Photosynthetic, spectral reflectance characteristics and primary productivity of main tree species in broadleaved Korean pine forest
-
摘要:目的 从生理角度探究阔叶红松林不同演替阶段的5个主要树种对光胁迫的适应性差异;揭示不同高度和不同冠层方向是否对叶片的光合特性、光谱反射特性以及相关生理功能性状产生影响;对各树种的有机物积累速率进行评估,为东北地区阔叶红松林初级生产力的研究提供参考。方法 选取了阔叶红松林林冠层的5个乔木树种(春榆、紫椴、胡桃楸、蒙古栎和红松)进行研究,测定不同取样位置的叶片光合参数、光谱反射参数、比叶面积、元素含量等生理指标,进行方差分析与均值多重比较,建立各生理参数之间的相关关系,利用异速生长方程估算样地春榆、紫椴、胡桃楸、蒙古栎和红松种群的初级生产速率。结果 (1)光合特性、光谱反射特性、比叶面积、叶片厚度和叶片元素含量等生理特征的种间差异显著(P < 0.05)。红松的表观量子效率最低,暗呼吸速率和光补偿点均比其他树种高,比叶面积最小,叶片厚度最大,氮元素含量和钾元素含量最低;(2)各树种的光合特性、光谱反射特性、比叶面积、叶片厚度和叶片元素含量等生理特征在不同取样位置无显著差异(P > 0.05);(3)阔叶树种的暗呼吸速率和光补偿点分别与光化学反射指数存在显著的种间负相关(P < 0.05),线性拟合结果表明R2分别高达0.96和0.94;(4)春榆、紫椴、胡桃楸、蒙古栎和红松种群的最大初级生产速率分别为4.806、1.637、1.981、0.350、0.106 kg/s。结论 不同树种对光胁迫的适应性差异在光合特性和光谱反射特性上都有所表现,叶片光合特性与群落树种的更替密切相关,群落演替后期处于林冠层的植物对光环境的适应性决定了该群落的冠层物种构成;植物在15 m以下的不同高度和冠层方向的差异不足以引起叶片的光合生理特征产生适应性改变;春榆对群落生产力的贡献的最大,红松最小。Abstract:Objective This paper aims to explore the adaptability of five main tree species in different succession stages of mixed broadleaved Korean pine forests (MBKPFs) to light stress from the physiological perspective; to reveal whether different heights and canopy direction have influences on photosynthetic characteristics, spectral reflectance characteristics and related physiological functions of leaves; to evaluate the organic matter accumulation rate of various tree species in order to provide reference for the study of primary productivity of MBKPFs in northeastern China.Method Five species of arbor plants in the canopy of MBKPFs, Ulmus davidiana, Tilia amurensis, Juglans mandshurica, Quercus mongolica and Pinus koraiensis, were selected to determine the physiological index of photosynthetic characteristics, spectral reflectance characteristics and functional traits at different sample positions, conducting ANOVA and LSD test and establishing correlation between various physiological parameters, so as to estimate the primary productivity of each tree species with reference to the allometric biomass equation established by previous studies.Result (1) There were significant differences in the photosynthetic characteristics, spectral reflectance characteristics, specific leaf area, blade thickness and leaf nitrogen content and potassium content among varied species (P < 0.05). The lowest apparent quantum efficiency, specific leaf area, nitrogen content and potassium content were found in P. koraiensis, with higher dark respiration rate, light compensation point and blade thickness. (2) There were no significant differences in the photosynthetic characteristics, spectral reflectance characteristics, specific leaf area, leaf thickness, leaf nitrogen content and potassium content among different sampling positions within species (P > 0.05). (3) Among species, dark respiration rate and light compensation point were significantly negatively correlated with PRI with R2 up to 0.96 and 0.94, respectively (P < 0.05), indicating that the adaptation of plants to light environment was reflected in both photosynthetic and spectral characteristics. (4) The maximum primary production rates of population were estimated with U. pumila of 4.806 kg/s, T. amurensis of 1.637 kg/s, J. mandshurica of 1.981 kg/s, Q. mongolica of 0.350 kg/s and P. koraiensis of 0.106 kg/s.Conclusion The adaptability differences of tree species to light stress are reflected both in photosynthetic characteristics and spectral reflectance characteristics, and the photosynthetic characteristics of leaves are closely related to the community succession, in the later stage of which the adaptability of plants in the canopy layer to the light environment determines the canopy species composition of the community; the difference of plant height below 15 m and canopy direction is not enough to cause adaptive changes in photosynthetic physiological characteristics of leaves; U. pumila contributes the most to the community productivity while P. koraiensis contributes the least.
-
朝鲜崖柏(Thuja koraiensis)为柏科(Cupressaceae)崖柏属(Thuja)的常绿乔木,又名长白侧柏、朝鲜柏,为中国二级重点保护植物,是集园林绿化、材用、芳香和经济价值于一身的珍贵植物资源,是具有广阔开发利用前景的珍贵树种[1]。目前中国学者对朝鲜崖柏的研究主要集中在繁育技术[2-4]、种子性状[5-6]、生境调查和生长规律[7-9]、精油提取及成分分析[10-12]等方面,对朝鲜崖柏精油提取的最佳工艺及抑菌活性还未有学者研究。国外学者对朝鲜崖柏的研究多为群落结构分布特征[13]、离体培养及冻存技术[14]、精油抗菌抗病毒[15]等方面,对朝鲜崖柏精油提取的最佳工艺以及化学成分分析还未见报道。
植物精油是通过不同方法从植物体内萃取出的芳香物质,一般在植物体的不同部位、不同器官中存在。研究发现影响精油在植物体内含量分布的原因除了植物种类不同外,也随着部位、贮藏条件和地理位置等因素的改变而发生变化[16-17]。精油提取的方法很多,目前主要有溶剂萃取法、超声波辅助萃取法、超临界萃取法和水蒸气蒸馏法等[18-22]。20世纪60年代,气相色谱法(gas chromatography,GC)逐渐发展起来[23],而如今分析植物精油成分的方法主要为气相色谱–质谱联用仪(gas chromatography/mass spectrometry,GC-MS)[24-25]。王雪薇等[24]选择水蒸气蒸馏法对红松(Pinus koraiensis)不同部位精油进行提取,并用GC-MS对成分进行检验,结果表明同株红松中松针、松壳和松塔的成分差异显著且松针的抑菌最好。胡文杰等[25]采用GC-MS技术对3种樟树(Cinnamomum camphora)叶片的精油成分种类进行鉴定,结果表明不同化学型间叶片精油成分种类、主成分和相对含量存在较大差异。陈韵如等[26]和王凤等[27]的研究表明:植物精油对日常生活中所产生的致病性细菌具有有效的抑制作用,还能够杀灭或清除皮肤上的细菌,净化空气。陈可欣等[28]表明香樟(Cinnamomum camphora)精油对灰绿曲霉(Aspergullus glaucus)最小抑菌浓度为0.001 μg/L。钱卫东等[29]通过研究丁香(Syringa oblate)精油中主要成分丁香酚的抑菌作用,表明丁香酚可以通过改变大肠杆菌(Escherichia coli)的菌体结构对其产生抑制作用,对抑制大肠杆菌生长有良好的效果。Selivanova等[30]表明超临界提取法提取出的欧洲赤松(Pinus sylvestris)精油对大肠杆菌有抑菌作用。
本研究以朝鲜崖柏枝叶为材料,采用单因素试验、正交试验和响应面优化法对水蒸气蒸馏法提取朝鲜崖柏枝叶精油进行工艺优化,采取GC-MS技术对其化学成分进行分析,用滤纸片抑菌法检测其对大肠杆菌、枯草芽孢杆菌(Bacillus subtilis)和金黄葡萄球菌(Staphylococcus aureus)的抑菌活性,并确定其最低抑菌质量浓度(minimum inhibitory concentration,MIC),以期为朝鲜崖柏精油的开发提供数据支持。
1. 材料与方法
1.1 材 料
朝鲜崖柏采自吉林省长白县十五道沟,选取成熟的朝鲜崖柏的绿色枝叶为原料。无水硫酸钠、氯化钠、正己烷和无水乙醇均为分析纯,购于天津市致远化学试剂有限公司;牛肉膏、蛋白胨和琼脂粉等试剂购于北京奥博星生物技术有限公司;抗生素溶液,1%青霉素钠溶液购于华北制药股份有限公司(稀释剂为蒸馏水)。抑菌试验所用菌株为大肠杆菌、枯草芽孢杆菌和金黄葡萄球菌。以上菌种保存于吉林市北华大学微生物实验室内,购于上海鲁微科技有限公司。抑菌试验所用培养基分别为营养肉汤琼脂培养基(NA)和营养肉汤培养基(NB)。
1.2 研究方法
1.2.1 朝鲜崖柏枝叶的精油提取工艺
分别称取100 g朝鲜崖柏枝叶粉碎样品,放入圆底烧瓶中,加入2.0% NaCl溶液700 mL,然后使用电热套(北京市永光明医疗仪器有限公司)进行电加热蒸馏[31]。溶液沸腾后直至精油增长极其缓慢或不再增长时,停止加热并静置一段时间,待上层精油澄清后进行读数,收集上层精油,使用无水硫酸钠吸收多余水分,于4 ℃冰箱保存。考察NaCl质量分数、蒸馏时间、液料比和材料保存条件(保存条件分别为新鲜枝叶、室温阴干枝叶、−20 ℃冰箱保存的枝叶和−80 ℃冰箱保存的枝叶) 4个因素对朝鲜崖柏枝叶的精油提取率的影响。选择蒸馏时间(A)、液料比(B)和NaCl质量分数(C)为试验因素,具体水平见表1,以朝鲜崖柏枝叶精油的提取率为指标,设计L9(33)正交试验和响应面分析,对朝鲜崖柏枝叶的精油提取工艺进行优化。所有试验重复3次,结果取均值。
表 1 试验因素水平表Table 1. Levels of test factors水平
Level蒸馏时间
Distillation time
(A)/h液料比
Liquid-solid ratio
(B)/(mL·g−1)NaCl质量分数
Mass fraction of NaCl
(C)/%−1 1.0 6.0 1.0 0 2.0 7.0 2.0 1 3.0 8.0 4.0 1.2.2 朝鲜崖柏枝叶精油的化学成分分析
采用GC-MS(Agilent7890A-5975CAgilent公司)对朝鲜崖柏枝叶的精油进行化学成分分析,与色谱柱连接的柱子为DB-17MS毛细管柱(30.00 m × 0.25 mm × 0.25 μm),升温程序为:在初始温度50 ℃下保持5 min,之后以3.5 ℃/min的升温速度升到220 ℃保持5 min,再以5 ℃/min的升温速度升到240 ℃保持5 min;进样口的温度为260 ℃,进样量1.0 μL,分流比为20∶1,载气为流速1.2 mL/min的氦气。质谱条件为EI离子源,轰击电压70 eV,离子源温度230 ℃,相对分子质量扫描范围为15 ~ 500。之后将GC-MS分离出的组分进行定性定量分析,与NIST数据库、文献检索和人工解析进行联合分析鉴定,确认各成分,并采用峰面积归一法计算出各成分的相对百分质量。
1.2.3 朝鲜崖柏枝叶精油的抑菌试验
利用NA培养基,斜面活化3种供试细菌菌株,放入37 ℃恒温培养箱(上海新苗医疗器械制造有限公司新苗SPX-25085-Ⅱ)中活化培养至光密度值(optical density,OD)达到0.8 h,此时菌的生殖活力达最旺盛时期。用接种环取一环菌种放入液体培养基中,使用振荡培养箱(北京东联哈尔仪器制造有限公司HDL-HZ Q-F160)摇床培养至对数生长期后,制成约为1.0 × 107 cfu/mL的供试菌液,放入4 ℃冰箱冷藏备用。
(1)抑菌效果的测定
采用滤纸片法测定抑菌效果。取待测菌悬液200 μL,进行涂布,把精油浸润的滤纸片贴在均匀涂抹细菌的固体培养基上,空白对照为无菌水和正己烷溶液浸润的滤纸片,用1%青霉素浸泡的滤纸片作为细菌抑菌对照。将平板放置于37 ℃的恒温培养箱中培养至细菌生长最旺盛时期,测量抑菌圈的直径。
(2)MIC的测定
设置10个精油的质量浓度梯度,分为0.05、0.04、0.03、0.02、0.01、0.005、2.5 × 10−3、1.25 × 10−3、0.625 × 10−3、0.312 × 10−3 μg/L。取10 μL测试细菌的菌悬液加入到1 mL含精油的液体培养基中充分混匀,将含有不同浓度精油的菌悬液置于37 ℃的培养箱中培养24 h,每个浓度设置3个重复。培养结束后,对每个精油浓度梯度的菌悬液试管,以及正己烷、无菌水的对照管进行营养平板的涂抹培养计数。滴加200 μL待试样品于固体培养基上涂抹均匀,置于37 ℃的培养箱中培养24 h,每个浓度梯度重复3次。通过观察营养平板上菌落数来确定MIC。
2. 结果与分析
2.1 朝鲜崖柏枝叶精油提取的工艺优化
2.1.1 单因素试验结果分析
2.1.1.1 液料比对精油提取率的影响
液料比对朝鲜崖柏枝叶精油提取率的影响见图1。随着液料比的增加,朝鲜崖柏枝叶的精油提取率呈现先缓慢增加,而后逐渐降低的趋势。当液料比为7.0 mL/g时,朝鲜崖柏枝叶的精油提取率最高,可达37.0 mL/kg。精油在低液料比时提取率较低的原因可能为部分提取材料未能很好散开,从而导致精油提取率较小;而液料比过高时,大量精油溶解在水中,进而使得精油提取率逐渐减少[32]。由以上结果可知,朝鲜崖柏枝叶提取工艺中,当蒸馏时间3.0 h和NaCl质量分数2.0%时,最佳液料比为7.0 mL/g。
2.1.1.2 NaCl质量分数对精油提取率的影响
NaCl质量分数对朝鲜崖柏枝叶精油提取率的影响见图2。NaCl质量分数对朝鲜崖柏枝叶的精油提取率的影响呈先上升后降低趋势。在NaCl质量分数为2.0%时,朝鲜崖柏枝叶的精油提取率为37.0 mL/kg。朝鲜崖柏枝叶的精油提取率随NaCl质量分数变化是由于NaCl使精油在水中溶解度降低,使精油被蒸出,从而明显提高了提取率[33];但当溶液中NaCl质量过高时会导致提取液中可溶性物质增加,从而使其沸点升高,进而降低了其提取率[34]。分析可得,当蒸馏时间3.0 h和液料比7.0 mL/g时,最佳NaCl质量分数为2.0%。
2.1.1.3 蒸馏时间对精油提取率的影响
蒸馏时间对朝鲜崖柏枝叶精油提取率的影响见图3。在1.0 ~ 5.0 h蒸馏时间内,朝鲜崖柏枝叶的精油提取率随蒸馏时间的延长呈增加趋势,但在2.0 h以前增长迅速,其后趋于平缓;在提取时间超过5.0 h后,精油提取率基本不变,精油提取率最高可达到39.0 mL/kg。理论提取终点是精油总量不再随时间延长而增加的时刻,但在工业生产中,为节约能源会缩短提取时间[11]。朝鲜崖柏枝叶2.0 h以后的提取率略有增加,但变化不明显,5.0 h提取率最高,之后增长趋于平稳,因差异较少同时为节约能源消耗,建议蒸馏时间采用2.0 h。当液料比7.0 mL/g和NaCl质量分数2.0%时,最佳蒸馏时间为2.0 h。
2.1.1.4 保存条件对精油提取率的影响
保存条件对朝鲜崖柏枝叶精油提取率的影响见图4。当液料比7.0 mL/g、NaCl质量分数2.0%、蒸馏时间3.0 h时,新鲜朝鲜崖柏枝叶的精油提取率为39.0 mL/kg、干叶的为25.7 mL/kg,−20 ℃冰箱保存枝叶的为23.0 mL/kg,−80 ℃冰箱保存枝叶的为32.0 mL/kg。由此可知,新鲜朝鲜崖柏枝叶的提取率最高,−80 ℃冰箱保存的枝叶次之,−20 ℃冰箱保存的枝叶提取率最低。所以当取回材料后无法立刻提取精油时,推荐使用−80 ℃冰箱保存,能有效防止精油流失,从而达到节约资源的目的。
2.1.2 正交试验结果分析
由正交试验结果和极差分析(表2)可知3个因素均为K2值最大,所以最佳工艺为蒸馏时间2.0 h、液料比7.0 mL/g、NaCl质量分数2.0%。由极差值可知,影响朝鲜崖柏枝叶精油提取率的各因素的主次顺序为:A = B > C。
表 2 朝鲜崖柏枝叶精油提取工艺正交试验结果Table 2. Orthogonal experiment results of extraction technology of the essential oil from Thuja koraiensis branches and leaves试验序号
Experiment No.因素 Factor 提取率
Extraction rate/%A B C 1 −1 −1 −1 3.0 2 −1 0 0 3.6 3 −1 1 1 2.3 4 0 −1 0 3.8 5 0 0 1 3.8 6 0 1 −1 3.4 7 1 −1 1 3.1 8 1 0 −1 3.9 9 1 1 0 3.5 K1 2.967 3.567 3.433 K2 3.667 3.767 3.633 K3 3.500 3.067 3.067 极差 Range 0.700 0.700 0.566 由表3可知3个因素的P值均小于0.05。这说明3个因素对朝鲜崖柏枝叶精油提取率的影响均显著。因蒸馏时间A的P值最小,所以蒸馏时间对朝鲜崖柏枝叶精油的提取率影响最显著。
表 3 朝鲜崖柏枝叶精油的正交试验方差分析Table 3. Analysis of variance in orthogonal test of the essential oil from Thuja koraiensis branches and leaves因素
Factor平方和
Sum of
square自由度
Degree of
freedom均方
Mean
squareF P A 0.802 2 0.401 51.571 0.019 B 0.762 2 0.381 49.000 0.020 C 0.496 2 0.248 31.857 0.030 误差 Error 0.016 2 0.008 2.1.3 响应面优化结果分析
以精油提取率(Y)为响应值,蒸馏时间、液料比、NaCl质量分数为响应因素,响应面试验设计和结果见表4。根据表4数据,利用Design-Expert软件对试验结果进行分析,得到朝鲜崖柏枝叶精油提取率与蒸馏时间、液料比、NaCl质量分数的回归方程:
表 4 响应面试验设计和结果Table 4. Design and results of response surface test试验序号
Experiment No.因素 Factor 提取率
Extraction rate (Y)/%A B C 1 1 0 1 3.9 2 1 0 −1 3.8 3 −1 0 1 3.3 4 0 −1 1 3.3 5 0 1 1 3.1 6 0 −1 −1 3.2 7 0 0 0 4.1 8 −1 −1 0 3.0 9 0 0 0 4.0 10 −1 1 0 2.4 11 0 0 0 4.1 12 0 1 −1 3.0 13 0 0 0 4.2 14 1 1 0 3.6 15 −1 0 −1 2.8 16 1 −1 0 3.8 17 0 0 0 4.3 Y=−27.49778+1.19667A+0.0833B+1.02222C+1.0×10−3AB−0.066667AC−1.38778×10−18BC−0.32A2−6.2×10−5B2−0.16444C2 (1) 由表5的方差分析表明:蒸馏时间(P < 0.000 1)对朝鲜崖柏枝叶精油的提取率有极显著影响,液料比和NaCl质量分数对精油提取率具有显著影响,其影响大小为A > B > C,即蒸馏时间 > 液料比 > NaCl质量分数。由表5可知,此模型极显著有效(P < 0.000 1),失拟项不显著(P = 0.334 8 > 0.05),决定系数R2 = 0.977 5,说明拟合良好,试验误差小。调整系数R2 adj = 0.948 5,表明该模型能够解释94.85%响应值的变化。所以,该模型能对朝鲜崖柏枝叶精油的提取工艺进行优化。
表 5 响应面试验方差分析Table 5. ANOVA for response surface项目 Item 平方和 Sum of square 自由度 Degree of freedom 均方 Mean square F P 模型 Model 4.860 9 0.540 33.74 < 0.000 1 A 1.620 1 1.620 101.25 < 0.000 1 B 0.180 1 0.180 11.25 0.012 2 C 0.080 1 0.080 5.00 0.040 4 AB 0.040 1 0.040 2.50 0.157 9 AC 0.040 1 0.040 2.50 0.157 9 BC 0.000 1 0.000 0.00 1.000 0 A2 0.430 1 0.430 26.95 0.001 3 B2 1.620 1 1.620 101.16 < 0.000 1 C2 0.580 1 0.580 36.03 0.000 5 残差 Residual 0.110 1 0.016 1.54 0.334 8 失拟误差 Lack of fit error 0.060 1 0.020 纯误差 Pure error 0.052 4 0.013 总误差 Total error 4.970 16 各因素对响应值的影响和交互作用大小都能够通过观察响应面和等高线图反映出来。由图5 ~ 7可以看出,等高线呈椭圆形且响应面曲线较陡,因此3个因素之间的交互作用对朝鲜崖柏枝叶精油的提取率均有显著影响。
2.1.4 最佳工艺条件验证
对回归方程(1)进行最优解分析,能够确定朝鲜崖柏枝叶精油的最佳提取工艺。通过响应面分析得出水蒸气蒸馏法提取朝鲜崖柏枝叶精油的最佳工艺为:液料比6.9 mL/g、蒸馏时间2.7 h、NaCl质量分数为2.6%,在此条件下的提取率为4.3%。经过3次平行试验,得到朝鲜崖柏枝叶精油提取率的均值为4.4%。基本等同于预测值4.3%,两者拟合良好,说明此提取工艺参数可靠且有应用价值。
2.2 朝鲜崖柏枝叶精油化学成分分析
朝鲜崖柏枝叶精油的离子流色谱图见图8,共得到57个峰值,现检出48种化合物,占所提取精油总量的93.79%。各成分及其质量分数见表6。烯类物质17种,醇类物质15种,酯类物质6种,酮类物质5种,酚类等物质5种,分别占总含量的26.79%、25.40%、28.47%、11.84%和1.11%。乙酸香芹酯为含量最高的化合物,占总含量的22.43%。与倪妍妍等[10]、戚继忠等[11]和杨智蕴等[12]的研究结果不同,倪妍妍等共鉴定出48种化合物,其中(8β,13β)-13-methyl-17-norkaur-15-ene含量最高,高达30.79%;戚继忠等共检测出49种有效化合物,但本文中检测出含量较高的乙酸龙脑酯等有效成分并未报道;杨智蕴等[12]共检测出33种化合物,其中含量最高的为β-侧柏酮,高达11.73%。经检测朝鲜崖柏枝叶的精油中还有较多有效成分,如柠檬烯对常见致腐菌有抑制作用[24],水芹烯具有抗氧化、抗炎、抗增殖作用[35],乙酸龙脑酯有治疗腹泻、镇痛等功效,香茅醇具有抗菌和提高皮肤免疫力的作用,松油醇大量应用于调配香精,也可作为溶剂和消毒剂等[31, 36]。
表 6 朝鲜崖柏枝叶精油的成分分析鉴定结果Table 6. Compound analysis and identification of the essential oil from Thuja koraiensis branches and leaves峰号 Peak No. 化合物名称 Compound name 分子式 Formula 分子量 Molecular mass 质量分数 Mass fraction/% 1 葑烯 Feoehene C10H16 136 0.07 2 α-侧柏烯 α-thujene C10H16 136 0.59 3 马鞭草烯酮 Trimethylbicyclo C10H14O 150 1.80 4 β-水芹烯 β-phellandrene C10H16 136 11.62 5 莰烯 Camphene C10H16 136 1.84 6 β-蒎烯 β-phellandrene C10H16 136 0.08 7 月桂烯 Myrcene C10H16 136 2.82 8 α-水芹烯 α-phellandrene C10H16 136 0.09 9 松油烯 Terpinene C10H16 136 1.00 10 d-柠檬烯 d-limonene C10H16 136 2.13 11 萜品烯Terpinene C10H16 136 1.41 12 降樟脑 Norcamphor C7H10O 110 14.27 13 山梨酸乙酯 2,4-hexadienoic acid C8H12O2 140 0.14 14 芳樟醇 Linalool C10H18O 154 0.35 15 α-侧柏酮 α-bicyclo C10H16O 152 1.05 16 小茴香酮 Fenehone C10H18O 154 0.07 17 侧柏酮 Thujone C10H16O 152 8.86 18 2-环己烯-1-醇 2-cyclohexen-1-ol C9H16O 140 0.26 19 双环[3.1.0]-3-己醇 Bicyclo[3.1.0]hexan-3-ol C6H10O 98 0.46 20 樟脑 Camphor C10H16O 152 0.20 21 双环[2.2.1]-2-庚醇 Bicyclo[2.2.1]heptan-2-ol C7H12O 112 0.28 22 冰片 Borneol C10H18O 154 0.22 23 1-羟基-3-环己烯 3-cyclohexen-1-ol C6H10O 98 2.14 24 α-松油醇 α-terpineol C10H18O 154 0.39 25 2-环己烯-1-醇 2-cyclohexen-1-ol C6H10O 98 0.08 26 双环[2.2.1]-2-庚醇 Bicyclo[2.2.1]heptan-2-ol C7H12O 112 0.19 27 香茅醇 Citronellol C10H20O 156 0.22 28 香茅酸 Citronellic acid C10H18O2 170 0.32 29 乙酸龙脑酯 Bornyl acetate C12H20O2 196 7.58 30 乙酸香芹酯 Carvyl acetate C12H18O2 194 20.43 31 乙酸萜品酯 Terpinyl acetate C12H20O2 196 0.10 32 乙酸松油酯 3-cyclohexene-1-methanol C12H20O2 196 0.06 33 β-榄香烯 β-cyclohexane C15H24 204 0.43 34 石竹烯 Caryophyllene C15H24 204 0.07 35 肉桂酸乙酯 2-propenoic acid C11H12O2 176 0.16 36 β-番茄红素 β-copaene C15H24 204 0.35 37 α-摩勒烯 α-muurolene C15H24 204 0.18 38 环己醇 Cyclohexanol C6H12O 244 5.76 39 α-毕橙茄醇 α-cadinol C15H24 204 0.25 40 2-萘酚 2-hydroxy naphthalene C15H18O 214 0.12 41 异前列腺素 8-epi-prostaglandin F2α C20H34O5 354 0.10 42 γ-桉叶醇 γ-naphthalenemethanol C15H26O 222 1.36 43 β-桉叶醇 β-naphthalenemethanol C15H26O 222 1.08 44 芮木泪柏烯 Phenanthrene C20H32 272 2.35 45 蛇麻烯 Humulene C15H24 204 0.08 46 γ-摩勒烯 γ-muurolene C15H24 204 0.07 47 2-异丙基-5-甲基-3-环己烯-1-酮
2-isopropyl-5-methyl-3-cyclohexen-1-oneC10H16O 152 0.06 48 τ-松油醇 τ-terpineol C15H26O 222 0.25 2.3 朝鲜崖柏枝叶精油的抑菌性研究
2.3.1 朝鲜崖柏枝叶精油的抑菌圈测定结果分析
由抑菌圈试验结果(图9)可见:朝鲜崖柏枝叶精油对金黄葡萄球菌抑菌圈直径为13.28 mm,枯草芽孢杆菌抑菌圈直径为12.04 mm,大肠杆菌抑菌圈直径为12.94 mm。朝鲜崖柏枝叶精油对这3个菌种均有抑菌作用,均表现为中度敏感。其中朝鲜崖柏枝叶精油对金黄葡萄球菌抑菌效果最好,对枯草芽孢杆菌的抑菌效果最差。
2.3.2 朝鲜崖柏枝叶精油MIC测定结果分析
朝鲜崖柏枝叶精油的MIC测定结果(表7)表明朝鲜崖柏枝叶精油有较显著的抑菌作用。本试验中,朝鲜崖柏枝叶精油对金黄葡萄球菌的MIC值为0.005 μg/L,对枯草芽孢杆菌和大肠杆菌的MIC值均为0.010 μg/L。这表明3个菌种中朝鲜崖柏枝叶精油对金黄葡萄球菌的抑菌效果最好,枯草芽孢杆菌和大肠杆菌略差。该结果与2.3.1抑菌圈的测定结果具有一致性。
表 7 朝鲜崖柏枝叶精油的最低抑菌质量浓度Table 7. Minimum inhibitory concentration of the essential oil from Thuja koraiensis branches and leaves菌种 Strain 菌种类型 Strain type 最低抑菌质量浓度 Minimum inhibitory concentration/(μg·L−1) 金黄葡萄球菌 Staphylococcus aureus G+ 0.005 枯草芽孢杆菌 Bacillus subtilis G+ 0.010 大肠杆菌 Escherichia coli G− 0.010 3. 结 论
(1)水蒸气蒸馏法提取朝鲜崖柏枝叶精油的最佳工艺。正交试验表明:3个因素对朝鲜崖柏枝叶精油提取率的影响均为显著,且蒸馏时间对朝鲜崖柏枝叶的精油提取率影响最大,其次分别为液料比和NaCl质量分数。正交试验得出的最佳工艺条件为蒸馏时间2.0 h、液料比7.0 mL/g、NaCl质量分数2.0%,经验证在此条件下精油提取率为4.2%。响应面优化法得出的最佳工艺条件为液料比6.9 mL/g、蒸馏时间2.7 h、NaCl质量分数2.6%,在此条件下的精油提取率为4.3%,实际值为4.4%,两者拟合良好,说明响应面优化法得到的朝鲜崖柏枝叶精油提取工艺参数可靠且有应用价值。
(2)朝鲜崖柏枝叶精油的化学成分分析。共检出48种化合物,占所提取精油总量的93.79%。烯类物质17种,醇类物质15种,酯类物质6种,酮类物质5种,酚类等物质5种,分别占总质量的26.79%、25.40%、28.47%、11.84%和1.11%。其中乙酸香芹酯含量最高,占总含量的22.43%,目前已被应用于各类香精的配方中。
(3)抑菌试验表明:朝鲜崖柏枝叶精油对3个菌种均有抑菌作用,其中对金黄葡萄球菌的抑菌圈直径为13.28 mm,枯草芽孢杆菌的为12.04 mm,大肠杆菌的为12.94 mm,均表现为中度敏感。朝鲜崖柏枝叶精油对金黄葡萄球菌的抑菌效果最好,MIC值为0.005 μg/L;对枯草芽孢杆菌和大肠杆菌的抑菌效果次之,MIC值均为0.010 μg/L。
-
表 1 目标树基础数据
Table 1 Basic data of target trees
树种
Tree species胸径
DBH/cm树高
Tree height/m活枝高
Live branch height/m下层取样高度
Lower layer sampling height/m上层取样高度
Upper layer sampling height/m春榆
Ulmus davidiana28.50 ± 4.25 15.48 ± 2.14 5.33 ± 1.73 7.86 ± 1.71 12.94 ± 2.00 紫椴
Tilia amurensis24.65 ± 6.43 14.65 ± 2.23 6.40 ± 2.45 8.46 ± 2.06 12.59 ± 2.01 胡桃楸
Juglans mandshurica25.75 ± 2.20 17.48 ± 1.13 5.68 ± 1.39 8.63 ± 1.25 14.53 ± 1.05 蒙古栎
Quercus mongolica32.55 ± 8.83 16.53 ± 1.46 4.35 ± 0.25 7.39 ± 0.49 13.48 ± 1.13 红松
Pinus koraiensis12.83 ± 0.18 9.78 ± 4.21 2.10 ± 0.25 4.02 ± 0.99 7.86 ± 3.13 表 2 各树种冠层不同取样位置的光响应参数
Table 2 Light response parameters of leaf at different sampling positions in canopy layer for each tree species
μmol/(m2·s) 树种
Tree species取样位置
Sampling position光响应参数 Light response parameter AQE Pnmax Rd Ic 春榆
U. davidiananu 0.048 ± 0.011a 8.003 ± 1.349a 0.712 ± 0.176a 15.992 ± 2.280a nl 0.054 ± 0.008a 10.809 ± 1.823a 0.765 ± 1.161a 15.746 ± 5.222a su 0.062 ± 0.011a 10.052 ± 3.276a 0.554 ± 0.151a 9.708 ± 3.356a sl 0.071 ± 0.007a 12.013 ± 2.395a 0.581 ± 0.062a 9.251 ± 2.025a 紫椴
T. amurensisnu 0.055 ± 0.010a 7.212 ± 0.711a 0.688 ± 0.112a 13.500 ± 2.400a nl 0.057 ± 0.005a 6.153 ± 1.171a 0.689 ± 0.132a 12.939 ± 3.610a su 0.046 ± 0.007a 6.988 ± 1.514a 0.680 ± 0.255a 15.264 ± 5.369a sl 0.041 ± 0.006a 7.208 ± 0.878a 0.771 ± 0.139a 20.576 ± 6.568a 胡桃楸
J. mandshuricanu 0.039 ± 0.007a 8.718 ± 1.500a 0.952 ± 0.215a 26.386 ± 7.066a nl 0.053 ± 0.011a 10.016 ± 2.516a 0.672 ± 0.110a 13.613 ± 1.572a su 0.049 ± 0.005a 12.217 ± 3.460a 1.003 ± 0.267a 22.000 ± 6.355a sl 0.055 ± 0.003a 12.678 ± 1.642a 1.090 ± 0.209a 20.886 ± 3.701a 蒙古栎
Q. mongolicanu 0.059 ± 0.017a 9.056 ± 3.961a 0.681 ± 0.066a 15.456 ± 5.934a nl 0.051 ± 0.011a 7.534 ± 0.814a 0.658 ± 0.090a 15.411 ± 4.305a su 0.061 ± 0.011a 10.407 ± 3.140a 0.830 ± 0.140a 15.437 ± 3.869a sl 0.050 ± 0.007a 10.840 ± 2.477a 0.619 ± 0.065a 13.866 ± 2.530a 红松
P. koraiensisnu 0.037 ± 0.001a 10.598 ± 0.748a 1.103 ± 0.219a 33.177 ± 7.334a nl 0.043 ± 0.004 10.469 ± 1.015a 1.084 ± 0.129a 27.673 ± 3.360a su 0.038 ± 0.006a 12.149 ± 2.774a 0.861 ± 0.159a 25.547 ± 6.265a sl 0.046 ± 0.010a 12.006 ± 1.490a 0.880 ± 0.103a 22.098 ± 0.077a 注:nu. 北向上层取样位置;nl. 北向下层取样位置,su. 南向上层取样位置;sl. 南向下层取样位置。数据为平均值 ± 标准误差,不同小写字母表示不同取样位置之间的差异显著性(P < 0.05)。AQE为表观量子效率;Pnmax为最大净光合速率;Rd为暗呼吸速率;Ic为光补偿点。下同。Notes: nu, sampling position northward and upper; nl, sampling position northward and lower; su, sampling position southern and upper; sl, sampling position southern and lower. Value is mean ± SE. Significant differences among sampling positions are denoted by lowercase letters (P < 0.05). AQE is the apparent quantum efficiency; Pnmax is the maximum net photosynthetic rate. Rd is the dark respiration rate; Ic is the light compensation point. The same below. 表 3 光响应参数、光谱反射参数、元素含量和功能性状参数的种间方差分析
Table 3 ANOVA (P-values) for light response parameters, spectral reflectance indices, element content and functional trait parameters among tree species
参数 Parameter df F P 光响应参数
Light response parameterAQE 4 7.510 9 < 0.01** Pnmax 4 4.024 6 < 0.05* Ic 4 22.435 3 < 0.01** Rd 4 10.498 1 < 0.01** 光谱反射参数 Spectral reflectance index chlNDI 3 99.370 4 < 0.001*** PRI 3 56.098 3 < 0.05* SIPI 3 75.770 1 0.736 WI 3 32.535 5 < 0.05* 功能性状参数 Functional parameter Nmass 4 60.554 0 < 0.001*** Kmass 4 47.165 5 < 0.001** HD 4 71.985 0 < 0.001*** SLA 4 41.973 8 < 0.001*** 注:*表示在P < 0.05水平上显著相关;**表示在P < 0.01水平上显著相关;***表示在P < 0.001水平上显著相关。chlNDI为叶绿素归一化指数;PRI为光化学反射指数;SIPI为结构不敏感色素指数;WI为含水量指数;SLA为比叶面积;HD为叶片厚度;Nmass为单位叶片质量的氮含量;Kmass为单位叶片质量的钾含量。下同。Notes: * indicates significant correlation at P < 0.05 level; ** indicates significant correlation at P < 0.01 level; *** indicates significant correlation at P < 0.001 level. ChlNDI is the chlorophyll normalization index; PRI is photochemical reflection index; SIPI is the structurally insensitive pigment index; WI is water content index; SLA is specific leaf area; HD is blade thickness; Nmass is the nitrogen content per leaf mass; Kmass is the potassium content per leaf mass. The same below. 表 4 阔叶红松林中5个树种的光响应参数
Table 4 Light response parameters of the five tree species in MBKPFs
μmol/(m2·s) 树种
Tree species光响应参数 Light response parameter AQE Pnmax Ic Rd 春榆 U. davidiana 0.058 2 ± 0.014 4a 10.099 9 ± 3.210 8a 12.902 3 ± 5.188 8c 0.657 8 ± 0.200 4b 紫椴 T. amurensis 0.049 2 ± 0.011 2abc 6.940 6 ± 1.320 8b 15.744 3 ± 6.291 9c 0.708 1 ± 0.213 0b 胡桃楸 J. mandshurica 0.048 8 ± 0.010 9bc 10.906 9 ± 3.381 1a 20.720 9 ± 7.962 9b 0.929 1 ± 0.299 7a 蒙古栎 Q. mongolica 0.055 1 ± 0.015 7ab 9.459 0 ± 3.767 9a 15.042 4 ± 5.169 3c 0.697 1 ± 0.144 0b 红松 P. koraiensis 0.041 0 ± 0.008 2c 11.305 6 ± 2.118 2a 27.123 7 ± 8.002 9a 0.981 9 ± 0.236 4a 表 5 各树种冠层不同取样位置的光谱反射参数
Table 5 Spectral reflectance indices of leaf at different sampling positions in canopy layer for each tree species
树种
Tree species取样位置
Sampling position光谱反射指数 Spectral reflectance index chlNDI PRI SIPI WI 春榆
U. davidiananu 0.509 ± 0.029a 0.061 ± 0.011a 0.779 ± 0.020a 0.981 ± 0.002a nl 0.489 ± 0.023a 0.056 ± 0.003a 0.788 ± 0.018a 0.982 ± 0.006a su 0.516 ± 0.024a 0.058 ± 0.005a 0.794 ± 0.005a 0.985 ± 0.008 sl 0.500 ± 0.022a 0.059 ± 0.004 0.801 ± 0.009 0.979 ± 0.001a 紫椴
T. amurensisnu 0.497 ± 0.019a 0.055 ± 0.007a 0.786 ± 0.003a 0.983 ± 0.007a nl 0.487 ± 0.018a 0.055 ± 0.007a 0.786 ± 0.012a 0.978 ± 0.001a su 0.489 ± 0.022a 0.053 ± 0.007a 0.782 ± 0.017a 0.976 ± 0.002a sl 0.491 ± 0.031a 0.055 ± 0007a 0.785 ± 0.013a 0.977 ± 0.003a 胡桃楸
J. mandshuricanu 0.480 ± 0.025a 0.050 ± 0.004a 0.779 ± 0.034a 0.988 ± 0.009a nl 0.468 ± 0.023a 0.045 ± 0.004a 0.793 ± 0.013a 0.986 ± 0.009a su 0.468 ± 0.022a 0.043 ± 0.002a 0.800 ± 0.011a 0.988 ± 0.010a sl 0.451 ± 0.009a 0.047 ± 0.009a 0.781 ± 0.025a 0.987 ± 0.009a 蒙古栎
Q. mongolicanu 0.451 ± 0.010a 0.058 ± 0.002a 0.784 ± 0.010a 0.985 ± 0.008a nl 0.463 ± 0.007a 0.056 ± 0.006a 0.788 ± 0.009a 0.986 ± 0.007a su 0.460 ± 0.027a 0.058 ± 0.004a 0.792 ± 0.011a 0.986 ± 0.009a sl 0.458 ± 0.017a 0.059 ± 0.002a 0.785 ± 0.010a 0.984 ± 0.007a 表 6 阔叶红松林中5树种的光谱反射指数
Table 6 Spectral reflectance indices of the five tree species in MBKPFs
树种
Tree species光谱反射指数 Spectral reflectance index chlNDI PRI SIPI WI 春榆 U. davidiana 0.503 ± 0.033a 0.058 ± 0.008a 0.791 ± 0.019a 0.982 ± 0.007ab 紫椴 T. amurensis 0.491 ± 0.029a 0.054 ± 0.009a 0.785 ± 0.014a 0.978 ± 0.005b 胡桃楸 J. mandshurica 0.467 ± 0.027b 0.046 ± 0.007b 0.788 ± 0.029a 0.987 ± 0.009a 蒙古栎 Q. mongolica 0.458 ± 0.021b 0.058 ± 0.005a 0.787 ± 0.013a 0.985 ± 0.008a 表 7 5个树种种群光合生产力
Table 7 Photosynthetic productivity of the population of five tree species
树种
Tree species胸径
DBH/cm异速生长方程
Allometric biomass equationSLA/(cm2·g− 1) G/(kg·s− 1) 春榆 U. davidiana 28.50 ± 4.25 ln(wl) = − 5.510 + 2.438ln(DBH) 213.65 ± 37.86 0.039 ± 0.011 紫椴 T. amurensis 24.65 ± 6.43 ln(wl) = − 5.969 + 2.368ln(DBH) 305.67 ± 56.94 0.015 ± 0.009 胡桃楸 J. mandshurica 25.75 ± 2.20 ln(wl) = − 4.231 + 1.974ln(DBH) 300.26 ± 52.45 0.034 ± 0.015 蒙古栎 Q. mongolica 32.55 ± 8.83 ln(wl) = − 5.536 + 2.346ln(DBH) 188.97 ± 37.93 0.031 ± 0.015 红松 P. koraiensis 12.83 ± 0.18 ln(wl) = − 5.179 + 2.475ln(DBH) 74.49 ± 18.12 0.003 ± 0.000 4 注:G = wl × SLA × Pnmax。G代表不考虑树干呼吸和根呼吸的条件下,代表种群平均水平的单株个体光下最大有机物积累速率;wl代表根据异速生长方程计算得到的叶片干物质量。Notes: G = wl × SLA × Pnmax. G represents the maximum accumulation rate of organic matter under light in an individual representing the average level of the population, without considering trunk respiration and root respiration; wl represents the dry matter quality of the leaves calculated according to the allometric biomass equations. 表 8 阔叶红松林5个树种的功能性状参数和叶片元素含量
Table 8 Functional trait parameters and leaf element contents of the five tree species in MBKPFs
树种 Tree species SLA/(cm2·g− 1) HD/mm Nmass/(mg·g− 1) Kmass/(mg·g− 1) 春榆 U. davidiana 213.65 ± 37.86b 0.18 ± 0.06b 25.16 ± 1.48b 13.67 ± 1.84b 紫椴 T. amurensis 305.67 ± 56.94a 0.18 ± 0.03b 24.70 ± 2.41b 13.53 ± 3.28b 胡桃楸 J. mandshurica 300.26 ± 52.45a 0.21 ± 0.07b 29.92 ± 1.76a 17.57 ± 2.46a 蒙古栎 Q. mongolica 188.97 ± 37.93b 0.22 ± 0.11b 20.26 ± 1.76c 9.17 ± 1.94c 红松 P. koraiensis 74.49 ± 18.12c 0.61 ± 0.09a 18.21 ± 1.16d 5.73 ± 1.48d -
[1] 宋沙沙, 苟宇波, 何欣燕, 等. 改良剂对盐碱土的改良效应及垂柳生长的影响[J]. 北京林业大学学报, 2017, 39(5):89−97. Song S S, Gou Y B, He X Y, et al. Effects of modifier application on saline-alkali land amelioration and weeping willow growth[J]. Journal of Beijing Forestry University, 2017, 39(5): 89−97.
[2] Gamon J A, Field C B, Goulden M L, et al. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types[J]. Ecological Applications, 1995, 5(1): 28−41. doi: 10.2307/1942049
[3] 金桂香, 刘海轩, 刘瑜, 等. 基于叶片反射光谱特征的银杏健康量化评价技术[J]. 光谱学与光谱分析, 2018, 38(4):1184−1190. Jin G X, Liu H X, Liu Y, et al. Study on quantitative assessment of Ginkgo biloba tree health based on characteristics of leaf spectral reflectance[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1184−1190.
[4] 李佛琳. 基于光谱的烟草生长与品质监测研究[D]. 南京: 南京农业大学, 2006. Li F L. Monition tobacco growth and quality based on spectra[D]. Nanjing: Nanjing Agricultural University, 2006.
[5] Castro-Esau K L, Sánchez-Azofeifa G A, Rivard B, et al. Variability in leaf optical properties of Mesoamerican trees and the potential for species classification[J]. American Journal of Botany, 2006, 93(4): 517−530. doi: 10.3732/ajb.93.4.517
[6] 彭涛, 李鹏民, 贾裕娇, 等. 介绍两种无损伤测定植物活体叶片色素含量的方法[J]. 植物生理学通讯, 2006, 42(1):83−86. Peng T, Li P M, Jia Y J, et al. Two noninvasive methods for determining pigment content in plant leaves[J]. Plant Physiology Communications, 2006, 42(1): 83−86.
[7] Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 2002, 153(1): 185−194. doi: 10.1046/j.0028-646X.2001.00289.x
[8] Madeira A C, Mentions A, Ferreira M E, et al. Relationship between spectroradiometric and chlorophyll measurements in green beans[J]. Communications in Soil Science and Plant Analysis, 2000, 31(5−6): 631−643. doi: 10.1080/00103620009370465
[9] 王鑫, 王梓橦, 尤文强, 等. 利用叶片正反面反射光谱估算叶绿素含量[J]. 光谱学与光谱分析, 2018, 38(8):2524−2528. Wang X, Wang Z T, You W Q, et al. Estimation of chlorophyll content by reflectance spectra of the positive and negative blade[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2524−2528.
[10] Peñuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International Journal of Remote Sensing, 1997, 18(13): 2869−2875. doi: 10.1080/014311697217396
[11] 王树东, 刘素红, 丁建丽, 等. 叶片水分含量光谱响应变化研究[J]. 干旱区地理, 2006, 29(4):510−516. doi: 10.3321/j.issn:1000-6060.2006.04.009 Wang S D, Liu S H, Ding J L, et al. Research on spectral changes with water losing of leaves[J]. Arid Land Geography, 2006, 29(4): 510−516. doi: 10.3321/j.issn:1000-6060.2006.04.009
[12] 刘畅, 孙鹏森, 刘世荣, 等. 穿透雨减少下锐齿栎叶片光合色素季节动态及其反射光谱响应[J]. 应用生态学报, 2017, 28(4):1077−1086. Liu C, Sun P S, Liu S R, et al. Leaf photosynthetic pigment seasonal dynamic of Quercus aliena var. acuteserrata and its spectral reflectance response under throughfall elimination[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1077−1086.
[13] 曾伟, 蒋延玲, 李峰, 等. 蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理[J]. 生态学报, 2008,28(6):2504−2510. Zeng W, Jiang Y L, Li F, et al. Responses of Quercus mongolica’s photosynthetic parameters to soil moisture stress[J]. Acta Ecologica Sinica, 2008,28(6): 2504−2510.
[14] 夏莹莹, 毛子军, 马立祥, 等. 水分条件对红松和西伯利亚红松针叶脯氨酸与叶绿素含量的影响[J]. 植物研究, 2008, 28(3):330−335. doi: 10.7525/j.issn.1673-5102.2008.03.018 Xia Y Y, Mao Z J, Ma L X, et al. Effects of water conditions on proline and chllorophy contents in Pinus koraiensis and Pinus sibirica[J]. Bulletin of Botanical Research, 2008, 28(3): 330−335. doi: 10.7525/j.issn.1673-5102.2008.03.018
[15] 刘伟国, 范秀华. 长白山红松阔叶林主要树种光谱反射特征对光环境的响应[J]. 生态学报, 2009, 29(9):4720−4726. doi: 10.3321/j.issn:1000-0933.2009.09.015 Liu W G, Fan X H. The effect of light on the spectral reflectance of six tree species of broadleaved Korean pine forest in Changbai Mountain[J]. Acta Ecologica Sinica, 2009, 29(9): 4720−4726. doi: 10.3321/j.issn:1000-0933.2009.09.015
[16] 刘柿良, 马明东, 潘远智, 等. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10):1062−1074. Liu S L, Ma M D, Pan Y Z, et al. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chinese Journal of Plant Ecology, 2012, 36(10): 1062−1074.
[17] Richardson A D, Berlyn G P. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. American Journal of Botany, 2002, 89(1): 88−94. doi: 10.3732/ajb.89.1.88
[18] Poulos H M, Goodale U M, Berlyn G P. Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position[J]. American Journal of Botany, 2007, 94(5): 809−818. doi: 10.3732/ajb.94.5.809
[19] 卢文敏, 刘伟国, 方晓雨, 等. 不同海拔的长白山岳桦叶片反射光谱研究[J]. 北京林业大学学报, 2011, 33(1):55−59. Lu W M, Liu W G, Fang X Y, et al. Spectral reflectance of Betula ermanii at different altitudes in the Changbai Mountains[J]. Journal of Beijing Forestry University, 2011, 33(1): 55−59.
[20] 范秀华, 刘伟国, 卢文敏, 等. 长白山红松臭冷杉光谱反射随海拔的变化[J]. 生态学报, 2011, 31(14):3910−3917. Fan X H, Liu W G, Lu W M, et al. Changes of spectral reflectance of Pinus koraiensis and Abies nephrolepis along altitudinal gradients in Changbai Mountain[J]. Acta Ecologica Sinica, 2011, 31(14): 3910−3917.
[21] 李菊艳, 赵成义, 孙栋元, 等. 水分对胡杨幼苗光合及生长特性的影响[J]. 西北植物学报, 2009, 29(7):1445−1451. doi: 10.3321/j.issn:1000-4025.2009.07.024 Li J Y, Zhao C Y, Sun D Y, et al. Photosynthetic characteristics and growth of Populus euphratica seedlings with water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1445−1451. doi: 10.3321/j.issn:1000-4025.2009.07.024
[22] 李菊艳, 赵成义, 闫映宇, 等. 盐分对胡杨幼苗生长及光合特性的影响[J]. 中国沙漠, 2010, 30(1):80−86. Li J Y, Zhao C Y, Yan Y Y, et al. Effects of salt on the growth and photosynthetic characteristics of Populus euphratica seedlings[J]. Journal of Dessert Research, 2010, 30(1): 80−86.
[23] 蔡金桓, 薛立. 高山植物的光合生理特性研究进展[J]. 生态学杂志, 2018, 37(1):245−254. Cai J H, Xue L. Advances on photosynthesis characteristics of alpine plants[J]. Chinese Journal of Ecology, 2018, 37(1): 245−254.
[24] 张丽霞, 尹季显. 气候变暖对农作物物候, 光合生理特性和产量影响的研究进展[J]. 安徽农业科学, 2015, 43(29):201−203, 218. doi: 10.3969/j.issn.0517-6611.2015.29.072 Zhang L X, Yin J X. Research progress about the effects of climate warming on crop phenology, photosynthetic physiological characteristics and yield[J]. Journal of Anhui Agricultural Sciences, 2015, 43(29): 201−203, 218. doi: 10.3969/j.issn.0517-6611.2015.29.072
[25] 侯彦会, 周广胜, 许振柱. 基于红外增温的草地生态系统响应全球变暖的研究进展[J]. 植物生态学报, 2013, 37(12):1153−1167. Hou Y H, Zhou G S, Xu Z Z. An overview of research progress on responses of grassland ecosystems to global warming based on infrared heating experiments[J]. Chinese Journal of Plant Ecology, 2013, 37(12): 1153−1167.
[26] 田大伦, 罗勇, 项文化, 等. 樟树幼树光合特性及其对CO2 浓度和温度升高的响应[J]. 林业科学, 2004, 40(5):88−92. doi: 10.3321/j.issn:1001-7488.2004.05.014 Tian D L, Luo Y, Xiang W H, et al. Photosynthetic characteristics of Cinnamomum camphora and its response to elevation of CO2 and temperature[J]. Scientia Silvae Sinicae, 2004, 40(5): 88−92. doi: 10.3321/j.issn:1001-7488.2004.05.014
[27] 霍宏. 气候暖化对兴安落叶松光合和生长影响的研究[D]. 哈尔滨: 东北林业大学, 2007. Huo H. The effects of climate warming on photosynthesis and growth of Larix gmelinii[D]. Harbin: Northeast Forestry University, 2007.
[28] 王精明, 李永华, 黄胜琴, 等. CO2浓度升高对凤梨叶片生长和光合特性的影响[J]. 热带亚热带植物学报, 2004, 12(6):511−514. doi: 10.3969/j.issn.1005-3395.2004.06.004 Wang J M, Li Y H, Huang S Q, et al. Effects of elevated CO2 concentration on growth and photosynthetic characteristics in Guzmania ‘Danis’
[J]. Journal of Tropical and Subtropical Botany, 2004, 12(6): 511−514. doi: 10.3969/j.issn.1005-3395.2004.06.004 [29] 李永华, 刘丽娜, 叶庆生. 高CO2浓度对红掌的生长和光合作用的影响[J]. 热带亚热带植物学报, 2005, 13(4):343−346. doi: 10.3969/j.issn.1005-3395.2005.04.013 Li Y H, Liu L N, Ye Q S. Effects of elevated CO2 on the growth and photosynthesis of Anthurium andraeanum[J]. Journal of Tropical and Subtropical Botany, 2005, 13(4): 343−346. doi: 10.3969/j.issn.1005-3395.2005.04.013
[30] 欧英娟, 彭晓春, 董家华, 等. CO2浓度升高对龙血树和春羽生长及光合生理的影响[J]. 西北植物学报, 2013, 33(11):2265−2272. doi: 10.7606/j.issn.1000-4025.2013.11.2265 Ou Y J, Peng X C, Dong J H, et al. Effect of elevated CO2 concentration on the growth and photosynthetic physiology of Dracaena angustifolia and Philodenron selloum[J]. Acta Bot Boreal-Occident Sin, 2013, 33(11): 2265−2272. doi: 10.7606/j.issn.1000-4025.2013.11.2265
[31] 叶旺敏, 熊德成, 杨智杰, 等. 模拟增温对杉木幼树生长和光合特性的影响[J]. 生态学报, 2019, 39(7):2501−2509. Ye W M, Xiong D C, Yang Z J, et al. Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(7): 2501−2509.
[32] 毛子军, 赵溪竹, 刘林馨, 等. 3种落叶松幼苗对CO2升高的光合生理响应[J]. 生态学报, 2010, 30(2):317−323. Mao Z J, Zhao X Z, Liu L X, et al. photosynthetic physiological characteristics in response to elevated CO2 concentration of three larch (Larix) species seedings[J]. Acta Ecologica Sinica, 2010, 30(2): 317−323.
[33] 张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009 Zhang C Y, Zhao X H,Zhao Y Z. Community structure in different successional stages in north temperature forests of Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009
[34] 王玲. 长白山阔叶红松林群落树种关联及演替特征的研究[D]. 吉林: 北华大学, 2017. Wang L. Study on correlation and succession characteristics of tree species broadleaved Korean pine forest in Changbai Moutain[D]. Jilin: Beihua University, 2017.
[35] Chmura D J, Modrzyński J, Chmielarz P, et al. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit[J]. Plant Biology, 2017, 19(2): 172−182. doi: 10.1111/plb.12531
[36] 赵晓焱, 王传宽, 霍宏. 兴安落叶松(Larix gmeini)光合能力及相关因子的种源差异[J]. 生态学报, 2008, 28(8):3798−3807. doi: 10.3321/j.issn:1000-0933.2008.08.036 Zhao X Y, Wang C K, Huo H. Variations in photosynthetic capacity and associated factors for Larix gmelinii from diverse origin[J]. Acta Ecologica Sinica, 2008, 28(8): 3798−3807. doi: 10.3321/j.issn:1000-0933.2008.08.036
[37] 王秀伟, 毛子军. 兴安落叶松人工林冠层气体交换的时空特性[J]. 林业科学, 2007, 43(11):43−49. doi: 10.3321/j.issn:1001-7488.2007.11.008 Wang X W, Mao Z J. Temporal and spatial variation in gas exchange in canopy of Larix gmelinii plantation[J]. Scientia Silvae Sinicae, 2007, 43(11): 43−49. doi: 10.3321/j.issn:1001-7488.2007.11.008
[38] 王文章, 陈杰. 落叶松光合特性与初级生产力[J]. 东北林业大学学报, 1994, 22(4):15−21. Wang W Z, Chen J. Study on the photosynthetic characteristics and the primary productivity of Larix olgensis[J]. Journal of Northeast Forestry University, 1994, 22(4): 15−21.
[39] 黄珍, 唐景毅, 柳静臣, 等. 长白山天然更新红松幼树光合与光谱特性的季节动态[J]. 应用与环境生物学报, 2014, 20(3):455−461. Huang Z, Tang J Y, Liu J C, et al. Seasonal dynamics of photosynthesis and spectral characteristics of natural regeneration Pinus koriensis in the Changbai Mountains[J]. Chinese Journal of Applied Environmental Biology, 2014, 20(3): 455−461.
[40] Zhang M, Zhu J, Li M, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels[J]. Forest Ecology and Management, 2013, 306: 234−242. doi: 10.1016/j.foreco.2013.06.031
[41] Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4): 235−242. doi: 10.2307/1313077
[42] Jianlu M, Liwen Z, Dong C. Geographic distribution of Pinus koraiensis in the world[J]. Journal of Northeast Forestry University, 1992, 20(5): 40−48.
[43] John H M T. Mathematical models in plant physiology[M]. London: Academic Press, 1976.
[44] He H, Zhang C, Zhao X, et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China[J/OL]. PloS One, 2018, 13(1): e0186226 [2019−08−16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774681/.
[45] Pulinets M P. The influence of light intensity on the growth of Pinus koraiensis[J]. Lesnoe Khozyaistvo, 1986, 4(4): 40−42.
[46] 刘传照, 李俊清. 林下光照条件与红松幼树生长的相关性研究[J]. 东北林业大学学报, 1991, 19(3):103−108. Liu C Z, Li J Q. Correlativity of the growth of young Korean pine and the condition in the forest[J]. Journal of Northeast Forestry University, 1991, 19(3): 103−108.
[47] 姜超, 黄珍, 方晓雨, 等. 长白山5种槭属植物光合及反射光谱特性[J]. 应用与环境生物学报, 2013, 19(4):713−717. doi: 10.3724/SP.J.1145.2013.00713 Jiang C, Huang Z, Fang X Y, et al. Characteristics of photosynthesis and spectral reflectance in five Acer species in the Changbai Mountain[J]. Chinese Journal of Applied Environmental Biology, 2013, 19(4): 713−717. doi: 10.3724/SP.J.1145.2013.00713
[48] Legner N, Fleck S, Leuschner C. Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance[J]. Trees, 2014, 28(1): 263−280. doi: 10.1007/s00468-013-0947-0
[49] Lambers H, Chapin III F S, Pons T L. Plant physiological ecology[M]. Berlin: Springer Science & Business Media, 2008.
[50] Hikosaka K, Niinemets Ü, Niels P R A. Canopy photosynthesis: from basics to applications[M]. Dordrecht: Springer, 2016.
[51] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006.
[52] 夏国威. 日本落叶松人工林冠层光合生产力研究[D]. 北京: 中国林业科学研究院, 2017. Xia G W. Photosynthetic production of crown layer in Larix kaempferi plantation[D]. Beijing: Chinese Academy of Forestry, 2017.
[53] Koch G W, Sillett S C, Jennings G M, et al. The limits to tree height[J]. Nature, 2004, 428: 851−854. doi: 10.1038/nature02417
[54] Woodruff D R, McCulloh K A, Warren J M, et al. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir[J]. Plant, Cell & Environment, 2007, 30(5): 559−569.
[55] He C X, Li J Y, Guo M, et al. Changes in leaf photosynthetic characteristics and water use efficiency along with tree height of 4 tree species[J]. Acta Ecologica Sinica, 2008, 28(7): 3008−3016. doi: 10.1016/S1872-2032(08)60064-5
[56] 方晓雨, 张宏琴, 姜超, 等. 3种乔木叶片反射光谱与光合特性随树高的变化[J]. 应用与环境生物学报, 2013, 19(2):383−388. doi: 10.3724/SP.J.1145.2013.00383 Fang X Y, Zhang H Q, Jiang C, et al. Changes in leaf spectral reflectance and photosynthetic characteristics with tree height in three tree species[J]. Chinese Journal of Applied Environmental Biology, 2013, 19(2): 383−388. doi: 10.3724/SP.J.1145.2013.00383
[57] Weng J H, Liao T S, Sun K H, et al. Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan[J]. Tree Physiology, 2005, 25(8): 973−979. doi: 10.1093/treephys/25.8.973
[58] Weng J H, Chen Y N, Liao T S. Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes[J]. Functional Plant Biology, 2006, 33(3): 241−246. doi: 10.1071/FP05156
[59] Weng J H, Lai K M, Liao T S, et al. Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan[J]. Trees, 2009, 23(2): 347−356. doi: 10.1007/s00468-008-0283-y
[60] Billings W D, Morris R J. Reflection of visible and infrared radiation from leaves of different ecological groups[J]. American Journal of Botany, 1951, 38(5): 327−331.
[61] Cameron R J. Light intensity and the growth of Eucalyptus seedlings (II): the effect of cuticular waxes on light absorption in leaves of Eucalyptus species[J]. Australian Journal of Botany, 1970, 18(3): 275−284. doi: 10.1071/BT9700275
[62] Clark J B, Lister G R. Photosynthetic action spectra of trees( II): the relationship of cuticle structure to the visible and ultraviolet spectral properties of needles from four coniferous species[J]. Plant Physiology, 1975, 55(2): 407−413. doi: 10.1104/pp.55.2.407
[63] 王红梅, 包维楷, 李芳兰. 不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J]. 应用与环境生物学报, 2008, 14(6):757−762. Wang H M, Bao W K, Li F L. Physiological and biochemical responses of two-years-old Sophora davidii seedling leaves to different water stresses[J]. Chinese Journal of Applied Environmental Biology, 2008, 14(6): 757−762.
[64] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2−3): 337−354. doi: 10.1016/S0034-4257(02)00010-X
[65] Gamon J A, Field C B, Fredeen A L, et al. Assessing photosynthetic downregulation in sunflower stands with an optically-based model[J]. Photosynthesis Research, 2001, 67(1−2): 113−125.
[66] 彭涛, 姚广, 高辉远, 等. 植物叶片和冠层光化学反射指数与叶黄素循环的关系[J]. 生态学报, 2009, 29(4):1987−1993. doi: 10.3321/j.issn:1000-0933.2009.04.044 Peng T, Yao G, Gao H Y, et al. Relationship between xanthophyll cycle and photochemical reflectance index measured at leaf or canopy level in two field-grown plant species[J]. Acta Ecologica Sinica, 2009, 29(4): 1987−1993. doi: 10.3321/j.issn:1000-0933.2009.04.044
[67] Demmig-Adams B, Adams III W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science, 1996, 1(1): 21−26. doi: 10.1016/S1360-1385(96)80019-7
-
期刊类型引用(3)
1. 李潇,王汉时,王宏星,蒋路平,庞忠义,彭彦辉,赵曦阳. 灌溉和施肥对‘新林1号’杨生长和光合生理特性的影响. 植物研究. 2025(01): 77-87 . 百度学术
2. 张聪,贾炜玮,郭昊天,范迎新. 不同施肥措施的人工落叶松生长差异性. 东北林业大学学报. 2024(11): 1-9 . 百度学术
3. 王亚飞,贺曰林,杨红青,祝维,贾黎明,席本野. 灌溉施肥对杨树人工林林木及地力效应研究进展. 世界林业研究. 2023(05): 63-69 . 百度学术
其他类型引用(0)