Construction of the height to crown base mixed model for Korean pine
-
摘要:目的 基于帽儿山红松人工林63块样地2 972株红松数据,利用非线性混合模型构建红松枝下高模型,为进一步研究生长与收获模型提供理论依据。方法 本文首先使用8个常用的枝下高模型,选出最优基础模型;其次,研究林分变量或单木变量对枝下高的影响,建立含林分变量的枝下高模型;最终在基础模型和含林分变量模型的基础上,考虑样地效应对红松枝下高的影响,构建红松枝下高基础混合效应模型和广义混合效应模型。模型用4种抽样方式(随机抽取、抽取最大树、抽取最小树、抽取平均树)和8种样本大小(1 ~ 8株树)对基础混合效应模型和广义混合效应模型进行抽样检验。结果 Logistic模型拟合精度好,符合生物学意义,且模型形式简单,选为最优基础模型。除树高、胸径以外,大于对象木断面积之和、优势木高和冠幅与枝下高有显著相关性,加入后明显提升模型的拟合精度。枝下高广义混合效应模型的拟合效果要优于其他模型。模型检验结果表明:当应用基础混合效应模型预测时,建议抽取胸径最小的4个样本;当应用广义混合效应模型预测时,建议随机抽取4个样本。结论 枝下高广义混合效应模型在拟合效果和预测精度方面优于其他3种模型,建议将此模型作为人工红松枝下高模型。当应用广义混合效应模型预测时,建议随机抽取4个样本。Abstract:Objective Based on the data of 2 972 Korean pine trees in 63 sample plots of Korean pine plantation in Maor Mountain of northeastern China, a nonlinear mixed model was used to construct the height to crown base model of Korean pine, which provided a theoretical basis for further research on growth and yield model.Method Firstly, the optimal basic model was selected from eight commonly used models of height to crown base. Secondly, the influence of stand variables or individual tree variables on height to crown base was studied, and a generalized model was established. Finally, on the basis of the basic model and the generalized model, considering the effects of sample plot on the height to crown base of Korean pine, the basic mixed effect model and generalized mixed effect model of height to crown base for Korean pine were constructed. Four alternatives of height to crown base (HCB) sampling designs (the randomly selected trees and selecting the maximum, medium-size and minimum trees) and eight sample sizes (1−8 trees) were studied for sampling correction of basic mixed effect model and generalized mixed effect model respectively.Result Logistic model had good fitting accuracy and biological significance, and its form was simple, so it was chosen as the the optimal basic model. In addition to tree height (H) and DBH, there was a significant correlation between the basal area sum larger than subject tree (BAL), dominant height (HD), crown width (CW) and HCB, and the fitting accuracy of the model was improved obviously. The fitting effect of height to crown base generalized mixed effect model was better than that of other models. The model validation showed that when the basic mixed effect model was used to predict, it was recommended to select four samples with the smallest DBH, and when the generalized mixed effect model was used to predict, it was recommended to randomly select four samples.Conclusion The generalized mixed effect model is superior to the other three models in fitting effect and prediction accuracy. It is recommended that this model can be used as the height to crown base model for Korean pine. When applying generalized mixed effect model prediction, it is recommended that four samples can be randomly selected.
-
Keywords:
- Korean pine /
- nonlinear mixed model /
- height to crown base /
- plantation /
- mixed model calibration
-
现如今城市居住空间紧张,小户型的比例在逐渐加大。中国政府出台规定建筑面积90平方米以下户型占比必须达到70%以上[1],这预示着更多的家庭面临功能空间不足的情况,就有大量家庭有一房两用的需求,即一个房间除了卧室的主要功能外,还可通过功能家具实现客厅或书房等功能,而其中翻转床则是实现睡眠–休闲、学习空间转换的功能家具的典型代表产品。
虽然翻转床有着可观的市场需求,但对于其力学性能的检测还是依赖整体破坏性试验为主要手段,目前其设计和分析尚缺乏科学的理论指导[2]。20世纪90年代气弹簧作为新型支撑出现,张琦等[3]对气弹簧的力学性能进行了计算分析;王殿武[4]研究了气弹簧力学特性并将其运用到汽车尾盖上;刘迎林等[5]对全塑车身后备箱气撑杆进行运动仿真并验证其安装位置;王定虎[6]运用力矩平衡原理和理想气体方程对汽车背门撑杆的选择及布置进行校核。截止目前,气弹簧的研究主要集中在汽车领域,而鲜有在家具领域内的研究,为了弥补翻转床气弹簧机构设计和性能分析的理论欠缺,本文从实际应用需求出发,运用静力学和力矩平衡原理对气弹簧机构进行结构分析计算和选型。
1. 研究方法
1.1 翻转床气弹簧机构概况
翻转床床体翻转的目的是实现床体的收纳,以便满足房间睡眠–休闲、学习空间转换的用户功能需求。根据使用场景分析,翻转床运动功能示意图如图1所示。因为翻转床的床体框架、床板、床垫和床上用品等零部件加起来质量较大,如仅凭借人手部力量支撑则翻转困难,且在操作过程中存在砸到人的风险,所以实际翻转床产品均需要借助辅助结构实现翻转和随停的功能。由于气弹簧具有支撑、缓冲的作用,因此恰好适用于翻转床的运动功能需求。
壁柜式翻转床的翻转功能主要由气弹簧机构实现,分析翻转床的运动本质就是分析气弹簧机构。壁柜式翻转床结构和气弹簧机构简图如图2所示,翻转床左右两侧具有相同连杆结构,其中A点为翻转床的翻转中心,由螺栓将床体翻转框架和固定柜体铰接;BC为气弹簧,气弹簧两端分别和固定柜体及床体翻转框架铰接;床体翻转存在两个极限状态,即收纳状态(图2a)和使用状态(图2b),处于收纳状态时气弹簧处在伸展状态,即B1C,处于使用状态时气弹簧处在压缩状态,即BC。
图 2 翻转床结构和气弹簧机构简图1. 固定柜体;2. 气弹簧;3. 床体翻转框架;A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端; l. A点到床头距离。 1, fixed cabinet; 2, gas spring; 3, rotate frame; A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring; l, the distance from A point to the head of the bed.Figure 2. Diagram of foldable bed structure and gas spring mechanism1.2 气弹簧计算方法
根据国家标准GB 25751—2010压缩气弹簧技术条件、GB/T 1805—2001弹簧术语和JB/T 10418—2004气弹簧设计计算为依据,对气弹簧特性进行研究。对极限位置的床体进行平面力系的简化,并结合力矩平衡原理对床体和气弹簧机构进行受力分析。运用有限元的优化思路对气弹簧安装位置进行列表格寻最优解。运用静力学知识分析床体运动规律。
2. 结果与分析
2.1 气弹簧机构分析计算和选型
如图2所示,翻转床在收纳时气弹簧处于伸展过程,气弹簧的伸展力辅助床体的上翻过程。床体完全收纳进柜体时,此时床体重力矢量经过翻转中心A,在无外力情况下床体静止不动。翻转床展开过程中气弹簧处于压缩过程,气弹簧的压缩力为床体下翻过程提供缓冲力。
图3为气弹簧展开长度与压缩、伸展过程曲线示意图,其中F1为最小伸展力,F2为最大伸展力,F3为最小压缩力,F4为最大压缩力,S为气弹簧的行程,t为端头长度,结合图2气弹簧初始长度BC = S + t,展开长度L = B1C = S + t + S = 2S + t,t的取值一般为10 mm。
图 3 气弹簧展开长度与压缩、伸展过程曲线示意图d. 活塞杆直径;D1. 缸筒内径;D2. 缸筒外径;S. 行程;L. 伸展长度;t. 端头长度;F0. 启动力;F1. 最小伸展力;F2. 最大伸展力;F3. 最小压缩力;F4. 最大压缩力;Fa. 公称力a;Fb. 公称力b;C. 采力点。图引自文献[7]。d, piston rod diameter; D1, cylinder inner diameter; D2, cylinder outer diameter; S, stroke; L, extended length; t, end length; F0, star-up force; F1, minimum extension force; F2, maximum extension force; F3, minimum compress force; F4, maximum compress force; Fa, nominal force a; Fb, nominal force b; C, measuring point. Diagram is cited from reference [7].Figure 3. Diagram of expansion length of gas spring and curve of compression and stretching process气弹簧的选型需要的参数为气弹簧的伸展长度L和行程S以及气弹簧最小伸展力F1[8]。现以翻转床两个极限位置进行受力分析。使用状态下,当人手抬起床的边沿时以A点为旋转中心,能够将床体抬起。此时受力分析如图4所示。
图 4 使用状态手抬床体时床体受力分析简图A. 翻转中心;B. 气弹簧压缩末端;C. 气弹簧固定端;F2. 气弹簧最大伸展力;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;l. A点到床头距离;FL. 手对床体的抬力;A, rotation center;B, compression end of gas spring;C, fixed end of gas spring;F2, maximum extension force;G1, bed weight on the left side of point A;G2, bed weight on the right side of point A;FAx, x component of point A;FAy, y component of point A;l, A point to the head of the bed;FL, hand lift on the bed.Figure 4. Diagram of foldable bed force analysis when hand up the bed in using state由力矩平衡可得:
xF2l+G1l2−G2LB−l2+FL(LB−l)=0 (1) 式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;G1为A点左侧床体质量与重力加速度之积,单位N;G2为A点右侧床体质量与重力加速度之积,单位N;l为A点到床头距离,单位mm。
设床体和床垫总质量为m,
G1=lLBmg ,G2= LB−lLBmg ,则可将式(1)简化得:xF2l−(LB2−l)mg+FL(LB−l)=0 (2) 式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;l为A点到床头距离,单位mm;m为床体和床垫总质量,单位kg;g为重力加速度,单位N/kg。
收纳状态下,拉手与A、B1点视作在同一竖直线上。拉动床体时,人手拉动拉手的力矩能够平衡气弹簧对A点的弹力矩,此时受力分析简图如图5所示。
图 5 收纳状态手拉床体时床体受力分析简图A. 翻转中心;B1. 气弹簧伸展末端;C. 气弹簧固定端;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;F0. 启动力;F0x. F0沿x轴方向分力;F0y. F0沿y轴方向分力;l. A点到床头距离;θ. F0与垂直方向夹角;FP. 手对拉手拉力。A, rotation center;B1, stretching end of gas spring;C, fixed end of gas spring;FAx, x component of point A;FAy, y component of point A; F0, star-up force; F0x, x component of F0; F0y. y component of F0; l, A point to the head of the bed; θ, angle of F0 with vertical direction; FP, hand pull on the handle.Figure 5. Diagram of foldable bed force analysis when hand drag the bed in storage state因为F0y与A点在水平方向上没有距离,所以F0在y轴方向上的力矩为0。由力矩平衡可得:
x(F0xl+F0y⋅0)−FP(lP−l)=0 (3) 式中:F0为气弹簧启动力,单位N;lP为拉手高度,单位mm;FP为手对拉手拉力,单位N;l为A点到床头距离,单位mm;x为气弹簧个数;F0x为F0沿x轴方向分力,单位N;F0y为F0沿y轴方向分力,单位N。
图5中,依据压缩气弹簧技术条件,气弹簧启动力F0略大于气弹簧最小压缩力F3,取F3值近似为F0值,由三角函数可知:
F0=F0xsinθ=F3 (4) 式中:θ为F0与垂直方向夹角,单位°;F0为气弹簧启动力,单位N;F0x为F0沿x轴方向分力,单位N;F3为气弹簧最小压缩力,单位N。
在符合人机工程的情况下,使lP尽量大可以加大手拉开床体的力矩,减小手部力量,取lP = 1 750 mm。依据人机工程学,为使得操作力比较恰当,收纳床体时推荐的操作力范围为50 ~ 80 N[9],此处取手对床体的抬力FL = 80 N,手拉拉手的力FP = 80 N。
F1与F3之间有一段由于摩擦力产生的差值,依据GB25751—2010其计算公式为Fr =(F3 − F1)/2,即动态摩擦力Fr是最小压缩力和最小伸展力之差的平均值[10]。气弹簧摩擦力所产生的阻力与杆的运动方向相反,其与标称力值(图样及产品上标注的力,包括F1、Fa、
F3⋯⋯ )极限偏差应符合下表1的规定。表 1 标称力值极限偏差与动态摩擦力Table 1. Nominal force limit deviation and dynamic friction标称力值 Nominal force 标称力值的极限偏差 Nominal force limit deviation 最大动态摩擦力 Maximum dynamic friction ≤ 100 + 15 − 5 25 101 ~ 200 + 20 − 10 30 201 ~ 400 + 30 − 15 40 401 ~ 600 + 40 − 20 60 601 ~ 800 + 50 − 25 80 801 ~ 1 000 + 60 − 30 100 1 001 ~ 1 200 + 70 − 35 130 > 1 200 + 80 − 40 150 注:表1引自文献[7]。Note: Tab.1 is cited from reference [7]. F1与F2的关系可由弹性系数求得。弹性系数k表示的是单位压缩力变化的弹簧常数[10],单位为N/mm,行程S的单位是mm。伸展阶段气弹簧弹性系数公式[11]为:
k=(F2−F1)/S (5) 其中,k的大小可由厂家进行调节,其具体值可通过实验得出。一般商家提供的气弹簧的弹性系数k介于1.05和1.8之间,弹性系数越小意味着制造难度越高。
以市场常见的床体规格为准,此处选取宽900 mm、长1 900 mm、质量为25 kg的床垫。选取匹配的床体框架结构的材质为钢,其质量约为25 kg。刨花板密度为650 kg/m3,则18 mm(厚) × 900 mm(宽) × 1 900 mm(长)的床板质量为20 kg。则床体总重力为:(25 + 25 + 20) × 9.8 = 686 N。如固定柜体目标深度为300 mm,为了保证A、C两点安装位置距离柜体板前后两边有足够的距离保证强度,则取l = 160 mm。
依据式(2),xF2 = 2 517.1 N,选取气弹簧个数x = 4,则F2 = 629.3 N。
由图4、图5可知:取l为160 mm时,以B、B1为圆心,以(S + 10)、(2S + 10)为半径作圆,作交点可得C点安装位置。并结合式(3)、式(4)、表1以及k的计算方程,可将相关参数整理成表2。
表 2 气弹簧相关参数及安装位置与行程S的关系Table 2. Relationship between gas spring stroke and relevant parameters and installation positionS/mm θ/° F3/N Fr/N F1/N k 170 18 643.2 180 20 581.1 60 461.1 0.934 190 23 508.0 40 428.0 1.059 200 26 453.4 40 373.4 1.280 注:S为行程;θ为F0与垂直方向夹角;F3为最小压缩力;Fr为最大动态摩擦力;F1为最小伸展力;k为气弹簧弹性系数。表3同此。Notes:S, stroke; θ, angle of F0 with vertical direction; F3, minimum compress force; Fr, maximum dynamic friction; F1, minimum extension force; k, gas spring modulus coefficient. Same as Tab.3. 由表2可知:θ角越大,k则越大,气弹簧的制作难度越小。为减小安装宽度,选择S为190 mm,F1 = 428 N作为最小伸展力的气弹簧,则要求厂家提供的气弹簧弹性系数k为1.06。参考表3可知F1和S的参数符合设计要求。
表 3 气弹簧活塞杆直径与最小伸展力大小选择范围推荐表Table 3. Recommended table of minimum extension force range and stroke range of gas spring序号
No.活塞杆
直径 Diameter of piston rod/mm最小伸展力
Minimum extension force (F1)/N行程范围
Stroke range/mm推荐范围
Recommended
range可选范围
Optional
range1 6 50 ~ 250 50 ~ 350 50 ~ 400 2 8 200 ~ 450 100 ~ 700 100 ~ 700 3 10 300 ~ 700 100 ~ 1 200 150 ~ 1 100 4 12 450 ~ 1 000 150 ~ 1 500 150 ~ 1 600 5 14 600 ~ 1 400 200 ~ 2 500 1 600 ~ 2 200 6 20 1 250 ~ 3 100 1 000 ~ 5 200 2 200 ~ 4 500 注:表3引自文献[12]。Note: Tab.3 is cited from reference [12]. 此时C点的安装位置如图6所示,BC = S + 10 = 200 mm,B1C = 2S + 10 = 390 mm。如果床体总质量加大,可以适当改变固定柜体深度以加大l的取值,使气弹簧机构获得更大的力臂。
2.2 翻转床运动规律分析
翻转床旋转到任意角度时的受力图如图7所示。取气弹簧对床体弹力FB与矩心A点的力臂为a,G1与矩心A点的力臂为b,G2与矩心A点的力臂为c。矩心A点右侧力矩减去左侧合力矩可列式:
图 7 任意位置下床架受力图A. 翻转中心;B′. 在β旋转角度下的床尾位置;C. 气弹簧固定端;β. 床体翻转框架翻转角度;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;a. FB对矩心A点的力臂;b. G1对矩心A点的力臂;c. G2对矩心A点的力臂。A, rotation center; B′, bed tail position at β rotation angle; C, fixed end of gas spring; β, flip angle of rotate frame; G1, bed mass on the left side of point A multiply gravity acceleration; G2, bed mass on the right side of point A multiply gravity acceleration; a, FB force arm to point A; b, G1 force arm to point A; c, G2 force arm to point A.Figure 7. Diagram of foldable bed force at arbitrary degreeMA=MA(xFB)+MA(G1)−MA(G2)=xFBa+G1b−G2c (6) 式中:MA为合力对A点的力矩,单位N;x为气弹簧个数;FB为气弹簧对床体弹力,单位N;G1为A点左侧床体重力,单位N;G2为A点右侧床体重力,单位N;a为FB对矩心A点的力臂,单位mm;b为G1对矩心A点的力臂,单位mm;c为G2对矩心A点的力臂,单位mm;MA(xFB)为单边气弹簧对A点力矩,单位N·mm;MA(G1)为G1对A点力矩,单位N·mm;MA(G2)为G2对A点力矩,单位N·mm。
气弹簧压缩和伸展两个过程曲线中任意点的值可以用伸展长度和k值求出,在不同旋转角度β下分别量取a、b、c的值代入式(6),并作出β与MA的关系曲线如图8所示。图8两条曲线为分别代入了弹簧伸展过程力值和压缩过程力值后的曲线。由图 8可知:床体在打开18°以内会弹回收纳状态;18° ~ 24°之间床体可悬停;大于24°以后,A点右侧力矩大于A点左侧合力矩。
3. 结 论
基于静力学和力矩平衡原理完成了翻转床两个极限位置的受力分析,构建了翻转床气弹簧分析计算理论,运用该理论能够通过翻转床的床身质量和尺寸得到气弹簧的最小伸展力、行程和弹性系数,从而完成气弹簧选型;运用CAD工具做两圆相交的几何法得出气弹簧安装位置的确立方法;基于力矩平衡原理构建合力矩和翻转角度β的关系式,得出翻转床悬停范围。设定床体尺寸宽900 mm、长1 900 m、固定柜体目标深度300 mm,则可得气弹簧最小伸展力为428 N,行程为190 mm,弹性系数为1.06,悬停角度范围为18° ~ 24°,翻转角大于24°后则为自由下翻。本文构建的分析方法和结果可为家具行业的壁柜式翻转床设计、选型和性能分析提供理论支撑和实践指导。
-
表 1 红松人工林建模数据和检验数据基本统计量
Table 1 Statistics of fitting data and validation data of Korean pine plantation
数据类型
Data type变量
Variable均值
Mean最小值
Minimum最大值
Maximum标准差
Standard
deviation变异系数
Coefficient of
variation建模数据
Fitting data枝下高 Height to crown base (HCB)/m 5.27 1.10 13.20 2.49 47.24 树高 Tree height (H)/m 10.86 3.30 19.60 3.16 29.12 胸径 DBH (D)/cm 14.78 5.00 36.50 5.99 40.53 高径比 Height-diameter ratio (RHD) 0.78 0.43 2.68 0.17 22.05 大于对象木的断面积和/(m2·hm−2)
Basal area sum larger than subject tree (BAL)/(m2·ha−1)1.01 0.00 2.56 0.50 49.54 冠幅 Crown width (CW)/m 1.66 0.33 4.30 0.44 26.46 优势木高 Dominant height (HD)/m 17.88 14.90 20.62 1.23 6.86 检验数据
Validation data枝下高 HCB/m 3.62 0.80 12.10 1.89 52.25 树高 H/m 9.32 3.20 17.90 2.78 29.81 胸径 DBH (D)/cm 11.72 5.00 28.20 4.57 38.98 高径比 RHD 0.83 0.50 1.59 0.16 19.13 大于对象木的断面积和/(m2·hm−2)
BAL/(m2·ha−1)0.87 0.00 1.40 0.31 35.45 冠幅 CW/m 1.70 0.78 3.83 0.40 23.73 优势木高 HD/m 17.93 16.86 19.47 0.81 4.54 表 2 候选基础枝下高模型
Table 2 Model of HCB candidate
模型
Model模型表达式
Model expression参考文献
Reference(1) HCB=H/(1+exp(X)) [31] (2) HCB=H/√(1+exp(X)) [14] (3) HCB=H/6√(1+exp(X)) [14] (4) HCB=H(1−exp(X)) [29] (5) HCB=H(a+exp(X)) [30] (6) HCB=H(1−aexp(X2) [31] (7) HCB=H/c√(1+aexp(X)) [14] (8) HCB=H(1−aexp(Xc)) [14] 注: a、c为模型参数; X 为关于林木大小、竞争因子、立地条件的函数,在表中特指X = b0 + b1D,b0、b1为模型参数。下同。Notes: a and c refer to model parameters; X is the function about tree size competition index and site condition, here in the table, X = b0 + b1D, b0, b1 are model parameters. The same below. 表 3 候选模型评价指标和拟合参数
Table 3 Evaluation indices and fitting parameters of candidate model
模型
Model参数
Parameter参数估计值
Parameter estimate拟合优度
Goodness-of-fit statisticsR2 RMSE (1) b0 0.396 4 0.579 5 1.614 8 b1 −0.020 0 (2) b0 1.633 6 0.577 9 1.617 7 b1 −0.026 9 (3) b0 5.085 8 0.577 7 1.618 3 b1 −0.050 0 (4) a 0.561 9 0.578 5 1.616 7 b0 0.039 0 b1 −0.008 4 (5) a 不收敛
No convergenceb0 b1 (6) a 不收敛
No convergenceb0 b1 (7) a 不收敛
No convergenceb0 b1 c (8) a 不收敛
No convergenceb0 b1 c 表 4 不同预测变量组合模型拟合结果
Table 4 Model fitting results based on different prediction variables
变量组合 Variable combination R2 MAE RMSE — 0.567 0 1.284 0 1.638 6 大于对象木的断面积和−优势木高 BAL-HD 0.683 9 1.087 8 1.400 1 大于对象木的断面积和−林分密度 BAL-N 0.671 1 1.113 2 1.428 1 大于对象木的断面积和−冠幅 BAL-CW 0.687 4 1.080 3 1.392 3 大于对象木的断面积和−优势木高−冠幅 BAL-HD-CW 0.700 0 1.050 2 1.363 8 大于对象木的断面积和−高径比−优势木高 BAL-RHD-HD 0.690 0 1.070 5 1.386 5 大于对象木的断面积和−优势木高−林分密度 BAL-HD-N 0.690 0 1.088 7 1.386 5 注:—表示除胸径外,无林分变量添加。Notes: — indicates the models without other stand variables except D. 表 5 广义非线性混合模型评价指标
Table 5 Evaluation indices of generalized nonlinear mixed model
随机效应参数
Random effect parameterAIC BIC LOGLIK LRT P值
P value— 8 167.35 8 207.88 −4 076.67 b0 7 987.10 8 027.63 −3 985.55 182.24 < 0.000 1 b0,d2 7 969.87 8 021.98 −3 975.93 19.24 < 0.000 1 b0,b1,d2 7 815.16 7 890.44 −3 894.58 162.7 < 0.000 1 注:—表示无随机参数。Note:— indicates the models without random parameters. 表 6 模型参数估计和模型拟合统计量
Table 6 Parameter estimates and fitting statistics for each model
项目
Item参数
Parameter不含随机效应模型 Model without random effect 含随机效应模型 Model with random effect 基础模型
Base model广义模型
Generalized model基础混合效应模型
Base mixed effect model广义混合效应模型
Generalized mixed effect model固定参数
Fixed parameterb0 0.396 4 −1.201 6 0.020 2 −1.739 8 b1 0.020 0 −0.043 9 0.010 5 −0.024 7 c1 0.093 9 0.112 8 d1 −0.363 3 −0.276 2 d2 0.383 7 0.285 9 方差组成
Composition of varianceσ2b0 0.416 6 0.135 4 σ2b1 0.000 2 0.000 3 σ2d2 0.054 6 σb0b1 −0.008 9 −0.000 7 σb0d2 −0.031 9 σb1d2 −0.003 0 拟合统计量
Fitting statisticsR2 0.578 1 0.699 5 0.766 7 0.775 2 MAE 1.284 0 1.051 8 0.926 2 0.905 5 RMSE 1.617 5 1.364 9 1.202 6 1.180 5 注: σ2b0 、σ2b1 、σ2d2 分别为b0 、b1 、d2 的方差;σb0b1 、σb0d2 、σb1d2 分别为b0与b1、b0与d2、b1与d2的协方差;MAE为平均绝对误差,RMSE为均方根误差。Notes:σ2b0 ,σ2b1 ,σ2d2 are the variance ofb0 ,b1 ,d2 , respectively;σb0b1 ,σb0d2 ,σb1d2 are the covariance of b0 and b1, b0 and d2, b1 and d2, respectively; MAE is mean absolute error, RMSE is root mean square error.表 7 4种抽样方式RMSE对比
Table 7 Comparison of RMSE of four sampling methods
样本数
Sample size含随机效应基础模型 Basic model with random effect 含随机效应广义模型 Generalized model with random effect 随机抽取
Random sampling最小值
Minimum value最大值
Maximum value平均值
Average value随机抽取
Random sampling最小值
Minimum value最大值
Maximum value平均值
Average value1 1.751 2 1.648 7 1.894 7 1.737 9 1.635 1 1.691 9 1.704 4 1.684 3 2 1.644 4 1.583 0 1.722 5 1.650 1 1.588 8 1.624 7 1.636 6 1.636 4 3 1.600 6 1.569 5 1.633 5 1.588 3 1.550 6 1.580 8 1.569 2 1.572 5 4 1.569 0 1.540 6 1.558 9 1.542 5 1.524 3 1.533 7 1.537 5 1.545 0 5 1.532 2 1.526 4 1.527 6 1.520 1 1.513 2 1.514 9 1.514 3 1.511 9 6 1.510 4 1.515 4 1.502 3 1.503 7 1.493 3 1.482 3 1.490 7 1.485 2 7 1.497 5 1.499 5 1.481 0 1.496 9 1.479 3 1.466 0 1.471 8 1.472 7 8 1.485 5 1.491 0 1.462 0 1.485 3 1.468 1 1.448 2 1.450 7 1.446 5 -
[1] Hasenauer H, Monserud R. A crown ratio model for Austrian forests[J]. Forest Ecology and Management, 1996, 84(1/3): 49−60.
[2] Sharma R P, Bílek L, Vacek, Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6): 1875−1889. doi: 10.1007/s00468-017-1593-8
[3] Kuprevicius A, Auty D, Achim A, et al. Quantifying the influence of live crown ratio on the mechanical properties of clear wood[J]. Forestry: An International Journal of Forest Research, 2013, 86(3): 361−369. doi: 10.1093/forestry/cpt006
[4] Monserud R A, Sterba H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1/3): 57−80.
[5] 吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7):37−42. Lü L, Dong L H, Li F R. Individual tree crown width prediction models for natural Tilia tuan in eastern Heilongjiang Province[J]. Journal of Northeast Forestry University, 2019, 47(7): 37−42.
[6] Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220. doi: 10.1016/j.foreco.2016.01.040
[7] Fu L Y, Sharma R P, Hao K J, et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 389: 364−373. doi: 10.1016/j.foreco.2016.12.034
[8] Crecente-Campo F, Álvarez-González J G, Castedo-Dorado F, et al. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain[J]. Forestry, 2013, 86(4): 481−491. doi: 10.1093/forestry/cpt019
[9] Ritson P, Sochacki S. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, southwestern Australia[J]. Forest Ecology and Management, 2003, 175(1/3): 103−117.
[10] Fu L Y, Zhang H R, Sharma R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology and Management, 2017, 384: 34−43. doi: 10.1016/j.foreco.2016.09.012
[11] McRoberts R, Hahn J T, Hefty G J, et al. Variation in forest inventory field measurements[J]. Canadian Journal of Forest Research, 1994, 24(9): 1766−1770. doi: 10.1139/x94-228
[12] Temesgen H, Lemay V, Mitchell S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia[J]. The Forestry Chronicle, 2005, 81(1): 133−141. doi: 10.5558/tfc81133-1
[13] Ritchie M W, Hann D W. Equations for predicting height to crown base for fourteen tree species in southwest Oregon[R]. Corvallis: Oregon State University, 1987.
[14] Rijal B, Weiskittel A R, Kershaw J A. Development of regional height to diameter equations for 15 tree species in the North American Acadian Region[J]. Forestry: An International Journal of Forest Research, 2012, 85(3): 379−390. doi: 10.1093/forestry/cps036
[15] Yang Y Q, Huang S M. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi: 10.1007/s10342-017-1095-7
[16] 段光爽, 李学东, 冯岩, 等. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):170−176. Duan G S, Li X D, Feng Y, et al. Generalized nonlinear mixed-effects crown base height model of Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 170−176.
[17] Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)[J]. PLoS ONE, 2017, 12(10): e0186394. doi: 10.1371/journal.pone.0186394
[18] Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Canadian Journal of Forest Research, 2004, 34(1): 150−163. doi: 10.1139/x03-199
[19] Yang Y Q, Huang S M, Meng S X, et al. A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands[J]. Canadian Journal of Forest Research, 2009, 39(11): 2203−2214. doi: 10.1139/X09-123
[20] Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3): 553−565. doi: 10.1139/X07-104
[21] Crecente C F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi: 10.1016/j.foreco.2009.11.036
[22] Sharma R P, Breidenbach J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data[J]. Forest Science and Technology, 2015, 11(1): 44−53. doi: 10.1080/21580103.2014.957354
[23] 段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):163−169. Duan G S, Li X D, Feng Y, et al. Developing a height-diameter relationship model with mixed random effects for Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 163−169.
[24] 李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3):343−348. Li W T, Jiang L C, Wan D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3): 343−348.
[25] 雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009, 45(1):74−80. Lei X D, Li Y C, Xiang W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74−80.
[26] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73.
[27] Calama R, Montero G. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Sliva Fennica, 2005, 39(1): 394.
[28] 李想, 董利虎, 李凤日. 基于联立方程组的人工樟子松枝下高模型构建[J]. 北京林业大学学报, 2018, 40(6):9−18. Li X, Dong L H, Li F R. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9−18.
[29] Wykoff W R, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R].Ogden: Forest Service, United States Department of Agriculture, 1982.
[30] Popoola F S, Adesoye P O. Crown ratio models for Tectona grandis (Linn. f) stands in Osho Forest Reserve, Oyo State, Nigeria[J]. Journal of Forest & Environmental Science, 2012, 28(2): 63−67.
[31] Walters D K, Hann D W. Taper equations for six conifer species in southwest Oregon[M]. Corvallis: Oregon State University, 1986..
[32] 韩斐斐, 姜立春. 基于树干不同高度直径的落叶松立木材积方程[J]. 东北林业大学学报, 2017, 45(4):65−69. Han F F, Jiang L C. Tree volume function based on diameter at different relative heights of Dahurian larch[J]. Journal of Northeast Forestry University, 2017, 45(4): 65−69.