Variation characteristics of soil particle composition and multifractal analysis of natural recovery forestland after damage under the disturbance of flood induced disasters
-
摘要:目的 土壤颗粒组成的分形维数可得到更细致的土壤颗粒分布信息,对准确了解洪涝诱发灾害干扰下受损林地恢复过程的土壤颗粒变化规律,加深灾害干扰前后林地自然恢复变化过程的认识等具有重要的理论意义。方法 采用以时间代空间的研究方法,选取次生阔叶林、杉木林、毛竹林3种林地,采集不同受损状态(未受损、刚受损、受损恢复7年)不同土层的土壤样品进行粒径分析,基于分形理论计算各项多重分形参数。结果 灾害干扰对林地的土壤颗粒分布存在显著影响;灾害干扰后不同恢复阶段、不同土层深度对3种林地均有影响,不同林地对干扰的响应存在差异。综合分析3种林地不同恢复状态的粒径组成和多重分形参数可知:与未受损林地比较,受损恢复林地的土壤质地较差。3种林地在不同受损状态下不同深度土壤颗粒组成的变化趋势不同。结论 本研究从土壤颗粒组成变化的角度阐明了洪涝诱发灾害对次生阔叶林、杉木林、毛竹林的影响,可为灾害干扰前后土壤侵蚀的防治和恢复提供理论依据。Abstract:Objective Fractal dimension of soil particle composition can reflect soil particle distribution in detail. To accurately reveal the changing rules of forest soil particle during recovery process under the disturbance of disasters induced by flood, it is crucial to study the fractal dimensions in different damage stages of the forests.Method Using the research method of substituting space with time, we chose three kinds of forest including secondary broadleaved forest, Chinese fir forest, and Moso bamboo forest in different damage states (undamaged, just damaged, recovered for 7 years after damage) as research sites. We collected soil samples of different soil layers and analyzed particle size, then the multifractal parameters were calculated based on fractal theory.Result (1) Disaster interference had a significant impact on the distribution of soil particle in forestland. (2) After disaster interference, different recovery stages and different depth of soil affected all three kinds of woodlands, and the response of different woodlands to interference was different. (3) Through comprehensive analysis of particle size composition and multifractal parameters of three kinds of forestland under different restoration states, it can be seen that the soil texture of damaged forestland was worse than undamaged forestland. The variation trend of soil particle composition in different depth was different under varied damage conditions.Conclusion In this study, the effects of flood induced disasters on secondary broadleaved forests, Chinese fir forests and Moso bamboo forest were clarified from the perspective of soil particle composition changes.
-
美国白蛾(Hyphantria cunea)属于鳞翅目(Lepidortera)目夜蛾科(Erebidae),又名秋幕毛虫,原产于北美,是我国重大外来林业有害生物[1-2]。自1979年从朝鲜的新义州传入我国丹东,现已蔓延到我国13个省级、598个县级行政区[3-5]。美国白蛾幼虫危害树种多,取食量巨大,传播范围广,适应性和繁殖力极强,根据现有资料记载,其幼虫可取食49科108属的300余种植物[5-6]。给农林业造成了巨大损失,对我国的生态安全造成严重威胁[4]。
美国白蛾无论在原产地北美大陆,还是在新传入地区的天敌种类都很丰富,包括寄生性昆虫、鸟类、蜘蛛和多种捕食性昆虫等[7-9]。近年来,对寄生性天敌白蛾周氏啮小蜂 (Chouioia cunea)的研究和利用已经取得显著的成效,但关于美国白蛾其他天敌的基础研究相对较少,尤其是捕食性天敌的研究和利用[10-11]。蠋蝽(Arma chiensis)属半翅目(Hemiptera)蝽科(Pentatomidae),在我国分布广泛。其若虫和成虫均能捕食鳞翅目、鞘翅目、双翅目等多种害虫,特别对鳞翅目害虫有较强的捕食能力,是一种可以通过人工繁育加以利用的优良捕食性天敌[12-13]。王文亮等曾报道蠋蝽对美国白蛾具有较强的控制能力,是自然界中影响美国白蛾种群密度的重要因子[14]。根据现有研究,蠋蝽对小菜蛾(Plutella xylostella)、棉铃虫(Helicoverpa armigera)、二化螟(Chilo suppressalis)、甜菜夜蛾(Spodoptera exigua)、斜纹夜蛾(S. litura)、美国白蛾(Hyphantria cunea)、米蛾(Corcyra cephalonica)、马铃薯甲虫(Leptinotarsa decemlineata)、松毛虫(Dendrolimus spp.)、榆紫叶甲(Ambrostoma quadriim pressum)、双斑长跗萤叶甲(Monolepta hieroglyphica)等均可捕食[15-23]。目前蠋蝽对美国白蛾捕食能力的详细研究却鲜有报道。因此,本文开展了蠋蝽对美国白蛾的捕食行为特点、捕食功能反应以及林间套袋防治试验,阐明了蠋蝽对美国白蛾的捕食能力,为美国白蛾的生物防治提供新途径和新方法。
1. 材料与方法
1.1 试验材料
小型无线摄像机(型号:KL-MN02)、养虫盒(16 cm × 11 cm × 5.5 cm)、培养皿(90 cm × 1.5 cm)和尼龙套袋(70 cm × 50 cm)。
1.2 供试虫源及饲养条件和方法
蠋蝽由吉林省林业科学研究院继代培养提供,美国白蛾种群采自辽宁省沈阳市苏家屯区。蠋蝽用黄粉虫蛹饲喂,每天向养虫盒内的棉球滴少量水以保持湿度,并清理蠋蝽的代谢物;美国白蛾用新鲜桑叶饲喂,每天更换1次。饲养条件:温度(24 ± 1)℃,相对湿度75% ± 5%。
1.3 试验方法
1.3.1 蠋蝽对美国白蛾幼虫的捕食行为观察
分别选取室内饲养的蠋蝽成虫以及5龄若虫各9头,试验前将其置于养虫盒内饥饿,24 h后将1头蠋蝽成虫或5龄若虫分别与美国白蛾3、4、5龄幼虫放置于培养皿内,同时在培养皿中放入少量桑叶,避免美国白蛾幼虫因饥饿等其他原因死亡。虫口密度均为5头/皿,每头蠋蝽捕食的全过程使用小型无线摄像机记录观察,每组处理3个重复。
1.3.2 蠋蝽对美国白蛾幼虫的捕食功能反应
分别选取蠋蝽成虫和4、5龄若虫各80头,试验前将其置于养虫盒内饥饿,24 h后将1头蠋蝽成虫或4、5龄若虫分别与美国白蛾3、4、5龄幼虫放置于培养皿内,美国白蛾3龄、4龄幼虫的密度梯度设为2、4、6、8、10头/皿;5龄幼虫密度梯度为1、2、3、4、5头/皿,每组处理5个重复。观察蠋蝽成虫和若虫对美国白蛾不同虫龄幼虫的捕食行为,24 h后检查不同虫龄幼虫存活数量。
1.3.3 蠋蝽林间套袋防治试验
分别选取室内饲养的蠋蝽成虫以及4、5龄若虫各5头,试验前将其置于养虫盒内饥饿,24 h后将1头蠋蝽成虫、4、5龄若虫分别接入装有白蛾3龄幼虫的尼龙套袋中,寄主为桑树,白蛾幼虫的虫口密度为30头/套袋,并用绳子扎紧袋口,防止蠋蝽或白蛾幼虫逃逸(如图1)。分别于试验第3天、第5天、第7天检查套袋中的美国白蛾幼虫活虫数量,每组处理5个重复。
1.4 分析方法
利用Excel 2017和SPSS 17.0软件对所有试验数据进行相关统计分析,差异显著性采用单因素方差分析法,多重比较采用Duncan’s新复极差法。根据HollingⅡ模型建立每组合的捕食功能反应模型,拟合HollingⅡ圆盘方程:
Na=aNT/(1+aThN) (1) 式中:Na为被捕食的猎物数量;a为瞬间攻击率;N为猎物密度;T为试验持续时间,在本试验中T = 24 h;Th为处置1头猎物时间[24-26]。
最后利用拟合HollingⅡ型功能反应模型所得参数,求得每组的搜寻效应:
S=a/(1+aThN) (2) 式中:S为搜寻效应;a、Th和N同HollingⅡ型功能反应模型方程[25,27]。
2. 结果与分析
2.1 蠋蝽的捕食行为观察
蠋蝽取食美国白蛾幼虫表现为搜寻、刺探、等待和取食4种行为。搜寻:蠋蝽寻找美国白蛾幼虫位置和判断动向的过程,该过程中蠋蝽有将口针从腹面伸出的趋势,同时触角会进行摆动;刺探:蠋蝽尝试接触虫体并将口针中的毒液注入到美国白蛾幼虫体内,但幼虫在该过程中一般会扭动体躯挣脱口针;等待:蠋蝽在美国白蛾幼虫附近徘徊,在毒液发挥麻痹作用的同时也做好随时发起下一次攻击的准备;取食:当美国白蛾幼虫抵抗力减弱或丧失时,蠋蝽开始长时间刺吸的过程。以蠋蝽5龄若虫捕食美国白蛾3龄幼虫试验为例:将蠋蝽5龄若虫放入培养皿后,首先会在叶片上停留片刻,有些蠋蝽还会刺吸叶片汁液,伺机搜寻美国白蛾幼虫,持续时长为65 ~ 95 min;当蠋蝽与美国白蛾幼虫接触时,蠋蝽会用其触角进行触碰,并将其口针从腹面伸出,对幼虫进行4 ~ 6次刺探,刺探过程中美国白蛾幼虫可能会挣脱蠋蝽的刺吸,前几次为短时间连续刺探,刺探时间为5 ~ 15 s。蠋蝽的口针从美国白蛾幼虫的头部刺入的频率显著高于胸部和腹部(P = 0.001)(图2、3);随后蠋蝽5龄若虫会在其旁等待,口针呈完全水平伸出或保持与腹面成一定角度的状态,等到美国白蛾幼虫抵抗能力减弱或丧失时再开始长时间刺吸取食,该时间持续约4 ~ 8 min。在取食期间,蠋蝽的口针会多次从美国白蛾幼虫体内抽出再刺入,一旦受到其他美国白蛾幼虫触碰干扰,蠋蝽5龄若虫会保持口针刺入美国白蛾幼虫体内的状态,拖拽这条幼虫至无干扰处继续进行取食。蠋蝽5龄若虫完全取食(猎物彻底被吸干)1头3龄幼虫需要65 ~ 125 min,美国白蛾幼虫的虫龄越大,蠋蝽完全取食所需的时间就越长,取食后会剩下变黑、干瘪的幼虫虫体(图4)。
图 3 蠋蝽捕食美国白蛾A.蠋蝽成虫刺吸美国白蛾4龄幼虫头部;B.蠋蝽5龄若虫刺吸美国白蛾4龄幼虫头部;C.蠋蝽4龄若虫刺吸美国白蛾4龄幼虫头部;D.蠋蝽3龄若虫刺吸美国白蛾4龄幼虫头部 A, adult of A. chinensis attacking the head of 4th instar larvae of H. cunea; B, 5th instar nymph of A. chinensis attacking the head of 4th instar larvae of H. cunea; C, 4th instar nymph of A. chinensis attacking the head of 4th instar larvae of H. cunea; D, 3rd instar nymph of A. chinensis attacking the head of 4th instar larvae of H. cuneaFigure 3. A. chinensis prey on H. cunea larvae不同捕食组合在搜寻时长(P = 0.005)和取食时长(P = 0.002)上差异极显著,蠋蝽5龄若虫对美国白蛾3、4、5龄幼虫的搜寻时长分别为(67.33 ± 15.34) min、(44.33 ± 5.36) min、(37.67 ± 1.45) min,蠋蝽5龄若虫对美国白蛾3、4、5龄幼虫的取食时长分别为(80.00 ± 17.56) min、(122.33 ± 8.45) min、(180.00 ± 17.32) min;蠋蝽成虫对美国白蛾3、4、5龄幼虫的搜寻时长分别为(64.00 ± 18.52) min、(30.00 ± 5.77) min、(24.40 ± 3.86) min;蠋蝽成虫对美国白蛾3、4、5龄幼虫的取食时长分别为(61.33 ± 3.48) min、(86.66 ± 14.53) min、(140.40 ± 18.62) min(图5)。综上,在蠋蝽虫龄一定的情况下,搜寻时长会随着美国白蛾幼虫虫龄的增加而减少;取食时长会随着美国白蛾幼虫虫龄的增加而增加。
图 5 蠋蝽捕食白蛾幼虫的搜寻时长以及取食时长5N. 5龄若虫;3L、4L、5L分别为3龄、4龄和5龄幼虫;AD. 成虫。不同小写字母表示差异显著水平(P < 0.05),不同大写字母表示差异极显著水平(P < 0.01)。5N, 5th instar nymph; 3L, 4L and 5L mean 3rd instar, 4th instar and 5th instar larvae, respectively; AD, adult. Different lowercase letters indicate significant level of difference (P < 0.05), different uppercase letters indicate extremely significant level of difference (P < 0.01).Figure 5. Searching and feeding time of A. chinensis predating the larvae of H. cunea2.2 蠋蝽的捕食功能反应
根据拟合出的捕食功能反应方程,求出不同组合以及不同密度梯度下的理论捕食量,对理论值与实际值进行卡方(χ2)适合性检验,得出在相应自由度下χ2值为0.011 4 ~ 0.198 1,均小于χ20.05 = 9.49,说明理论值与实测值差异不显著,符合HollingⅡ模型,能够很好地反映天敌蠋蝽随美国白蛾密度变化而影响捕食量的情况。
在蠋蝽虫龄一定时,瞬时攻击率与日最大捕食量随着美国白蛾幼虫虫龄的增加而降低,处理时间随着美国白蛾幼虫虫龄的增加而增加(如表1)。其中,蠋蝽成虫对美国白蛾3龄幼虫的瞬时攻击率最高(1.193),处理时间最短(0.119 d);当N→∞时,蠋蝽对美国白蛾3、4龄幼虫的理论日最大捕食量分别为8.406头和7.225头,对美国白蛾5龄幼虫的日最大捕食量为2.189头。蠋蝽5龄若虫对美国白蛾3龄幼虫的瞬时攻击率最高(1.017),处理时间最短(0.125 d);当N→∞时,蠋蝽对美国白蛾3龄幼虫的日最大捕食量最大(8.002头),5龄若虫与成虫的捕食量差距不大。蠋蝽4龄若虫对美国白蛾3龄幼虫的瞬时攻击率最高为1.099略高于蠋蝽5龄若虫对美国白蛾3龄幼虫的瞬间攻击率,表明4龄若虫相比于5龄若虫对于24 h的饥饿处理反应更明显,更急于捕食。蠋蝽4龄若虫对美国白蛾3龄幼虫的处理时间最短为0.159 d;当N→∞时,蠋蝽对美国白蛾3龄幼虫的日最大捕食量最大(6.279头),低于蠋蝽成虫与5龄若虫。综上,不同捕食组合的捕食量均随着培养皿内美国白蛾幼虫密度的增加呈上升趋势(图6~8),搜寻效应均随着培养皿内美国白蛾幼虫密度的增加呈下降趋势(图9~11)。
表 1 蠋蝽对美国白蛾捕食功能反应模型拟合结果Table 1. Fitting results of the functional response models of H. cunea by A. chinensis蠋蝽虫龄
Instar of
A. chinensis美国白蛾虫龄
Instar of
H. cunea捕食功能反应方程
Predation function response
equation瞬时攻击率
Instantaneous
attack rate (a)处理时间
Processing
time (Th)/d日最大捕食量
Max. daily
predator capacity相关系数
Correlation
coefficientχ2 成虫
Adult3龄 3rd instar Na = 1.193N/(1 + 0.142N) 1.193 0.119 8.406 0.957 0.149 5 4龄 4th instar Na = 0.903N/(1 + 0.125N) 0.903 0.138 7.225 0.949 0.123 7 5龄 5th instar Na = 0.824N/(1 + 0.377N) 0.824 0.457 2.189 0.902 0.132 3 5龄若虫
5th instar nymph3龄 3rd instar Na = 1.017N/(1 + 0.127N) 1.017 0.125 8.002 0.942 0.198 1 4龄 4th instar Na = 0.650N/(1 + 0.127N) 0.650 0.195 5.139 0.900 0.147 8 5龄 5th instar Na = 0.553N/(1 + 0.391N) 0.553 0.707 1.414 0.981 0.011 4 4龄若虫
4th instar nymph3龄 3rd instar Na = 1.099N/(1 + 0.175N) 1.099 0.159 6.279 0.982 0.029 0 4龄 4th instar Na = 0.841N/(1 + 0.211N) 0.841 0.250 4.001 0.962 0.058 7 5龄 5th instar Na = 0.241N/(1 + 0.187N) 0.241 0.774 1.292 0.952 0.020 6 表 2 蠋蝽成虫以及若虫对美国白蛾3龄幼虫不同时期的捕食量Table 2. Predation capacity of adult and nymph of A. chinensis against 3rd instar larvae of H. cunea in different periods组别
Group3 d捕食量
Predation
capacity after
3 days5 d捕食量
Predation
capacity after
5 days7 d捕食量
Predation
capacity after
7 days蠋蝽成虫
Adult of
A. chinensis1.40 ± 0.51aA 3.40 ± 0.40aA 6.60 ± 0.40aA 蠋蝽5龄若虫
5th instar nymph
of A. chinensis1.40 ± 0.60aA 2.60 ± 0.50abAB 4.20 ± 0.58bA 蠋蝽4龄若虫
4th instar nymph
of A. chinensis0.20 ± 0.20aA 1.40 ± 0.25bB 2.40 ± 0.25cB 注:不同小写字母表示差异显著水平(P < 0.05),不同大写字母表示差异极显著水平(P < 0.01)。Notes: different lowercase letters indicate significant level of difference (P < 0.05), different uppercase letters indicate extremely significant level of difference (P < 0.01). 2.3 蠋蝽林间套袋防治试验
林间套袋试验结果显示(如表2),蠋蝽成虫以及若虫均可以在野外条件下捕食美国白蛾3龄幼虫,但捕食能力有差异;随着试验时间的增加,捕食量差异越大。3天蠋蝽成虫与5龄若虫对美国白蛾3龄幼虫的捕食量差异不显著,但均高于4龄若虫。蠋蝽林间套袋试验7天对美国白蛾3龄幼虫的捕食量:蠋蝽成虫 > 蠋蝽5龄若虫 > 蠋蝽4龄若虫。
3. 结论与讨论
蠋蝽捕食美国白蛾幼虫主要分为搜寻、刺探、等待和取食4种行为,与唐艺婷等在蠋蝽对草地贪夜蛾捕食行为观察试验结果相似[28],与其他具有刺吸式口器的捕食性蝽相比捕食行为也类似,例如斑腹刺益蝽和黑刺益蝽[29-32]。蠋蝽成虫与若虫在捕食过程中,刺探次数显著不同。成虫刺探次数少,单次持续时间较长;若虫则刺探次数多,单次持续时间较短,可能与蠋蝽每次刺吸注射到白蛾幼虫体内的毒液含量以及浓度有关,具体机制有待进一步明确。此外蠋蝽的口针可以从美国白蛾幼虫体躯的多个位置刺入,不是仅选择猎物躯体上较为柔软的部位取食,反而从美国白蛾幼虫坚硬头壳部位刺入的次数明显高于胸部和腹部,推测是为了有利于迅速杀死幼虫,同时避免美国白蛾幼虫转头攻击,野外调查的过程中也多次发现该现象,具体原因需要深入地研究。
蠋蝽成虫以及若虫捕食美国白蛾不同虫龄幼虫的功能反应均符合HollingⅡ模型,与其他捕食蝽对猎物的捕食功能反应模型一致[19-20,33-34]。蠋蝽的捕食作用会受到美国白蛾幼虫密度的影响,其捕食量随着美国白蛾密度的增加而增加,搜寻效应随着美国白蛾密度的增加而降低。根据已有报道,蠋蝽成虫或高龄若虫捕食效果较好,例如:对马尾松毛虫、云南松毛虫、小菜蛾和双斑长跗萤叶甲等[19,21,23]。本研究蠋蝽成虫以及不同虫龄若虫对美国白蛾幼虫最大日捕食量顺序均为3龄幼虫 > 4龄幼虫 > 5龄幼虫,且蠋蝽成虫对美国白蛾3龄幼虫的日最大捕食量最大(8.406头),瞬间攻击率最高(1.193),5龄若虫的相关指标与成虫接近,结合林间防治试验的捕食效果蠋蝽成虫和5龄若虫可优先考虑应用于美国白蛾的防治。
蠋蝽的捕食功能反应存在一定的复杂性,如本试验中捕食效果最好的是蠋蝽成虫,而在益蝽的研究中5龄若虫捕食效果好于成虫[35]。本研究蠋蝽4龄若虫对美国白蛾3、4龄幼虫的瞬间攻击率均高于5龄蠋蝽若虫,表明蠋蝽4龄若虫比5龄若虫更急于捕食,这与唐艺婷等在蠋蝽对小菜蛾的捕食作用中所得结论基本一致[19]。
蠋蝽在林间套袋试验条件下的捕食量低于室内试验的捕食量,可能是由于林间防治试验受到光照、温度、降水等诸多因素的影响。另外,美国白蛾幼虫的网幕也会加大蠋蝽捕食的难度,试验过程中观察到蠋蝽的口针可以穿过网幕捕食美国白蛾幼虫,但网幕对蠋蝽捕食量影响的程度仍需要进一步研究。本文只进行了蠋蝽对美国白蛾室内、外强迫性捕食试验,仍有许多问题需要深入研究。
-
图 1 广义维数谱D(q)–q曲线
D(q)表示广义分形维数,q为实数(−10 ≤ q ≤ 10)。CW.次生阔叶林未受损;CS.次生阔叶林刚受损;CH.次生阔叶林自然恢复;SW.杉木林未受损;SS.杉木林刚受损;SH.杉木林自然恢复;MW.毛竹林未受损;MS.毛竹林刚受损;MH.毛竹林自然恢复。D(q) means generalized fractal dimension, q is real number (−10 ≤ q ≤ 10). CW, undamaged secondary broadleaved forest; CS, just damaged secondary broadleaved forest; CH, naturally recovered secondary broadleaved forest; SW, undamaged Chinese fir forest; SS, just damaged Chinese fir forest; SH, naturally recovered Chinese fir forest; MW, undamaged Moso bamboo forest; MS, just damaged Moso bamboo forest; MH, naturally recovered Moso bamboo forest.
Figure 1. D(q)-q spectrum curves of generalized dimension spectra
表 1 样地基本概况
Table 1 Basic situation of sample plots
林型
Forest type林地状态
Forestland condition经度
Longitude纬度
Latitude海拔
Elevation/m坡向
Slope aspect坡度
Slope degree/(°)植被盖度
Vegetation coverage/%次生阔叶林
Secondary broadleaved forest未受损 Undamaged 118°08′31″E 26°41′42″N 188 NW 36 88 刚受损 Just damaged 118°08′35″E 26°41′39″N 173 NE 40 20 受损恢复
Natural recovery after damage118°08′35″E 26°41′39″N 173 NE 40 60 杉木林 Chinese fir forest 未受损 Undamaged 117°39′44″E 26°50′36″N 238 NE 34 72 刚受损 Just damaged 117°39′45″E 26°50′33″N 226 NE 32 10 受损恢复
Natural recovery after damage117°39′45″E 26°50′33″N 226 NE 32 52 毛竹林 Moso bamboo forest 未受损 Undamaged 118°15′05″E 26°39′16″N 365 NW 30 65 刚受损 Just damaged 118°14′59″E 26°39′23″N 367 SE 43 3 受损恢复
Natural recovery after damage118°14′59″E 26°39′23″N 367 SE 43 35 注:NW代表西北,NE代表东北,SE代表东南。Notes: NW represents northwest, NE represents northeast, SE represents southeast. 表 2 土壤物理性质
Table 2 Soil physical properties
林型
Forest type林地状态
Forestland condition土壤密度
Soil bulk density(ρ)/
(g·cm− 3)土壤含水量
Soil moisture content(w)/%毛管持水量
Capillary water holding capacity
(wc)/%毛管孔隙度
Capillary porosity(r)/%非毛管孔隙度
Non-capillary porosity(rn)/%次生阔叶林
Secondary broadleaved forest未受损 Undamaged 1.02 ± 0.13 27.33 ± 0.03 40.04 ± 0.07 40.39 ± 5.64 18.44 ± 4.90 刚受损 Just damaged 1.39 ± 0.09 18.11 ± 1.30 24.89 ± 2.04 33.96 ± 1.52 6.17 ± 2.14 受损恢复
Natural recovery after damage1.34 ± 0.14 22.66 ± 0.03 31.03 ± 0.05 41.06 ± 3.98 9.89 ± 4.64 毛竹林 Moso bamboo forest 未受损 Undamaged 1.06 ± 0.20 25.50 ± 0.02 36.83 ± 0.05 38.22 ± 2.05 13.67 ± 4.93 刚受损 Just damaged 1.09 ± 0.05 22.53 ± 0.82 31.27 ± 1.52 33.51 ± 2.63 17.33 ± 5.85 受损恢复
Natural recovery after damage1.33 ± 0.09 20.66 ± 0.02 27.85 ± 0.04 36.87 ± 3.43 5.50 ± 1.87 杉木林 Chinese fir forest 未受损 Undamaged 1.26 ± 0.06 24.44 ± 0.01 33.82 ± 0.03 42.37 ± 2.46 7.34 ± 3.12 刚受损 Just damaged 1.42 ± 0.08 18.33 ± 1.53 24.41 ± 2.82 34.74 ± 5.58 9.00 ± 3.52 受损恢复
Natural recovery after damage1.23 ± 0.11 23.89 ± 0.03 32.81 ± 0.06 39.82 ± 6.13 10.11 ± 3.92 表 3 恢复林地土壤粒径组成
Table 3 Soil particle size composition of natural recovery forestland after damage
林地
Forestland状态
Condition土层
Soil layer/cm土壤颗粒体积分数 Volume fraction of soil particle/% 黏粒
Clay (< 2 μm)粉粒
Silt (2 ~ 50 μm)砂粒
Sand (50 ~ 2 000 μm)次生阔叶林
Secondary broadleaved forest未受损 Undamaged 0 ~ 5 7.69 ± 0.67Aa 45.44 ± 2.10Aab 47.61 ± 2.44Aa 5 ~ 10 9.38 ± 0.55Aa 50.01 ± 1.39Aa 42.82 ± 1.77Ab 10 ~ 20 8.65 ± 0.36Aa 52.33 ± 2.01Aa 43.52 ± 1.60Ab 均值 Mean 8.58 ± 0.37 49.26 ± 1.38 44.32 ± 1.28 刚受损 Just damaged 0 ~ 5 6.53 ± 0.20Aa 38.57 ± 3.03Ab 55.48 ± 3.51Ab 5 ~ 10 6.42 ± 0.40Ab 36.11 ± 2.37Ab 59.42 ± 1.77Aa 10 ~ 20 6.24 ± 0.10Ab 33.98 ± 1.94Ab 62.16 ± 2.94Aa 均值 Mean 6.34 ± 0.06 35.14 ± 1.20 60.21 ± 1.39 受损恢复
Natural recovery after damage0 ~ 5 6.67 ± 0.46Ab 55.36 ± 3.01Aa 37.97 ± 2.60Ab 5 ~ 10 7.28 ± 0.72Aa 52.36 ± 1.88Aa 40.36 ± 1.95Aa 10 ~ 20 5.91 ± 1.11Aa 50.29 ± 4.53Aa 43.79 ± 5.60Aa 均值 Mean 6.62 ± 0.45 52.67 ± 1.82 40.71 ± 2.05 杉木林
Chinese fir forest未受损 Undamaged 0 ~ 5 11.06 ± 1.17Aa 48.48 ± 3.27Aa 43.23 ± 3.19Aa 5 ~ 10 10.10 ± 1.41Aa 51.58 ± 3.51Aa 40.59 ± 5.08Aa 10 ~ 20 10.82 ± 1.06Aa 50.52 ± 1.05Aa 39.75 ± 1.87Aa 均值 Mean 10.66 ± 0.63 50.20 ± 1.49 41.19 ± 1.89 刚受损 Just damaged 0 ~ 5 8.14 ± 1.17Ab 35.56 ± 1.46Aa 58.97 ± 1.56Ab 5 ~ 10 8.14 ± 0.91Ab 37.45 ± 1.47Aa 56.90 ± 1.08Ab 10 ~ 20 9.27 ± 0.64Aa 35.12 ± 1.29Ab 58.70 ± 1.36Ab 均值 Mean 8.52 ± 0.45 36.04 ± 0.80 57.48 ± 0.98 受损恢复
Natural recovery after damage0 ~ 5 11.52 ± 0.51Aa 52.00 ± 0.88Aa 38.37 ± 0.36Aa 5 ~ 10 12.07 ± 0.42Aa 54.76 ± 2.05Aa 35.90 ± 1.94Aa 10 ~ 20 11.99 ± 0.48Aab 54.11 ± 1.08Ab 36.37 ± 0.42Aa 均值 Mean 11.86 ± 0.25 53.62 ± 0.83 36.88 ± 0.69 毛竹林
Moso bamboo forest未受损 Undamaged 0 ~ 5 9.33 ± 0.85Aa 41.26 ± 3.83Aa 51.14 ± 3.83Aa 5 ~ 10 9.99 ± 1.49Aa 41.22 ± 4.68Aab 50.58 ± 6.14Aa 10 ~ 20 11.51 ± 0.15Aa 48.93 ± 1.74Aa 40.69 ± 1.55Aa 均值 Mean 10.28 ± 0.59 43.80 ± 2.22 47.47 ± 2.73 刚受损 Just damaged 0 ~ 5 8.12 ± 0.42Aab 34.90 ± 0.65Ab 59.31 ± 1.00Aa 5 ~ 10 8.53 ± 0.87Aa 35.70 ± 1.23Ab 57.90 ± 1.67Ab 10 ~ 20 9.01 ± 0.84Aa 35.06 ± 1.62Ab 58.50 ± 2.46Aa 均值 Mean 8.55 ± 0.41 35.22 ± 0.67 58.57 ± 0.99 受损恢复
Natural recovery after damage0 ~ 5 10.00 ± 0.40Aa 54.80 ± 0.70Aa 37.38 ± 0.66Ab 5 ~ 10 11.62 ± 1.34Aa 53.88 ± 0.58Ab 36.64 ± 1.13Ac 10 ~ 20 10.72 ± 1.47Aa 53.30 ± 1.49Ab 39.99 ± 2.50Aa 均值 Mean 10.78 ± 0.63 53.99 ± 0.55 38.01 ± 0.96 注:同一列大写字母表示同一土层不同林地间差异显著(P < 0.05),同一列小写字母表示同一林地不同土层间差异显著(P < 0.05)。Notes: different capital letters in the same column indicate significant differences between different forestlands of the same depth of soil(P < 0.05); different lowercase letters in the same column indicate significant differences between varied depth of soil in the same forestland (P < 0.05). 表 4 恢复林地土壤样品多重分形参数
Table 4 Multifractal parameters of soil samples from natural recovery forestland
林地
Forestland状态
Condition土层
Soil layer/cmD0 D1 D2 D1/D0 D0 − D2 次生阔叶林
Secondary broadleaved forest未受损
Undamaged0 ~ 5 1.025 ± 0.000 0.909 ± 0.016 0.882 ± 0.022 0.886 ± 0.158 0.143 ± 0.023 5 ~ 10 1.025 ± 0.000 0.879 ± 0.005 0.832 ± 0.012 0.857 ± 0.004 0.193 ± 0.012 10 ~ 20 1.025 ± 0.000 0.887 ± 0.006 0.852 ± 0.014 0.865 ± 0.006 0.173 ± 0.014 均值 Mean 1.025 ± 0.000 0.891 ± 0.007 0.856 ± 0.011 0.870 ± 0.007 0.170 ± 0.011 刚受损
Just damaged0 ~ 5 1.025 ± 0.000 0.867 ± 0.012 0.776 ± 0.017 0.868 ± 0.012 0.223 ± 0.017 5 ~ 10 1.025 ± 0.000 0.872 ± 0.014 0.782 ± 0.019 0.876 ± 0.015 0.214 ± 0.020 10 ~ 20 1.024 ± 0.001 0.867 ± 0.020 0.767 ± 0.028 0.869 ± 0.021 0.230 ± 0.029 均值 Mean 1.025 ± 0.000 0.869 ± 0.008 0.775 ± 0.012 0.871 ± 0.010 0.222 ± 0.013 受损恢复
Natural recovery after damage0 ~ 5 1.025 ± 0.000 0.902 ± 0.014 0.886 ± 0.019 0.880 ± 0.013 0.139 ± 0.019 5 ~ 10 1.025 ± 0.000 0.900 ± 0.023 0.881 ± 0.037 0.878 ± 0.023 0.144 ± 0.037 10 ~ 20 1.025 ± 0.001 0.905 ± 0.009 0.884 ± 0.023 0.884 ± 0.009 0.141 ± 0.022 均值 Mean 1.025 ± 0.000 0.902 ± 0.014 0.884 ± 0.024 0.880 ± 0.014 0.141 ± 0.024 杉木林
Chinese fir forest未受损
Undamaged0 ~ 5 1.025 ± 0.000 0.879 ± 0.005 0.832 ± 0.012 0.857 ± 0.004 0.193 ± 0.012 5 ~ 10 1.024 ± 0.001 0.884 ± 0.015 0.844 ± 0.025 0.864 ± 0.014 0.180 ± 0.024 10 ~ 20 1.025 ± 0.001 0.889 ± 0.010 0.851 ± 0.016 0.868 ± 0.009 0.174 ± 0.015 均值 Mean 1.025 ± 0.000 0.890 ± 0.007 0.852 ± 0.009 0.869 ± 0.006 0.173 ± 0.009 刚受损
Just damaged0 ~ 5 1.025 ± 0.000 0.850 ± 0.015 0.750 ± 0.026 0.830 ± 0.037 0.274 ± 0026 5 ~ 10 1.024 ± 0.001 0.845 ± 0.014 0.736 ± 0.025 0.825 ± 0.035 0.288 ± 0.025 10 ~ 20 1.025 ± 0.000 0.845 ± 0.020 0.744 ± 0.033 0.826 ± 0.049 0.282 ± 0.033 均值 Mean 1.025 ± 0.000 0.847 ± 0.009 0.743 ± 0.015 0.827 ± 0.038 0.281 ± 0.016 受损恢复
Natural recovery after damage0 ~ 5 1.025 ± 0.000 0.900 ± 0.014 0.881 ± 0.021 0.884 ± 0.008 0.144 ± 0.021 5 ~ 10 1.025 ± 0.000 0.897 ± 0.010 0.865 ± 0.015 0.875 ± 0.016 0.159 ± 0.015 10 ~ 20 1.024 ± 0.001 0.906 ± 0.006 0.874 ± 0.016 0.884 ± 0.011 0.150 ± 0.016 均值 Mean 1.025 ± 0.000 0.903 ± 0.004 0.875 ± 0.008 0.881 ± 0.004 0.150 ± 0.007 毛竹林
Moso bamboo forest未受损
Undamaged0 ~ 5 1.025 ± 0.003 0.896 ± 0.015 0.837 ± 0.024 0.874 ± 0.024 0.188 ± 0.024 5 ~ 10 1.025 ± 0.000 0.913 ± 0.011 0.870 ± 0.014 0.891 ± 0.019 0.156 ± 0.014 10 ~ 20 1.024 ± 0.001 0.887 ± 0.006 0.832 ± 0.134 0.866 ± 0.010 0.192 ± 0.013 均值 Mean 1.025 ± 0.000 0.899 ± 0.007 0.846 ± 0.017 0.877 ± 0.019 0.178 ± 0.011 刚受损
Just damaged0 ~ 5 1.024 ± 0.006 0.878 ± 0.013 0.795 ± 0.023 0.857 ± 0.030 0.229 ± 0.022 5 ~ 10 1.024 ± 0.001 0.876 ± 0.010 0.789 ± 0.020 0.855 ± 0.024 0.236 ± 0.019 10 ~ 20 1.023 ± 0.001 0.859 ± 0.014 0.755 ± 0.026 0.840 ± 0.032 0.268 ± 0.025 均值 Mean 1.024 ± 0.005 0.871 ± 0.007 0.780 ± 0.013 0.851 ± 0.028 0.244 ± 0.013 受损恢复
Natural recovery after damage0 ~ 5 1.025 ± 0.003 0.896 ± 0.007 0.877 ± 0.009 0.875 ± 0.011 0.148 ± 0.008 5 ~ 10 1.024 ± 0.001 0.906 ± 0.011 0.881 ± 0.015 0.884 ± 0.019 0.143 ± 0.015 10 ~ 20 1.024 ± 0.001 0.899 ± 0.007 0.867 ± 0.017 0.878 ± 0.010 0.157 ± 0.016 均值 Mean 1.024 ± 0.000 0.900 ± 0.005 0.875 ± 0.007 0.879 ± 0.013 0.149 ± 0.007 注:D0为容量维数,D1为信息维数,D2为相关维数,D1/D0反映土壤粒径分布非均匀程度和土壤物理性质,D0 − D2反映土壤中粗颗粒含量的多少。Notes: D0, capacity dimension; D1, information dimension; D2, correlation dimension; D1/D0 reflects the degree of uneven distribution of soil particle size and physical properties, D0 − D2 reflects the amount of soil coarse particles. 表 5 土壤多重分形参数与土壤质地的相关性分析
Table 5 Pearson correlation analysis between soil multifractal parameters and soil texture
项目 Item 黏粒 Clay 粉粒 Silt 砂粒 Sand D0 D1 D2 D0 / D1 D0 − D2 黏粒 Clay 1 粉粒 Silt 0.441** 1 砂粒 Sand − 0.582** − 0.976** 1 D0 − 0.077 0.022 − 0.035 1 D1 0.162 0.349** − 0.322** 0.107 1 D2 0.270** 0.590** − 0.567** 0.197* 0.944** 1 D0/D1 0.165 0.350** − 0.321** 0.074 0.999** 0.940** 1 D0 − D2 − 0.263** − 0.600** 0.573** − 0.190* − 0.934** − 0.995** − 0.931** 1 注:* 在0.05水平(双侧)上显著相关,** 在0.01水平(双侧)上显著相关。Notes: * means significantly correlated at the 0.05 level (two-tailed), ** means significantly correlated at the 0.01 level (two-tailed). -
[1] 金保明. 南平市“2010·6”特大暴雨洪水分析[J]. 水利科技, 2011(1):27−30. Jin B M. Analysis of Nanping “2010·6” rainstorm and flood[J]. Hydraulic Science and Technology, 2011(1): 27−30.
[2] 刘彤, 闫天池. 我国的主要气象灾害及其经济损失[J]. 自然灾害学报, 2011, 20(2):90−95. Liu T, Yan T C. Main meteorological disasters in China and their economic losses[J]. Journal of Natural Disasters, 2011, 20(2): 90−95.
[3] 杨云斌, 张建军, 李梁, 等. 晋西黄土区降雨过程对小流域产流的影响[J]. 北京林业大学学报, 2019, 41(3):109−114. Yang Y B, Zhang J J, Li L, et al. Effects of rainfall process on runoff in small watersheds in the Loess Plateau of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 109−114.
[4] 刘守江, 张斌, 杨清伟, 等. 汶川地震非规范滑坡体上植被的自然恢复能力研究:以彭州银厂沟谢家店子滑坡体为例[J]. 山地学报, 2010, 28(3):373−378. doi: 10.3969/j.issn.1008-2786.2010.03.016 Liu S J, Zhang B, Yang Q W, et al. Research on the natural recovery of vegetation on the non-normative landslide mass in Wenchuan Earthquake: take landslide mass in Xiejiadian of Yinchanggou in Pengzhou as an example[J]. Mountain Research, 2010, 28(3): 373−378. doi: 10.3969/j.issn.1008-2786.2010.03.016
[5] Wang Z Y, Shi W J, Liu D D. Continual erosion of bare rocks after the Wenchuan Earthquake and control strategie[J]. Journal of Asian Earth Sciences, 2011, 40: 915−925. doi: 10.1016/j.jseaes.2010.07.004
[6] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20):1896−1899. doi: 10.3321/j.issn:0023-074X.1993.20.010 Yang P L, Luo Y P, Shi Y C. Soil fractal characteristics characterized by weight distribution of particle size[J]. Chinese Science Bulletin, 1993, 38(20): 1896−1899. doi: 10.3321/j.issn:0023-074X.1993.20.010
[7] Giménez D, Perfect E, Rawls W J, et al. Fractal models for predicting soil hydraulic properties: a review[J]. Engineering Geology, 1997, 48(3/4): 161−183.
[8] Huang G H, Zhang R. Evaluation of soil water retention curve with the pore-solid fractal mode[J]. Geoderma, 2005, 27(1−2): 52−61.
[9] 方肖晨, 王春红, 张荣华, 等. 伏牛山区迎河小流域不同土地利用类型的土壤粒径分布特征[J]. 中国水土保持科学, 2017, 15(3):9−16. Fang X C, Wang C H, Zhang R H, et al. Soil particle size distribution characteristics under different land use types in Yinghe Watershed of Funiu Mountain Area[J]. Science of Soil and Water Conservation, 2017, 15(3): 9−16.
[10] 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析:以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7):3081−3089. doi: 10.3321/j.issn:1000-0933.2007.07.050 Wang D, Fu B J, Chen L D, et al. Fractal analysis on soil particle size distributions under different land-use types: a case study in the loess hilly areas of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2007, 27(7): 3081−3089. doi: 10.3321/j.issn:1000-0933.2007.07.050
[11] 张佳瑞, 王金满, 祝宇成, 等. 分形理论在土壤学应用中的研究进展[J]. 土壤通报, 2017, 48(1):221−228. Zhang J R, Wang J M, Zhu Y C, et al. Application of fractal theory on pedology: a review[J]. Chinese Journal of Soil Science, 2017, 48(1): 221−228.
[12] Filgueira R R, Fournier L L, Cerisola C I, et al. Particle-size distribution in soils: a critical study of the fractal model validation[J]. Geoderma, 2006, 134(3−4): 327−334. doi: 10.1016/j.geoderma.2006.03.008
[13] 战海霞, 张光灿, 刘霞, 等. 沂蒙山林区不同植物群落的土壤颗粒分形与水分入渗特征[J]. 中国水土保持科学, 2009, 7(1):49−56. doi: 10.3969/j.issn.1672-3007.2009.01.009 Zhan H X, Zhang G C, Liu X, et al. Fractal features of soil particle size distribution and infiltration characteristics under different vegetation communities in the forestland of Yimeng Mountains area[J]. Science of Soil and Water Conservation, 2009, 7(1): 49−56. doi: 10.3969/j.issn.1672-3007.2009.01.009
[14] 茹豪, 张建军, 李玉婷, 等. 黄土高原土壤粒径分形特征及其对土壤侵蚀的影响[J]. 农业机械学报, 2015, 46(4):176−182. doi: 10.6041/j.issn.1000-1298.2015.04.026 Ru H, Zhang J J, Li Y T, et al. Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 176−182. doi: 10.6041/j.issn.1000-1298.2015.04.026
[15] 罗清虎, 吴建召, 崔羽, 等. 洪涝灾害干扰下受损自然恢复林地土壤基本性状及分形维数特征[J]. 应用与环境生物学报, 2019, 25(1):29−37. Luo Q H, Wu J Z, Cui Y, et al. Characteristics of soil properties and fractal dimensions of destroyed and naturally restored forest land under flood disaster disturbance[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(1): 29−37.
[16] Grout H, Tarquis A M, Wisner M R. Multifractal analysis of particle size distributions in soil[J]. Environment Science Technology, 1998, 32(9): 1176−1182. doi: 10.1021/es9704343
[17] 管孝艳, 杨培岭, 任树梅, 等. 基于多重分形理论的壤土粒径分布非均匀性分析[J]. 应用基础与工程科学学报, 2009, 17(2):196−205. doi: 10.3969/j.issn.1005-0930.2009.02.005 Guan X Y, Yang P L, Ren S M, et al. Heterogeneity analysis of particle size distribution for loamy soil based on multifractal theory[J]. Journal of Basic Science and Engineering, 2009, 17(2): 196−205. doi: 10.3969/j.issn.1005-0930.2009.02.005
[18] 孙哲, 王一博, 刘国华, 等. 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析[J]. 冰川冻土, 2015, 37(4):980−990. Sun Z, Wang Y B, Liu G H, et al. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 980−990.
[19] 南平市林业局. 南平市2010年上半年林工调度简报[N]. 闽北林业工业动态, 2010−07−05(6). Nanping Forestry Bureau. Briefing on forestry work scheduling for Nanping in the first half of 2010[N]. Forestry Industry Dynamics in Northern Fujian Province, 2010−07−05(6).
[20] 周炜星, 吴韬, 于遵宏. 多重分形奇异谱的几何特性Ⅱ.配分函数法[J]. 华东理工大学学报, 2000, 26(4):390−395. Zhou W X, Wu T, Yu Z H. Geometrical characteristics of singularity spectra of multifractals (II): partition function definition[J]. Journal of East China University of Science and Technology, 2000, 26(4): 390−395.
[21] Ferreiro J P, Vidal V E. Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability[J]. Geoderma, 2010, 160(1): 64−73. doi: 10.1016/j.geoderma.2009.11.019
[22] 李卓, 冯浩, 吴普特, 等. 砂粒含量对土壤水分蓄持能力影响模拟试验研究[J]. 水土保持学报, 2009, 23(3):204−208. doi: 10.3321/j.issn:1009-2242.2009.03.044 Li Z, Feng H, Wu P T, et al. Simulated experiment on effects of soil clay particle content on soil water holding capacity[J]. Journal of Soil and Water Conservation, 2009, 23(3): 204−208. doi: 10.3321/j.issn:1009-2242.2009.03.044
[23] 甘凤玲, 王涛, 何炳辉, 等. 汶川震区不同植被下土壤组成及其分型特征[J]. 水土保持研究, 2008, 25(1):84−91. Gan F L, Wang T, He B H, et al. Fractal feature of soil in the different types of vegetation in Wenchuan Earthquake zone[J]. Research of Soil and Water Conservation, 2008, 25(1): 84−91.
[24] 谢贤健, 韦方强. 泥石流频发区不同盖度草地土壤颗粒的分形特征[J]. 水土保持学报, 2011, 25(4):202−206. Xie X J, Wei F Q. Characteristics of soil particle fractal dimension under different coverage grassland of the area with high-frequency debris flow[J]. Journal of Soil and Water Conservation, 2011, 25(4): 202−206.
[25] Wang Y, Shao M, Gao L. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the Loess Plateau of China[J]. Soil Science, 2010, 175(12): 579−585. doi: 10.1097/SS.0b013e3181fda413
[26] 王冬冬, 高磊, 陈效民, 等. 红壤丘陵区坡地土壤颗粒组成的空间分布特征研究[J]. 土壤, 2016, 48(2):361−367. Wang D D, Gao L, Chen X M, et al. Spatial distribution characteristics of soil particle composition of slope land red soil region[J]. Soils, 2016, 48(2): 361−367.
[27] 白一茹, 汪友科. 黄土丘陵区土壤粒径分布单重分形和多重分形特征[J]. 农业机械学报, 2012, 43(5):43−48. doi: 10.6041/j.issn.1000-1298.2012.05.008 Bai Y R, Wang Y K. Monofractal and multifractal analysis on soil particle distribution in hilly and gully areas of the Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 43−48. doi: 10.6041/j.issn.1000-1298.2012.05.008
-
期刊类型引用(8)
1. 陈鹭,黄紫欣. 溪源江流域土地利用方式对土壤理化性质影响. 亚热带水土保持. 2024(01): 18-22 . 百度学术
2. 石成华,李奇,罗清虎,过怡婷,林勇明. 福建南平市洪涝灾害致损森林土壤种子库与地上植被及土壤性质的关系. 山地学报. 2024(05): 648-661 . 百度学术
3. 马悦阳,夏栋,舒倩,郭士维,罗婷,闫书星,刘大翔. 向家坝工程扰动区不同生态修复模式边坡土壤颗粒分形特征. 水土保持研究. 2023(04): 83-89 . 百度学术
4. 苏甜,刘方平,徐涛,吴建富,索猛利. 鄱阳湖区洪涝灾害稻田土壤养分状况与质量评价. 江西农业学报. 2023(04): 57-62 . 百度学术
5. 孙尚贵. 模拟非饱和降雨入渗条件下典型黄壤颗粒的多重分形特征. 中国水运(下半月). 2022(05): 60-62 . 百度学术
6. 伍马强. 重力式沉箱码头下部结构施工要点分析. 中国水运. 2022(10): 64-65 . 百度学术
7. 田卓,张帅普,代俊峰,毕明峰,何建华. 漓江水陆交错带土壤粒径分形维数与水力性质. 节水灌溉. 2022(12): 48-57 . 百度学术
8. 张必禄. 杉木速生丰产栽培技术. 现代农业科技. 2021(08): 120+122 . 百度学术
其他类型引用(4)