高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京城市森林生态系统能量分配的季节动态研究

崔万晶 侯巍 杨睿智 赵云杰

崔万晶, 侯巍, 杨睿智, 赵云杰. 北京城市森林生态系统能量分配的季节动态研究[J]. 北京林业大学学报, 2021, 43(1): 27-36. doi: 10.12171/j.1000-1522.20190392
引用本文: 崔万晶, 侯巍, 杨睿智, 赵云杰. 北京城市森林生态系统能量分配的季节动态研究[J]. 北京林业大学学报, 2021, 43(1): 27-36. doi: 10.12171/j.1000-1522.20190392
Cui Wanjing, Hou Wei, Yang Ruizhi, Zhao Yunjie. Seasonal dynamics of energy distribution in urban forest ecosystem of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(1): 27-36. doi: 10.12171/j.1000-1522.20190392
Citation: Cui Wanjing, Hou Wei, Yang Ruizhi, Zhao Yunjie. Seasonal dynamics of energy distribution in urban forest ecosystem of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(1): 27-36. doi: 10.12171/j.1000-1522.20190392

北京城市森林生态系统能量分配的季节动态研究

doi: 10.12171/j.1000-1522.20190392
基金项目: 国家自然科学基金项目(31670710、31670708)
详细信息
    作者简介:

    崔万晶,高级工程师。主要研究方向:水土保持。Email:cuiwanjing@163.com 地址:100083 北京市海淀区学院路5号768创意园

    责任作者:

    赵云杰,高级实验师。主要研究方向:水土保持。Email:lfycw8@163.com 地址:100083 北京市海淀区学清路35号北京林业大学水土保持学院

Seasonal dynamics of energy distribution in urban forest ecosystem of Beijing

  • 摘要:   目的  森林是陆地生态系统的主要组成部分,对全球碳水循环和能量交换过程有重大影响,然而对城市森林生态系统能量交换过程的了解仍很有限,本文在北方城市森林开展生态系统水热通量的机理研究,对制定科学合理的人工林水分管理策略具有重要意义。  方法  本研究利用涡度协方差观测法,探讨了2018年北京奥林匹克森林公园各表面能量组分的日变化和季节变化,以及控制能量分配的主要生物物理因子。  结果  全年日均净辐射通量(Rn)为133 W/m2,日均感热通量(H)为23.6 W/m2,日均潜热通量(LE)为26.9 W/m2。波文比(β = H/LE)为0.88。在非生长季,感热通量大于潜热通量,在生长季开始,潜热通量逐渐超过感热通量,占据主导地位。Priestley-Taylor系数(α系数)、冠层导度(gs)和解耦系数(Ω)都与土壤含水量(VWC)和归一化植被指数(NDVI)呈正相关的关系,与饱和水汽压差(VPD)则呈现先上升后下降的关系。β与VWC、VPD和NDVI都呈现负相关的关系。VWC和VPD通过影响冠层导度,控制潜热通量及能量分配。  结论  本研究结果表明:干旱条件能显著降低生态系统冠层导度,从而降低潜热通量,影响能量分配。此外,为提高潜热通量比例,最大化城市绿地的降温功能及其价值,在冠层构建期和生长季干旱期进行一定程度的灌溉是一项合理的用水管理措施。

     

  • 图  1  研究区环境因子的日均变化(2018)

    Ta_Avg. 日均温度;Ta_max. 最高温度;Ta_min. 最低温度;Rs. 日均短波辐射;VPD. 饱和水汽压差;VWC. 土壤体积含水量;P. 降雨量;NDVI. 归一化植被指数;Albedo. 反照率的季节动态。下同。Ta_Avg, daily mean air temperature; Ta_max, daily maximum temperature; Ta_min, daily minimum temperature; Rs, shortwave global solar radiation; VPD, vapor pressure deficit; P, daily precipitation; VWC, soil volumetric water content; NDVI, normalized difference vegetation index; Albedo, daily mean albedo. The same below.

    Figure  1.  Average daily changing patterns of environmental factors in 2018 in the study area

    图  2  研究区日均冠层导度(gs)、解耦系数(Ω)、Priestley-Taylor系数(α)的季节动态(2018)

    Figure  2.  Seasonal patterns of mean daily surface conductance (gs), mean daily decoupling coefficient (Ω) and mean daily daytime Priestley-Taylor coefficient (α) in 2018 in the study area

    图  3  研究区日均净辐射(Rn)、土壤热通量(G)、感热通量(H)和潜热通量(LE)、波文比(β)的季节动态(2018)

    Figure  3.  Seasonal patterns in daily mean net radiation (Rn), soil heat flux (G), and sensible heat flux (H) andlatent heat flux (LE) and Bowen ratio (β) at the study site in 2018 in the study area

    图  4  研究区生长季(5—10月)能量参数的日动态(2018)

    Figure  4.  Daily dynamics of energy parameters in growing season (May−October) of study area in 2018

    图  5  研究区生长季(5—10月)各环境因子间的关系(2018)

    对于日NDVI、VWC、VPD分别以0.02、0.06和0.10 kPa为间隔求平均值。实线线性和非线性回归表示 P < 0.05。Half-hourly values are bin-averaged for every 0.02, 0.06 and 0.10 kPa-interval of NDVI, VWC and VPD, respectively. Dashed lines are fitted linear and nonlinear relationships (P < 0.05).

    Figure  5.  Relationship between environmental factors during the growing season (May−October) in 2018 in the study area

    图  6  基于半小时尺度数据所得到的2018年北京城市森林生态系统能量闭合状况

    Figure  6.  Energy balance closure of the urban forest ecosystem based on the half-hour scale data of 2018

    图  7  时间尺度为1个月的北京市SPEI序列值(2018)

    Figure  7.  SPEI series in the time scales of 1 month in Beijing in 2018

    表  1  研究区净辐射(Rn)、土壤热通量(G)、感热通量(H)、潜热通量(LE)和波文比(β)的月均值(5—10月)、生长季平均值和年日均值(2018)

    Table  1.   Monthly means (May−October), growing season mean and annual mean of Rn, G, H, LE and β in the study area in 2018

    变量
    Variable
    生长季 Growing season年日均值
    Annual daily mean
    5月 May6月 June7月 July8月 August9月 September10月 October平均值 Mean value
    Rs/(W·m−2) 337.2 362.7 268.9 296.6 341.9 319.5 321.1 293.6
    Rn/(W·m−2) 111.5 141.7 163.2 135.6 132.9 113.1 133.0 88.2
    LE/(W·m−2) 39.4 62.0 55.1 62.5 60.2 24.7 50.7 26.9
    H/(W·m−2) 27.1 23.2 5.9 2.8 17.2 33.9 18.4 23.6
    G/(W·m−2) 3.6 4.8 3.9 1.4 −3.2 −4.4 1.0 −0.9
    β 0.69 0.37 0.11 0.05 0.29 1.38 0.48 0.88
    下载: 导出CSV
  • [1] IPCC. Summary for policymakers[M]//Climate change 2014: impacts, adaptation, and vulnerability. Cambridge: Cambridge University Press, 2014.
    [2] Food and Agricultural Organization of the United Nations (FAO). State of the world’s forests[Z/OL]. [2019−10−11]. http://www.fao.org. 2009.
    [3] 范玉龙, 胡楠, 丁圣彦, 等. 陆地生态系统服务与生物多样性研究进展[J]. 生态学报, 2016, 36(15):4583−4593.

    Fan Y L, Hu N, Ding S Y, et al. Progress in terrestrial ecosystem services and biodiversity[J]. Acta Ecologica Sinica, 2016, 36(15): 4583−4593.
    [4] Teuling A J, Seneviratne S I, Stöckli R, et al. Contrasting response of european forest and grassland energy exchange to heatwaves[J]. Nature Geoscience, 2010, 3(10): 722−727. doi: 10.1038/ngeo950.
    [5] Wilson K B, Baldocchi D D, Aubinet M, et al. Energy partitioning between latent and sensible heat flux during the warm season at Fluxnet sites[J/OL]. Water Resources Research, 2002, 38(12): 1294 [2019−10−12]. https://doi.org/10.1029/2001WR000989.
    [6] Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499: 324−327. doi: 10.1038/nature12291.
    [7] 王兵, 刘世荣, 崔向慧, 等. 全球陆地生态系统水热平衡规律研究进展[J]. 世界林业研究, 2002, 15(1):19−28. doi: 10.3969/j.issn.1001-4241.2002.01.003.

    Wang B, Liu S R, Cui X H, et al. Advances in the research on water and heat balance laws of the global terrestrial ecosystem[J]. World Forestry Research, 2002, 15(1): 19−28. doi: 10.3969/j.issn.1001-4241.2002.01.003.
    [8] Wilson K B, Baldocchi D D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America[J]. Agricultural and Forest Meteorology, 2000, 100: 1−18. doi: 10.1016/S0168-1923(99)00088-X.
    [9] Mao J, Fu W, Shi X, et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends[J/OL]. Environmental Research Letters, 2015, 10(9), 094008 [2019−09−13]. https://iopscience.iop.org/article/10.1088/1748-9326/10/9/094008.
    [10] Chen Y, Xue Y, Hu Y, et al. How multiple factors control evapotranspiration in North America evergreen needleleaf forests[J]. Science of the Total Environment, 2018, 622–623: 1217−1224.
    [11] Li Y, Zhou L, Xu Z, et al. Comparison of water vapor, heat and energy exchanges over agricultural and wetland ecosystems[J]. Hydrological Processes, 2009, 23: 2069−2080. doi: 10.1002/hyp.7339.
    [12] 张燕. 北京地区杨树人工林能量平衡和水量平衡[D]. 北京: 北京林业大学, 2010.

    Zhang Y. Energy and water balances of poplar plantation in Beijing[D]. Beijing: Beijing Forestry Univiersity, 2010.
    [13] Li S G, Eugster W, Asanuma J, et al. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia[J]. Agricultural and Forest Meteorology, 2006, 137: 89−106. doi: 10.1016/j.agrformet.2006.03.010.
    [14] Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2: 122−129. doi: 10.1038/s41893-019-0220-7.
    [15] 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 北京: 高等教育出版社, 2006.

    Yu G R, Sun X M. Principles and methods of flux observation in terrestrial ecosystem[M]. Beijing: Higher Education Press, 2006.
    [16] Xie J, Zha T S, Zhou C, et al. Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought[J]. Agricultural and Forest Meteorology, 2016, 221: 142−151. doi: 10.1016/j.agrformet.2016.02.013.
    [17] Burba G. Eddy covariance method for scientific, industrial, agricultural and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates[M]. Lincoln: LI-COR Biosciences, 2013.
    [18] Zha T, Li C, Kellomäki S, et al. Controls of evapotranspiration and CO2 fluxes from scots pine by surface conductance and abiotic factors[J/OL]. PLoS ONE, 2013, 8 [2019−09−16]. https://doi.org/10.1371/journal.pone.0069027.
    [19] Monteith J L, Unsworth M H. Principles of environmental physics: plants, animals, and the atmosphere[M]. 4th ed. Amsterdam: Academic Press, 2013.
    [20] Jarvis P G, Mcnaughton K G. Stomatal control of transpiration: scaling up from leaf to region[J]. Advances in Ecological Research, 1986, 15(15): 1−49.
    [21] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large- scale parameters[J]. Monthly Weather Review, 1972, 100(2): 81−92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
    [22] Yue P, Zhang Q, Yang Y, et al. Seasonal and inter-annual variability of the Bowen smith ratio over a semi-arid grassland in the Chinese Loess Plateau[J]. Agricultural and Forest Meteorology, 2018, 252: 99−108. doi: 10.1016/j.agrformet.2018.01.006.
    [23] Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696−1718. doi: 10.1175/2009JCLI2909.1.
    [24] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38: 55−94. doi: 10.2307/210739.
    [25] Wilson K B, Goldstein A, Falge E, et al. Energy balance closure at flux net sites[J]. Agricultural and Forest Meteorology, 2002, 113(1−4): 223−243. doi: 10.1016/S0168-1923(02)00109-0.
    [26] 李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(China FLUX)能量平衡闭合状况的评价[J]. 中国科学: 地球科学, 2004, 34(增刊 2):46−56.

    Li Z Q, Yu G R, Wen X F, et al. Evaluation of energy balance conditions of ChinaFLUX[J]. Science in China (Series D), 2004, 34(Suppl. 2): 46−56.
    [27] Chen S, Chen J, Lin G, et al. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types[J]. Agricultural and Forest Meteorology, 2009, 149(11): 1800−1809. doi: 10.1016/j.agrformet.2009.06.009.
    [28] Tang Y, Wen X, Sun X, et al. Interannual variation of the bowen ratio in a subtropical coniferous plantation in southeast China, 2003−2012[J/OL]. PLoS ONE, 2014, 9(2) [2019−06−11]. https://doi.org/10.1371/journal.pone.0088267.
    [29] Ma J Y, Zha T S, Jia X, et al. Energy and water vapor exchange over a young plantation in northern China[J]. Agricultural and Forest Meteorology, 2018, 263: 334−345. doi: 10.1016/j.agrformet.2018.09.004.
    [30] Jia X, Zha T S, Gong J N, et al. Energy partitioning over a semi-arid shrubland in northern China[J]. Hydrological Processes, 2016, 30(6): 972−985. doi: 10.1002/hyp.10685.
    [31] Bracho R, Powell T L, Dore S, et al. Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems[J/OL]. Journal of Geophysical Research: Biogeosciences, 2008, 113: G02004 [2019−05−12]. https://doi.org/10.1029/2007JG000469.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  145
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2020-01-24
  • 网络出版日期:  2021-01-11
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回