobium catenatum.
Figure 4. Multiple alignment of LpNAC6 for L. pumilum with the protein sequences of NAC from other plant species
图 5 LpNAC6蛋白的系统进化树分析
细叶百合. Lilium pumilum;海枣. Phoenix dactylifera;油棕. Elaeis guineensis;凤梨. Ananas comosus;阿比西尼亚红脉蕉. Ensete ventricosum;野蕉. Musa balbisiana;铁皮石斛. Dendrobium catenatum;黄褐棉. Gossypium mustelinum;石刁柏. Asparagus officinalis;石榴. Punica granatum;蔓花生. Arachis duranensis;洋蓟. Cynara cardunculus var. scolymus
Figure 5. Phylogenetic tree analysis of LpNAC6 protein
图 6 LpNAC6基因在不同组织和非生物胁迫下的表达模式
A. 150 μmol/L ABA胁迫;B. 20% PEG6000胁迫;C. 2 ℃低温胁迫;D. 200 mmol/L NaCl胁迫。不同小写字母表示在P < 0.05水平上差异显著。下同。A, 150 μmol/L ABA stress;B, 20% PEG6000 stress;C, 2 ℃ low temperature stress;D, 200 mmol/L NaCl stress. Different lowercase letters mean significant difference at P < 0.05 level. The same below.
Figure 6. Expression patterns of LpNAC6 in different tissues and under different abiotic stresses
图 8 转基因烟草T0代植株PCR鉴定
A. 鉴定转基因烟草T0代植株DNA;B. 鉴定转基因烟草T0代植株cDNA。M. DL2000 Marker;1. 水对照;2. 野生型对照;3 ~ 8. 转基因阳性植株;9. pBI121- LpNAC6-GFP农杆菌菌液对照。A,DNA identification of transgenic tobacco T0 generation plants;B,cDNA identification of transgenic tobacco T0 generation plants. M,DL2000 Marker;1,water control;2,wide-type control;3−8,positive transgenic plants;9,pBI121- LpNAC6-GFP Agrobacterium solution control.
Figure 8. Identification of transgenic tobacco T0 generation plants by PCR
图 9 转基因烟草种子和幼苗的耐盐性分析
A. WT、Tr-2和Tr-3烟草种子分布示意图;B. WT、Tr-2和Tr-3烟草种子在1/2MS培养基中的萌发情况;C. WT、Tr-2和Tr-3烟草种子在含150 mmol/L NaCl的1/2MS培养基中的萌发情况;D. WT、Tr-2和Tr-3烟草在150 mmol/L NaCl胁迫下的生根情况;E. 野生型烟草和转基因烟草种子在150 mmol/L NaCl胁迫下的发芽率;F. 野生型烟草和转基因烟草幼苗在150 mmol/L NaCl胁迫下的相对根长。A,distribution of WT,Tr-2 and Tr-3 tobacco seeds;B,germination condition of WT,Tr-2 and Tr-3 tobacco seeds in 1/2MS medium;C,germination condition of WT,Tr-2 and Tr-3 tobacco seeds in 1/2MS medium containing 150 mmol/L NaCl;D,rooting condition of WT,Tr-2 and Tr-3 tobacco under 150 mmol/L NaCl stress;E,germination rate of wild type tobacco and transgenic tobacco seeds under 150 mmol/L NaCl stress;F,relative root length of wild type tobacco and transgenic tobacco seedlings under 150 mmol/L NaCl stress.
Figure 9. Analysis of salt tolerance of transgenic tobacco seeds and seedlings
-
[1] Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105−2110. doi: 10.1126/science.290.5499.2105
[2] Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1−2): 30−44. doi: 10.1016/j.gene.2010.06.008
[3] Pinheiro G L, Marques C S, Costa M D B L, et al. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 2009, 444(1−2): 10−23. doi: 10.1016/j.gene.2009.05.012
[4] Rushton P J, Bokowiec M T, Laudeman T W, et al. TOBFAC: the database of tobacco transcription factors[J/OL]. BMC Bioinformatics, 2008, 9(1): 53 [2019−07−15]. https://doi.org/10.1186/1471-2105-9-53.
[5] Zhang J, Huang G Q, Zou D, et al. The cotton(Gossypium hirsutum)NAC transcription factor(FSN1)as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers[J]. New Phytologist, 2018, 217(2): 625−640. doi: 10.1111/nph.14864
[6] Huang Q J, Wang Y, Li B, et al. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis[J/OL]. BMC Plant Biology, 2015, 15(1): 268 [2019−07−15]. https://doi.org/10.1186/s12870-015-0644-9.
[7] Tak H, Negi S, Ganapathi T R. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance[J]. Protoplasma, 2017, 254(2): 803−816. doi: 10.1007/s00709-016-0991-x
[8] Nakashima K, Tran L S P, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal, 2007, 51(4): 617−630. doi: 10.1111/j.1365-313X.2007.03168.x
[9] 侯佳, 李发虎, 李龙梅, 等. 野生山丹组织培养体系优化与品种改良研究进展[J]. 中国园艺文摘, 2017, 33(10):67−69, 76. doi: 10.3969/j.issn.1672-0873.2017.10.025 Hou J, Li F H, Li L M, et al. Advances in tissue culture techniques optimization and variety improvement of wild Lilium pumilum DC.[J]. Chinese Horticulture Abstracts, 2017, 33(10): 67−69, 76. doi: 10.3969/j.issn.1672-0873.2017.10.025
[10] De Clercq I, Vermeirssen V, Van Aken O, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. The Plant Cell, 2013, 25(9): 3472−3490. doi: 10.1105/tpc.113.117168
[11] 刘锴栋, 袁长春, 黎海利, 等. 番荔枝GA20氧化酶基因的克隆与表达分析[J]. 植物生理学报, 2015, 51(10):1697−1705. Liu K D, Yuan C C, Li H L, et al. Cloning and expression analysis of GA20-Oxidase gene from sugar apple (Annona squamosa)[J]. Plant Physiology Journal, 2015, 51(10): 1697−1705.
[12] Kamiuchi Y, Yamamoto K, Furutani M, et al. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development[J/OL]. Frontiers in Plant Science, 2014, 5: 165 [2019−07−15]. https://doi.org/10.3389/fpls.2014.00165.
[13] 康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树NAC转录因子HbNAC1基因的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(34):1−11. doi: 10.3969/j.issn.1000-6850.2012.34.001 Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of a NAC transcription factor HbNAC1 from Hevea brasiliensis[J]. Chinese Agricultural Science Bulletin, 2012, 28(34): 1−11. doi: 10.3969/j.issn.1000-6850.2012.34.001
[14] Furuta K M, Yadav S R, Lehesranta S, et al. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation[J]. Science, 2014, 345: 933−937. doi: 10.1126/science.1253736
[15] Kim S G, Lee S, Seo P J, et al. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice[J]. Genomics, 2010, 95(1): 56−65. doi: 10.1016/j.ygeno.2009.09.003
[16] Kim S G, Lee A K, Yoon H K, et al. A mem-brane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(1): 77−88. doi: 10.1111/j.1365-313X.2008.03493.x
[17] 樊金娟, 阮燕晔. 植物生理学实验教程[M]. 北京: 中国农业大学出版社, 2015. Fan J J, Ruan Y Y. Experimental course of plant physiology[M]. Beijing: China Agricultural University Press, 2015.
[18] 刘萍, 李明军. 植物生理学实验[M]. 北京: 科学出版社, 2016. Liu P, Li M J. Experiments of plant physiology[M]. Beijing: Science Press, 2016.
[19] 华智锐, 李小玲. 水杨酸浸种对小麦品种‘商麦5226’盐胁迫的缓解效应[J]. 西北农业学报, 2015, 24(9):29−35. doi: 10.7606/j.issn.1004-1389.2015.09.005 Hua Z R, Li X L. Mitigative effect of seed-soaking by salicylic acid on wheatcultiver of ‘Shangmai 5226’ under salt stress[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(9): 29−35. doi: 10.7606/j.issn.1004-1389.2015.09.005
[20] Zhong R Q, Lee C H, Ye Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Journal of Plant Physiology, 2010, 152(2): 1044−1055. doi: 10.1104/pp.109.148270
[21] Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79−87. doi: 10.1016/j.tplants.2004.12.010
[22] Webster D E, Thomas M C. Post-translational modification of plant-made foreign proteins, glycosylation and beyond[J]. Biotech Advances, 2011, 30(2): 410−418.
[23] 段奥其, 冯凯, 刘洁霞, 等. 芹菜NAC转录因子基因AgNAC1的克隆及其对非生物胁迫的响应[J]. 园艺学报, 2018, 45(6):1125−1135. Duan A Q, Feng K, Liu J X, et al. Cloning and response to abiotic stress of NAC transcription gene AgNAC1 in Apium graveolens[J]. Acta Horticulturae Sinica, 2018, 45(6): 1125−1135.
[24] 樊蕾, 高志英. 番茄SlNAC71基因克隆及表达分析[J]. 分子植物育种, 2018, 16(13):4172−4175. Fan L, Gao Z Y. Cloning and expression analysis of SlNAC71 gene in tomato[J]. Molecular Plant Breeding, 2018, 16(13): 4172−4175.
[25] 张晓菲, 路信, 段卉, 等. 胡杨NAC转录因子PeNAC045基因的克隆及功能分析[J]. 北京林业大学学报, 2015, 37(6):1−10. Zhang X F, Lu X, Duan H, et al. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1−10.
[26] 袁义杭, 张鹤华, 游韩莉, 等. 青杄PwNAC42基因的克隆及表达模式分析[J]. 生物技术通报, 2018, 34(3):113−120. Yuan Y H, Zhang H H, You H L, et al. Cloning and expression analysis of PwNAC42 in Picea wilsonii[J]. Biotechnology Bulletin, 2018, 34(3): 113−120.
[27] 王燕飞, 红格日其其格, 王光霞, 等. 中间锦鸡儿CiATAF1基因的亚细胞定位及表达分析[J]. 华北农学报, 2019, 34(3):23−30. doi: 10.7668/hbnxb.201751243 Wang Y F, Honggeriqiqige, Wang G X, et al. Subcellular localization and expression analysis of CiATAF1 gene in Caragana intermedia[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3): 23−30. doi: 10.7668/hbnxb.201751243
[28] Zheng X N, Chen B, Lu G J, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications, 2008, 379(4): 985−989.
[29] 姜红岩, 张蕊, 滕珂, 等. 日本结缕草ZjNAC2基因的克隆、亚细胞定位及表达分析[J]. 草业科学, 2019, 36(6):1553−1562. Jiang H Y, Zhang R, Teng K, et al. Molecular cloning, subcellular localization analysis, and expression characterization of ZjNAC2 from Zoysia japonica[J]. Pratacultural Science, 2019, 36(6): 1553−1562.
[30] Zhao J H, Li M Z, Gu D C, et al. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses[J]. Biochemical and Biophysica Research Communications, 2016, 470(2): 439−444. doi: 10.1016/j.bbrc.2016.01.016
[31] Yong Y B, Zhang Y, Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J/OL]. International Journal of Molecular Sciences, 2019, 20(13): 3225 [2019−07−15]. https://doi.org/10.3390/ijms20133225.
[32] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
[33] Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 2017, 137: 64−70. doi: 10.1016/j.ecoenv.2016.11.029
[34] Zhao X, Yang X W, Pei S Q, et al. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis[J]. Gene, 2016, 586(1): 158−169. doi: 10.1016/j.gene.2016.04.028
[35] Ma X J, Zhang B, Liu C J, et al. Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance[J]. Plant Science, 2017, 265: 1−11. doi: 10.1016/j.plantsci.2017.09.008
[36] Yu X W, Liu Y M, Wang S, et al. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 613−627. doi: 10.1007/s00299-015-1907-5
-
期刊类型引用(4)
1. 李桂,曹文华,马建业,马波,王阳修,王秋月. 小麦秸秆覆盖量对坡面流水动力学特性影响. 农业工程学报. 2023(01): 108-116 . 百度学术
2. 安妙颖,韩玉国,王金满,徐磊,王秀茹,庞丹波. 黄土丘陵区坡面薄层水流动力学特性及其对土壤侵蚀的影响. 中国农业大学学报. 2020(02): 142-150 . 百度学术
3. 李志刚,梁心蓝,黄洪粮,李和谋,赵小东. 坡耕地地表起伏对坡面漫流的影响. 水土保持学报. 2020(02): 71-77+85 . 百度学术
4. 杨坪坪,李瑞,盘礼东,王云琦,黄凯,张琳卿. 地表粗糙度及植被盖度对坡面流曼宁阻力系数的影响. 农业工程学报. 2020(06): 106-114 . 百度学术
其他类型引用(27)