高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

春季冻融期寒温带主要森林类型土壤氮矿化特征

王飞 满秀玲 段北星

王飞, 满秀玲, 段北星. 春季冻融期寒温带主要森林类型土壤氮矿化特征[J]. 北京林业大学学报, 2020, 42(3): 14-23. doi: 10.12171/j.1000-1522.20190359
引用本文: 王飞, 满秀玲, 段北星. 春季冻融期寒温带主要森林类型土壤氮矿化特征[J]. 北京林业大学学报, 2020, 42(3): 14-23. doi: 10.12171/j.1000-1522.20190359
Wang Fei, Man Xiuling, Duan Beixing. Characteristics of soil nitrogen mineralization in the main forest types in cold temperate zone during the spring freezing-thawing period[J]. Journal of Beijing Forestry University, 2020, 42(3): 14-23. doi: 10.12171/j.1000-1522.20190359
Citation: Wang Fei, Man Xiuling, Duan Beixing. Characteristics of soil nitrogen mineralization in the main forest types in cold temperate zone during the spring freezing-thawing period[J]. Journal of Beijing Forestry University, 2020, 42(3): 14-23. doi: 10.12171/j.1000-1522.20190359

春季冻融期寒温带主要森林类型土壤氮矿化特征

doi: 10.12171/j.1000-1522.20190359
基金项目: 国家自然科学基金项目(31770488)
详细信息
    作者简介:

    王飞。主要研究方向:森林土壤。Email:835325999@qq.com  地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    满秀玲,教授,博士生导师。主要研究方向:水土保持。Email:mannefu@163.com  地址:同上

  • 中图分类号: S714.8

Characteristics of soil nitrogen mineralization in the main forest types in cold temperate zone during the spring freezing-thawing period

  • 摘要: 目的春季冻融期是连接冬季与生长季的关键时期,期间强烈的温度变化可能深刻影响土壤生态过程。研究春季土壤冻融过程对氮素矿化的影响,揭示我国寒温带地区冻融对土壤氮矿化的影响规律,为寒温带地区森林生态系统氮素研究和森林生产力评价提供理论依据。方法本研究以寒温带地区3种典型森林(兴安落叶松林、樟子松林、白桦林)为研究对象,利用树脂芯法测定和分析了在春季解冻期间土壤无机氮(NH4+-N、NO3-N)以及净氨化速率、净硝化速率、氮矿化速率的动态变化。结果寒温带春季冻融期3种林型土壤无机氮含量均表现出释放特征,且在冻融末期有大幅增加趋势,但不同林型其变化规律有所不同,3种林型土壤铵态氮含量占无机氮含量的83.91% ~ 97.22%,是春季冻融期土壤无机氮的主要存在形式。冻融循环期间兴安落叶松林、樟子松林和白桦林0 ~ 10 cm土层土壤净氮矿化速率分别增加了1.86、6.18和0.25倍。10 ~ 20 cm土层土壤净氮矿化速率除兴安落叶松林有所降低外,樟子松林和白桦林土壤净氮矿化速率分别增加了4.09和2.25倍。土壤净氨化速率占土壤净氮矿化速率的73.47% ~ 96.76%,土壤氮矿化以氨化作用为主。土壤含水量是土壤有机氮矿化作用的主要影响因素。结论寒温带冻融作用有利于土壤有机氮的矿化,且阔叶林土壤氮矿化对冻融循环的响应强于针叶林。

     

  • 图  1  春季冻融期3种林型5 cm处土壤温度动态变化

    Figure  1.  Dynamic temperature changes of soil at 5 cm depth in three forest types during spring freezing and thawing period

    图  2  春季冻融期3种林型土壤含水量动态变化

    L. 兴安落叶松林; P. 樟子松林; B. 白桦林。下同。L, Larix gmelinii forest; P, Pinus sylvestris var. mongolica forest; B, Betula platyphylla forest. The same below.

    Figure  2.  Dynamic changes of soil moisture content in three forest types during spring freezing and thawing period

    图  3  春季冻融期3种林型土壤无机氮(NH4+-N、NO3-N)含量的动态变化

    大写字母表示不同林型在同一时期的差异,小写字母表示不同时期同一林型的差异。下同。Capital letters represent the differences among varied forest types for the same sampling time,while lowercase letters represent the differences at varied sampling dates for the same forest type. The same below.

    Figure  3.  Dynamic changes of inorganic nitrogen(NH4+-N、NO3-N)contents in three forest types during spring freezing and thawing period

    图  4  春季冻融期3种林型土壤氮矿化速率的动态变化

    Figure  4.  Dynamic changes of nitrogen mineralization rate of three forest types in spring freezing-thawing period

    表  1  3种林型样地基本概况

    Table  1.   Basic conditions of three forest type plots

    林型
    Forest type
    地理位置
    Geographic location
    海拔
    Altitude/m
    林龄/a
    Stand age/year
    平均树高
    Mean tree height/m
    平均胸径
    Mean DBH/cm
    郁闭度
    Canopy density
    林下主要植物
    Understory species composition
    兴安落叶松林
    Larix gmelinii forest
    53°28′N、122°20′E30580 ± 513.1314.130.81、4、5、6
    樟子松林
    Pinus sylvestnis var. mongolica forest
    53°27′N、122°11′E29096 ± 721.6127.330.71、2、3、4、7、8
    白桦林
    Betula platyphylla forest
    53°27′N、122°10′E37840 ± 413.5910.260.81、5、6
    注:1. 兴安杜鹃;2. 羽节蕨;3. 北国红豆;4. 笃斯越桔;5. 杜香;6. 越橘;7. 矮生悬钩子;8. 山刺玫。Notes: 1, Rhododendron dauricum; 2, Gymnocarpium jessoense; 3, Vaccinium macrocarpon; 4, Vaccinium uliginosum; 5, Ledum palustre; 6, Vaccinium vitis-idaea; 7, Rubus clivicola; 8, Rosa davurica.
    下载: 导出CSV

    表  2  土壤无机氮与土壤温度和含水量相关性分析

    Table  2.   Correlation analysis between soil inorganic nitrogen and soil temperature and water moisture content

    项目
    Item
    土壤温度
    Soil temperature
    土壤含水量
    Soil moisture content
    铵态氮
    NH4+-N
    硝态氮
    NO3-N
    土壤温度
    Soil temperature
    10.2130.2160.294*
    土壤含水量
    Soil moisture content
    1 0.634**0.599**
    铵态氮
    NH4+-N
    10.689**
    硝态氮
    NO3--N
    1
    注:* P < 0.05相关性显著, ** P < 0.01相关性极显著。Notes: * means the correlation is significant at P < 0.05 level, ** means the correlation is significant at P < 0.01 level .
    下载: 导出CSV
  • [1] Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry, 2004, 36(4): 641−654. doi: 10.1016/j.soilbio.2003.12.007
    [2] Groffman P M, Driscoll C T, Fahey T J, et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 191−213. doi: 10.1023/A:1013024603959
    [3] Hobbie S E, Miley T A, Weiss M S. Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in northern Alaska[J]. Ecosystems, 2002, 5(8): 761−774. doi: 10.1007/s10021-002-0185-6
    [4] 陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004, 23(5):126−133. doi: 10.3321/j.issn:1000-4890.2004.05.025

    Chen F S, Zeng D H, He X Y. Soil nitrogen transformation and cycling in forest ecosystem[J]. Chinese Journal of Ecology, 2004, 23(5): 126−133. doi: 10.3321/j.issn:1000-4890.2004.05.025
    [5] Reich P B, Grigal D F, Aber J D, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils[J]. Ecology, 1997, 78(2): 335−347. doi: 10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2
    [6] Chapin F S, Vitousek P M, van Cleve K. The nature of nutrient limitation in plant communities[J]. The American Naturalist, 1986, 127(1): 48−58. doi: 10.1086/284466
    [7] 王洋, 刘景, 王国平, 等. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学, 2007, 23(2):91−96. doi: 10.3969/j.issn.1672-0504.2007.02.021

    Wang Y, Liu J , Wang G P, et al. Study on the effect of freezing and thawing action to soil physical and chemical characteristics[J]. Geography and Geo-Information Science, 2007, 23(2): 91−96. doi: 10.3969/j.issn.1672-0504.2007.02.021
    [8] 魏晶, 吴钢, 邓红兵. 长白山高山冻原生态系统凋落物养分归还功能[J]. 生态学报, 2004(10):2211−2216. doi: 10.3321/j.issn:1000-0933.2004.10.018

    Wei J, Wu G, Deng H B. Researches on nutrient return of litterfall in the alpine tundra ecosystem of Changbai Mountains[J]. Acta Ecologica Sinica, 2004(10): 2211−2216. doi: 10.3321/j.issn:1000-0933.2004.10.018
    [9] 杨万勤, 邓仁菊, 张健. 森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报, 2007, 18(12):2889−2895.

    Yang W Q, Deng R J, Zhang J. Forest litter decomposition and its response to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889−2895.
    [10] Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil[J]. Applied Soil Ecology, 2003, 22(3): 225−239. doi: 10.1016/S0929-1393(02)00155-5
    [11] Ludwig B, Teepe R, de Gerenyu V L, et al. CO2 and N2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods-a microcosm study[J]. Soil Biology and Biochemistry, 2006, 38(12): 3516−3519. doi: 10.1016/j.soilbio.2006.06.006
    [12] Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability[J]. Applied Soil Ecology, 2007, 35(1): 247−255. doi: 10.1016/j.apsoil.2006.03.012
    [13] Nielsen C B, Groffman P M, Hamburg S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65(6): 1723−1730. doi: 10.2136/sssaj2001.1723
    [14] 安美玲, 张勃, 孙力炜, 等. 黑河上游土地利用动态变化及影响因素的定量分析[J]. 冰川冻土, 2013, 35(2):355−363.

    An M L, Zhang B, Sun L W, et al. Quantitative analysis of dynamic change of land use and its influencing factors in upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 355−363.
    [15] 段北星, 满秀玲, 宋浩, 等. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征[J]. 北京林业大学学报, 2018, 40(2):40−50.

    Duan B X, Man X L, Song H, et al. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing,an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 40−50.
    [16] 李书杨, 满秀玲, 魏红. 大兴安岭白桦林和兴安落叶松林土壤活性有机碳动态特征[J]. 东北林业大学学报, 2018, 46(12):64−70. doi: 10.3969/j.issn.1000-5382.2018.12.012

    Li S Y, Man X L, Wei H. Dynamic characteristics of soil active organic carbon in Betula platyphalla forest and Larix gmelinii forest in Daxing,an Mountains[J]. Journal of Northeast Forestry University, 2018, 46(12): 64−70. doi: 10.3969/j.issn.1000-5382.2018.12.012
    [17] Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry, 2006, 38(5): 991−999. doi: 10.1016/j.soilbio.2005.08.012
    [18] 殷睿, 徐振锋, 吴福忠, 等. 川西亚高山不同海拔3种森林群落土壤氮转化的季节动态[J]. 林业科学, 2014, 50(7):1−7.

    Yin R, Xu Z F, Wu F Z, et al. Seasonal dynamics of soil nitrogen transformation along subalpine elevational gradient of western Sichuan[J]. Scientia Silvae Sinicae, 2014, 50(7): 1−7.
    [19] Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34(10): 1495−1505. doi: 10.1016/S0038-0717(02)00121-9
    [20] Tierney G L, Fahey T J, Groffman P M, et al. Soil freezing alters fine root dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 175−190. doi: 10.1023/A:1013072519889
    [21] 朱国君, 尹航, 梁运江, 等. 春季解冻期3种温带森林土壤氮素动态变化[J]. 土壤通报, 2017, 48(6):1392−1397.

    Zhu G J, Yin H, Liang Y J, et al. Dynamics of soil nitrogen in three temperate forests during spring thawing[J]. Chinese Journal of Soil Science, 2017, 48(6): 1392−1397.
    [22] Edwards K A, McCulloch J, Kershaw G P, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J]. Soil Biology and Biochemistry, 2006, 38(9): 2843−2851. doi: 10.1016/j.soilbio.2006.04.042
    [23] Wu F Z, Yang W Q, Zhang J, et al. Litter decomposition in two subalpine forests during the freeze-thaw season[J]. Acta Oecologica, 2010, 36(1): 135−140. doi: 10.1016/j.actao.2009.11.002
    [24] 谭波, 吴庆贵, 吴福忠, 等. 川西亚高山_高山森林土壤养分动态及其对季节性冻融的响应[J]. 生态学报, 2015, 35(15):5175−5182.

    Tan B, Wu Q G, Wu F Z, et al. Dynamics of soil nutrients and their response to seasonal freeze-thaw in the subalpine-alpine forests of western Sichuan[J]. Acta Ecologica Sinica, 2015, 35(15): 5175−5182.
    [25] Hentschel K, Borken W, Matzner E. Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(5): 699−706. doi: 10.1002/jpln.200700154
    [26] Ueda M U, Muller O, Nakamura M, et al. Soil warming decreases inorganic and dissolved organic nitrogen pools by preventing the soil from freezing in a cool temperate forest[J]. Soil Biology and Biochemistry, 2013, 61: 105−108. doi: 10.1016/j.soilbio.2013.02.016
    [27] 高珊, 尹航, 傅民杰, 等. 冻融循环对温带3种林型下土壤微生物量碳_氮和氮矿化的影响[J]. 生态学报, 2018, 38(21):7859−7869.

    Gao S, Yin H, Fu M J, et al. Effects of freeze-thaw cycles on soil microbial biomass carbon, nitrogen, and nitrogen mineralization in three types of forest in the temperate zone[J]. Acta Ecologica Sinica, 2018, 38(21): 7859−7869.
    [28] Smith J, Wagner-Riddle C, Dunfield K. Season and management related changes in the diversity of nitrifying and denitrifying bacteria over winter and spring[J]. Applied Soil Ecology, 2010, 44(2): 138−146. doi: 10.1016/j.apsoil.2009.11.004
    [29] 蔡延江, 王小丹, 丁维新, 等. 冻融对土壤氮素转化和N2O排放的影响研究进展[J]. 土壤学报, 2013, 50(5):1032−1042.

    Cai Y J, Wang X D, Ding W X, et al. Effects of freeze-thaw on soil nitrogen transformation and N2O emission: a review[J]. Acta Pedologica Sinica, 2013, 50(5): 1032−1042.
    [30] 陈哲, 杨世琦, 张晴雯, 等. 冻融对土壤氮素损失及有效性的影响[J]. 生态学报, 2016, 36(4):1083−1094.

    Chen Z, Yang S Q, Zhang Q W, et al. Effects of freeze-thaw cycles on soil nitrogen loss and availability[J]. Acta Ecologica Sinica, 2016, 36(4): 1083−1094.
    [31] 肖瑞晗, 满秀玲, 丁令智. 大兴安岭北部天然针叶林土壤氮矿化特征研究[J]. 生态学报, 2019, 39(8):2762−2771.

    Xiao R H, Man X L, Ding L Z. Soil nitrogen mineralization characteristic of the natural coniferous forest in Northern Daxing ’an Mountains, Northeast China[J]. Acta Ecologica Sinica, 2019, 39(8): 2762−2771.
    [32] Smolander A, Kanerva S, Adamczyk B, et al. Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations[J]. Plant and Soil, 2012, 350(1−2): 1−26. doi: 10.1007/s11104-011-0895-7
    [33] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1):98−108.

    He J Z, Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiol. China, 2013, 40(1): 98−108.
    [34] 王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J]. 生态学报, 2004, 24(11):2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018

    Wang C H, Xing X R, Han X G. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinens is grassland, Inner Mongolia, China[J]. Acta Ecologica Sinica, 2004, 24(11): 2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018
    [35] 周才平, 欧阳华. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J]. 植物生态学报, 2001, 25(2):204−209. doi: 10.3321/j.issn:1005-264X.2001.02.010

    Zhou C P, Ouyang H. Temperature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest[J]. Acta Phytoecologica Sinica, 2001, 25(2): 204−209. doi: 10.3321/j.issn:1005-264X.2001.02.010
    [36] 赵媛, 周旺明, 王守乐,等. 冻融对温带森林土壤碳、氮矿化作用的影响[J]. 生态学杂志, 2017, 36(6):1548−1554.

    Zhao Y, Zhou W M, Wang S L, et al. Effects of freezing-thawing on soil carbon and nitrogen mineralization in temperate forest ecosystems[J]. Chinese Journal of Ecology, 2017, 36(6): 1548−1554.
    [37] Wang C, Wan S, Xing X, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in northern China[J]. Soil Biology and Biochemistry, 2006, 38(5): 1101−1110. doi: 10.1016/j.soilbio.2005.09.009
    [38] Yan E R, Wang X H, Huang J J, et al. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of eastern China[J]. Biogeochemistry, 2008, 89(2): 239−251. doi: 10.1007/s10533-008-9216-5
    [39] 苏波, 韩兴国, 渠春梅, 等. 森林土壤氮素可利用性的影响因素研究综述[J]. 生态学杂志, 2002(2):40−46. doi: 10.3321/j.issn:1000-4890.2002.02.011

    Su B, Han X G, Qu C M, et al. Factors affecting soil N availability in forest ecosystems: a literature review[J]. Chinese Journal of Ecology, 2002(2): 40−46. doi: 10.3321/j.issn:1000-4890.2002.02.011
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  185
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-10-31
  • 网络出版日期:  2020-03-16
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回