高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数优选支持的光学与SAR数据森林地上生物量反演研究

李云 张王菲 崔鋆波 李春梅 姬永杰

李云, 张王菲, 崔鋆波, 李春梅, 姬永杰. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10): 11-19. doi: 10.12171/j.1000-1522.20190389
引用本文: 李云, 张王菲, 崔鋆波, 李春梅, 姬永杰. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10): 11-19. doi: 10.12171/j.1000-1522.20190389
Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. doi: 10.12171/j.1000-1522.20190389
Citation: Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. doi: 10.12171/j.1000-1522.20190389

参数优选支持的光学与SAR数据森林地上生物量反演研究

doi: 10.12171/j.1000-1522.20190389
基金项目: 国家自然科学基金项目(31860240),云南省教育厅科学研究基金项目(2019J0182),国家重点研发计划项目(2017YFB0502700)
详细信息
    作者简介:

    李云。主要研究方向:林业遥感。Email:liyun_amy@126.com 地址:650224云南省昆明市盘龙区白龙路白龙寺300号西南林业大学

    责任作者:

    姬永杰,助理研究员。主要研究方向:遥感技术应用。Email:yongjie_ji@126.com 地址:同上

  • 中图分类号: S771.8

Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method

  • 摘要:   目的  森林是整个陆地碳循环系统中最大的有机碳贮库,准确地估测森林地上生物量影响着全球碳源与碳储量的分析与评价。本文旨在评价利用Landsat8 OLI、高分一号光学数据、ALOS-1 PALSAR-1SAR 3组不同源遥感数据估测森林AGB的潜力,进而剖析光学数据和SAR数据在估测森林AGB方面的差异。  方法  首先对Landsat8 OLI、高分一号光学数据、ALOS-1 PALSAR-1SAR数据分别提取波段比值、植被指数、纹理信息,对ALOS-1 PALSAR-1SAR数据同时提取极化分解信息;然后,利用随机森林算法对不同数据提取的特征参数进行重要性排序,选择排序靠前的特征进行建模;最后,利用KNN-FIFS算法分析不同特征组合,对4组数据建立4个模型估测森林AGB,并使用留一交叉验证法对4个模型估测森林AGB值进行精度评价。  结果  使用植被因子、波段比值、纹理因子、极化分解信息4种特征参数分别对3组数据进行建模估测森林AGB,基于Landsat8 OLI数据反演森林AGB的精度评价结果为R2 = 0.50,RMSE = 33.34 t/hm2;基于高分一号数据估测精度为R2 = 0.36,RMSE = 37.60 t/hm2;基于PALSAR纹理特征估测精度为R2 = 0.45,RMSE = 35.40 t/hm2;基于PALSAR全极化分解信息估测精度为R2 = 0.63,RMSE = 28.84 t/hm2  结论  参数提取方法相同时,即基于植被因子、波段比值、纹理信息3种特征参数估测森林AGB,其光学数据和SAR数据的反演潜力基本一致;参数提取方法不同时,即SAR数据加入极化分解信息估测森林AGB,与光学数据相比,SAR数据对森林AGB的反演潜力较好。

     

  • 图  1  研究区地理位置及样地分布

    Figure  1.  Location and sample plot distribution of study area

    图  2  PALSAR-1数据预处理流程图

    Figure  2.  PALSAR-1 data pre-processing flowchart

    图  3  根河森林AGB分布图

    Figure  3.  Forest AGB distribution map of Genhe, Inner Mongolia

    图  4  KNN-FIFS估测森林AGB交叉验证结果

    Figure  4.  Cross-validation results of KNN-FIFS estimation

    表  1  ALOS PALSAR-1 影像主要参数

    Table  1.   Main parameters of ALOS PALSAR-1 images

    成像时间
    Acquisition time
    极化方式
    Polarization way
    入射角
    Incidence angle/(°)
    波长
    Wavelength/m
    距离向分辨率
    Range resolution/m
    方位向分辨率
    Azimuth resolution/m
    卫星飞行轨道
    Satellite orbit
    2011−04−12HH, HV, VH, VV23.7990.2369.3683.554升轨 Rail lifting
    注:HH表示发射和接收的都为水平极化的电磁波;HV表示发射的电磁波为水平极化,接收的电磁波为垂直极化;VH表示发射的电磁波为垂直极化,接收的电磁波为水平极化;VV表示发射和接收的都为垂直极化的电磁波。Notes: HH, transmitting and receiving both with horizontal polarization; HV, transmitting with horizontal polarization and receiving with vertical polarization; VH, transmitting with vertical polarization and receiving with horizontal polarization; VV, transmitting and receiving both with vertical polarization.
    下载: 导出CSV

    表  2  3种数据源重要参数

    Table  2.   Major parameters of three data sources

    数据源 Data source重要参数 Major parameter
    OLIDVI, MEgree, PVI, CONSWIR1, VARSWIR1
    GFHOMONIR, DISNIR, ENNIR, CONNIR, CORNIR
    PALSAR纹理 PALSAR textureVHME, HHME, VVME, VARVH, DISHV
    PALSAR全极化分解特征 PALSAR full polarimetric decomposition characteristicsYamaguchi4_vo1_dB, Yamaguchi4_vo1, Yamaguchi4_h1x_dB,
    Yamaguchi4_Odd_dB, T22
    注:OLI为Landsat-8 OLI;GF为高分一号数据;DVI为差值植被指数;MEgree为绿光波段的均值纹理信息;PVI为正交植被指数;CONSWIR1、VARSWIR1分别为短波红外波段的对比度纹理信息、方差纹理信息;HOMONIR、DISNIR、ENNIR、CONNIR、CORNIR分别为近红外波段的均匀性纹理信息、相异性纹理信息、熵纹理信息、对比度纹理信息、相关性纹理信息;VHME、HHME、VVME分别为VH、HH、VV极化通道信息的均值纹理特征;VARVH为VH极化通道信息的方差纹理信息;DISHV为HV极化通道信息的相异性纹理信息;Yamaguchi4_vo1_dB、Yamaguchi4_vo1、Yamaguchi4_h1x_dB、Yamaguchi4_Odd_dB分别为Yamaguchi4分量分解中体散射分量分贝化结果、体散射分量、螺旋散射分量分贝化结果、表面散射分量分贝化结果;T22为相干矩阵中的一个元素。Notes: OLI is the Landsat-8 OLI data; GF is the Gaofen-1 data; DVI is the differential vegetation index; MEgree is the mean texture of green band; PVI is the perpendicular vegetation index; CONSWIR1 and VARSWIR1 are the contrast texture and variance texture of the short-wave infrared band, respectively; HOMONIR, DISNIR, ENNIR, CONNIR, CORNIR are the homogeneity texture, dissimilarity texture, entropy texture, contrast texture, correlation texture of the near-infrared band, respectively; VHME, HHME, VVME are the mean texture of polarization channel of VH, HH, VV, respectively; VARVH is the variance texture of VH channel; DISHV is the dissimilarity texture of the HV channel; Yamaguchi4_vo1_dB, Yamaguchi4_vo1, Yamaguchi4_h1x_dB, Yamaguchi4_Odd_dB are the decibel results of volume scattering component, volume scattering component, helix scattering component and surface scattering component in the decomposition of Yamaguchi4 component decompositions, respectively; T22 is an element in the coherence matrix.
    下载: 导出CSV

    表  3  特征组合

    Table  3.   Feature combination

    数据源
    Data source
    K窗口大小
    Size of the window
    特征组合
    Combination of feature vector
    OLI 8 11 × 11 DVI, VARSWIR1, CONgreen, MEgree
    GF 3 3 × 3 HOMONIR, NIR, CONNIR
    PALSAR纹理 PALSAR texture 9 7 × 7 HHME, VVME
    PALSAR全极化分解特征
    PALSAR full polarimetric decomposition characteristics
    3 7 × 7 alpha, T23_imag, Freeman_Odd, anisotropy, T33, T12_real
    注:DVI为差值植被指数;VARSWIR为短波红外波段swir1的方差纹理信息;CONgree、MEgree为绿光波段的对比度纹理信息、均值纹理信息;HOMONIR、NIR、CONNIR为近红外波段的均匀性纹理信息、光谱信息、对比度纹理信息;HHME为HH极化通道信息的均值纹理特征;VVME为VV极化通道信息的均值纹理特征;alpha为H-A-$ \overline \alpha $分解中的平均散射角;T23_imag为相干矩阵中T23分量的虚部;Freeman_Odd为Freeman三分量分解的表面散射分量;anisotropy为H-A-$ \overline \alpha $分解中的极化各向异质性;T33为相干矩阵中的一个分量;T12_real为相干矩阵中T12分量的实部。Notes: DVI is the differential vegetation index; VARSWIR1 is the variance texture of the short-wave infrared band; CONgree and MEgree are the contrast texture and mean texture of green band, respectively; HOMONIR, NIR and CONNIR are the homogeneity texture, spectral information and the contrast texture of the near-infrared band, respectively; HHME and VVME are the mean texture of polarization channel of HH and VV, respectively; alpha is the average scattering angle of H-A-$ \overline \alpha $ decomposition; T23_imag is the imaginary part of the T23 component in the coherence matrix; Freeman_Odd is the surface scattering component of Freeman-Durden 3 components decomposition; anisotropy is the polarimetric anisotropy of the H-A-$ \overline \alpha $ decomposition; T33 is a component of the component matrix; T12_real is the real part of the T12 component of the coherence matrix.
    下载: 导出CSV
  • [1] 陶玉华. 森林生态系统碳储量研究的意义及国内外研究进展[J]. 现代农业科技, 2012(9):205, 212.

    Tao Y H. Research significance of carbon storage of forest ecosystem and research progress at home and abroad[J]. Modern Agricultural Sciences and Technology, 2012(9): 205, 212.
    [2] 杨洪晓, 吴波, 张金屯, 等. 森林生态系统的固碳功能和碳储量研究进展[J]. 北京师范大学学报(自然科学版), 2005, 41(2):172−177. doi: 10.3321/j.issn:0476-0301.2005.02.018.

    Yang H X, Wu B, Zhang J T, et al. Progress of research into carbon fixation and storage of forest ecosystems[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(2): 172−177. doi: 10.3321/j.issn:0476-0301.2005.02.018.
    [3] Lu D S, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014, 9(1): 63−105.
    [4] 韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9):70−79. doi: 10.11707/j.1001-7488.20180909.

    Han Z T, Jiang H, Wang W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data[J]. Scientia Silvae Sinicae, 2018, 54(9): 70−79. doi: 10.11707/j.1001-7488.20180909.
    [5] 李春梅. 基于多源数据的森林地上生物量估测方法研究[D]. 昆明: 西南林业大学, 2016.

    Li C M. A study of the retrieval methods of forest above ground biomass based on multi-source data[D]. Kunming: Southwest Forestry University, 2016.
    [6] 李春梅, 张王菲, 李增元, 等. 基于多源数据的根河实验区生物量反演研究[J]. 北京林业大学学报, 2016, 38(3):64−72.

    Li C M, Zhang W F, Li Z Y, et al. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3): 64−72.
    [7] 庞勇, 李增元, 谭炳香, 等. 点云密度对机载激光雷达林分高度反演的影响[J]. 林业科学研究, 2008, 21(增刊): 14−19.

    Pang Y, Li Z Y, Tan B X, et al. The effects of airborne LiDAR point density on forest height estimation[J]. Forest Research, 2008, 21(Suppl.): 14−19.
    [8] 刘清旺, 李增元, 陈尔学, 等. 机载LIDAR点云数据估测单株木生物量[J]. 高技术通讯, 2010, 20(7):765−770. doi: 10.3772/j.issn.1002-0470.2010.07.019

    Liu Q W, Li Z Y, Chen E X, et al. Estimating biomass of individual trees using point cloud data of airborne[J]. Chinese High Technology Letters, 2010, 20(7): 765−770. doi: 10.3772/j.issn.1002-0470.2010.07.019
    [9] 穆喜云, 张秋良, 刘清旺, 等. 基于激光雷达的大兴安岭典型森林生物量制图技术研究[J]. 遥感技术与应用, 2015, 30(2):220−225.

    Mu X Y, Zhang Q L, Liu Q W, et al. A study on typical forest biomass mapping technology of Great Khingan using airborne laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(2): 220−225.
    [10] 陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6):18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004

    Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004
    [11] 张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6):983−997.

    Zhang W F, Chen E X, Li Z Y, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sensing Technology and Application, 2017, 32(6): 983−997.
    [12] Pu L, Zhang X L, Shi J, et al. Adaptive filtering for 3D SAR data based on dynamic gaussian threshold[C]// Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Xiamen: IEEE, 2019.
    [13] 张王菲. 星载SAR遥感反演中地形辐射校正的关键技术研究[D]. 昆明: 昆明理工大学, 2011.

    Zhang W F. Study on the key techniques of terrain radiometric correction in spaceborne SAR remote sensing inversion[D]. Kunming: Kunming University of Science and Technology, 2011.
    [14] 杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. 北京: 中国林业科学研究院, 2015.

    Yang H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric Sar imagery[D]. Beijing: Chinese Academy of Forestry, 2015.
    [15] 陈传国. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.

    Chen C G. Manual of main forest biomass in Northeast China[M]. Beijing: China Forestry Publishing House, 1989.
    [16] Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786−804. doi: 10.1109/PROC.1979.11328
    [17] Tuominen S, Pekkarinen A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256−268. doi: 10.1016/j.rse.2004.10.001
    [18] Chica-Olmo M, Abarca-Hernández F. Computing geostatistical image texture for remotely sensed data classification[J]. Computers & Geosciences, 2000, 26(4): 373−383.
    [19] 张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12):3289−3297.

    Zhang L M, Duan B L, Zou B. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3289−3297.
    [20] Breiman L. Random forests[D]. Berkeley: University of California, 2001: 5−26
    [21] 李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 54(4):1190−1197. doi: 10.7679/j.issn.2095-1353.2013.163

    Li X H. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology, 2013, 54(4): 1190−1197. doi: 10.7679/j.issn.2095-1353.2013.163
    [22] 苏瑞雪, 汤玉奇. 光学-极化SAR影像特征融合与分类[J]. 测绘与空间地理信息, 2019(6):51−55. doi: 10.3969/j.issn.1672-5867.2019.06.014

    Su R X, Tang Y Q. Feature fusion and classification of optical-PolSAR images[J]. Geomatics & Spatial Information Technology, 2019(6): 51−55. doi: 10.3969/j.issn.1672-5867.2019.06.014
    [23] 范亚雄. 星载X-波段干涉SAR森林高度估测方法研究[D]. 北京: 中国林业科学研究院, 2019.

    Fan Y X. Study on forest height estimation method of spaceborne X- band interferometric SAR[D]. Beijing: Chinese Academy of Forestry, 2019.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  135
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-11
  • 修回日期:  2019-12-08
  • 网络出版日期:  2020-10-17
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回