高级检索

    机器学习算法在森林生长收获预估中的应用

    Applications of machine learning algorithms in forest growth and yield prediction

    • 摘要: 森林生长收获预估是森林经理学的一个重要方向,采用模型技术进行森林生长收获估计是森林经营决策的重要前提。传统的统计模型如线性及非线性回归模型、混合效应模型、分位数回归、度量误差模型等统计方法已被广泛应用于研究林木生长,但这些统计方法在应用时常常需满足一定的统计假设前提,诸如数据独立、正态分布和等方差等。由于森林生长数据的连续观测和层次性,上述假设通常难以满足。近年来随着人工智能技术的发展,机器学习算法为森林生长收获预估提供了一种新的手段,它具有对输入数据的分布形式没有假设前提、能够揭示数据中的隐含结构、预测结果好等优点,但在森林生长收获预估中的应用仍十分有限。文章对分类和回归树、多元自适应样条、bagging回归、增强回归树、随机森林、人工神经网络、支持向量机、K最近邻等方法在森林生长收获预估中的应用、软件及调参等进行了综述,讨论了机器学习方法的优势和挑战,认为机器学习方法在森林生长收获预估方面有很大的潜力,必将得到广泛应用,并和传统统计模型相结合成为生长收获模型发展的一种趋势。

       

      Abstract: Forest growth and yield prediction is an important field of forest management science, and modelling forest growth and yield is key to forest management decision-making. The traditional statistical growth models such as linear and nonlinear regression model, mixed-effect model, quantile regression, variable-in-error model are often applied under certain statistical assumptions, such as the data are independent, normally distributed and homoscedastic. The above requirements are usually difficult to be met for forest data with repeated observation and hierarchy. With the development of AI techniques, machine learning provides a new way for forest growth modeling, with the advantages of no requirements on data distribution, extracting deep knowledge from the data, and high accuracy. The applications in forest growth and yield are still less than other domains. We reviewed the main machine learning algorithms including classification and regression tree (CART), multivariate adaptive regression splines (MARS), bagging regression, boosted regression tree (BRT), random forest (RF), artificial neural networks (ANN), k-nearest neighbors (k-NN), and support vector machine (SVM), parameter tuning, software, advantages and challenge. We conclude that machine learning would be widely applied with great potential and its combination with traditional statistical methods would become a trend in forest growth and yield prediction.

       

    /

    返回文章
    返回